1 #ifndef PHASE_SHIFTER_H
2 #define PHASE_SHIFTER_H
4 #ifdef HAVE_SSE_INTRINSICS
6 #elif defined(HAVE_NEON)
13 #include "alcomplex.h"
17 /* Implements a wide-band +90 degree phase-shift. Note that this should be
18 * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
19 * signal delay (FilterSize/2) to properly align.
21 template<size_t FilterSize
>
22 struct PhaseShifterT
{
23 static_assert(FilterSize
>= 16, "FilterSize needs to be at least 16");
24 static_assert((FilterSize
&(FilterSize
-1)) == 0, "FilterSize needs to be power-of-two");
26 alignas(16) std::array
<float,FilterSize
/2> mCoeffs
{};
28 /* Some notes on this filter construction.
30 * A wide-band phase-shift filter needs a delay to maintain linearity. A
31 * dirac impulse in the center of a time-domain buffer represents a filter
32 * passing all frequencies through as-is with a pure delay. Converting that
33 * to the frequency domain, adjusting the phase of each frequency bin by
34 * +90 degrees, then converting back to the time domain, results in a FIR
35 * filter that applies a +90 degree wide-band phase-shift.
37 * A particularly notable aspect of the time-domain filter response is that
38 * every other coefficient is 0. This allows doubling the effective size of
39 * the filter, by storing only the non-0 coefficients and double-stepping
40 * over the input to apply it.
42 * Additionally, the resulting filter is independent of the sample rate.
43 * The same filter can be applied regardless of the device's sample rate
44 * and achieve the same effect.
48 using complex_d
= std::complex<double>;
49 constexpr size_t fft_size
{FilterSize
};
50 constexpr size_t half_size
{fft_size
/ 2};
52 auto fftBuffer
= std::make_unique
<complex_d
[]>(fft_size
);
53 std::fill_n(fftBuffer
.get(), fft_size
, complex_d
{});
54 fftBuffer
[half_size
] = 1.0;
56 forward_fft(al::as_span(fftBuffer
.get(), fft_size
));
57 for(size_t i
{0};i
< half_size
+1;++i
)
58 fftBuffer
[i
] = complex_d
{-fftBuffer
[i
].imag(), fftBuffer
[i
].real()};
59 for(size_t i
{half_size
+1};i
< fft_size
;++i
)
60 fftBuffer
[i
] = std::conj(fftBuffer
[fft_size
- i
]);
61 inverse_fft(al::as_span(fftBuffer
.get(), fft_size
));
63 auto fftiter
= fftBuffer
.get() + half_size
+ (FilterSize
/2 - 1);
64 for(float &coeff
: mCoeffs
)
66 coeff
= static_cast<float>(fftiter
->real() / double{fft_size
});
71 void process(al::span
<float> dst
, const float *RESTRICT src
) const;
74 #if defined(HAVE_NEON)
75 /* There doesn't seem to be NEON intrinsics to do this kind of stipple
76 * shuffling, so there's two custom methods for it.
78 static auto shuffle_2020(float32x4_t a
, float32x4_t b
)
80 float32x4_t ret
{vmovq_n_f32(vgetq_lane_f32(a
, 0))};
81 ret
= vsetq_lane_f32(vgetq_lane_f32(a
, 2), ret
, 1);
82 ret
= vsetq_lane_f32(vgetq_lane_f32(b
, 0), ret
, 2);
83 ret
= vsetq_lane_f32(vgetq_lane_f32(b
, 2), ret
, 3);
86 static auto shuffle_3131(float32x4_t a
, float32x4_t b
)
88 float32x4_t ret
{vmovq_n_f32(vgetq_lane_f32(a
, 1))};
89 ret
= vsetq_lane_f32(vgetq_lane_f32(a
, 3), ret
, 1);
90 ret
= vsetq_lane_f32(vgetq_lane_f32(b
, 1), ret
, 2);
91 ret
= vsetq_lane_f32(vgetq_lane_f32(b
, 3), ret
, 3);
94 static auto unpacklo(float32x4_t a
, float32x4_t b
)
96 float32x2x2_t result
{vzip_f32(vget_low_f32(a
), vget_low_f32(b
))};
97 return vcombine_f32(result
.val
[0], result
.val
[1]);
99 static auto unpackhi(float32x4_t a
, float32x4_t b
)
101 float32x2x2_t result
{vzip_f32(vget_high_f32(a
), vget_high_f32(b
))};
102 return vcombine_f32(result
.val
[0], result
.val
[1]);
104 static auto load4(float32_t a
, float32_t b
, float32_t c
, float32_t d
)
106 float32x4_t ret
{vmovq_n_f32(a
)};
107 ret
= vsetq_lane_f32(b
, ret
, 1);
108 ret
= vsetq_lane_f32(c
, ret
, 2);
109 ret
= vsetq_lane_f32(d
, ret
, 3);
116 inline void PhaseShifterT
<S
>::process(al::span
<float> dst
, const float *RESTRICT src
) const
118 #ifdef HAVE_SSE_INTRINSICS
119 if(size_t todo
{dst
.size()>>1})
121 auto *out
= reinterpret_cast<__m64
*>(dst
.data());
123 __m128 r04
{_mm_setzero_ps()};
124 __m128 r14
{_mm_setzero_ps()};
125 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
127 const __m128 coeffs
{_mm_load_ps(&mCoeffs
[j
])};
128 const __m128 s0
{_mm_loadu_ps(&src
[j
*2])};
129 const __m128 s1
{_mm_loadu_ps(&src
[j
*2 + 4])};
131 __m128 s
{_mm_shuffle_ps(s0
, s1
, _MM_SHUFFLE(2, 0, 2, 0))};
132 r04
= _mm_add_ps(r04
, _mm_mul_ps(s
, coeffs
));
134 s
= _mm_shuffle_ps(s0
, s1
, _MM_SHUFFLE(3, 1, 3, 1));
135 r14
= _mm_add_ps(r14
, _mm_mul_ps(s
, coeffs
));
139 __m128 r4
{_mm_add_ps(_mm_unpackhi_ps(r04
, r14
), _mm_unpacklo_ps(r04
, r14
))};
140 r4
= _mm_add_ps(r4
, _mm_movehl_ps(r4
, r4
));
142 _mm_storel_pi(out
, r4
);
148 __m128 r4
{_mm_setzero_ps()};
149 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
151 const __m128 coeffs
{_mm_load_ps(&mCoeffs
[j
])};
152 const __m128 s
{_mm_setr_ps(src
[j
*2], src
[j
*2 + 2], src
[j
*2 + 4], src
[j
*2 + 6])};
153 r4
= _mm_add_ps(r4
, _mm_mul_ps(s
, coeffs
));
155 r4
= _mm_add_ps(r4
, _mm_shuffle_ps(r4
, r4
, _MM_SHUFFLE(0, 1, 2, 3)));
156 r4
= _mm_add_ps(r4
, _mm_movehl_ps(r4
, r4
));
158 dst
.back() = _mm_cvtss_f32(r4
);
161 #elif defined(HAVE_NEON)
164 if(size_t todo
{dst
.size()>>1})
167 float32x4_t r04
{vdupq_n_f32(0.0f
)};
168 float32x4_t r14
{vdupq_n_f32(0.0f
)};
169 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
171 const float32x4_t coeffs
{vld1q_f32(&mCoeffs
[j
])};
172 const float32x4_t s0
{vld1q_f32(&src
[j
*2])};
173 const float32x4_t s1
{vld1q_f32(&src
[j
*2 + 4])};
175 r04
= vmlaq_f32(r04
, shuffle_2020(s0
, s1
), coeffs
);
176 r14
= vmlaq_f32(r14
, shuffle_3131(s0
, s1
), coeffs
);
180 float32x4_t r4
{vaddq_f32(unpackhi(r04
, r14
), unpacklo(r04
, r14
))};
181 float32x2_t r2
{vadd_f32(vget_low_f32(r4
), vget_high_f32(r4
))};
183 vst1_f32(&dst
[pos
], r2
);
189 float32x4_t r4
{vdupq_n_f32(0.0f
)};
190 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
192 const float32x4_t coeffs
{vld1q_f32(&mCoeffs
[j
])};
193 const float32x4_t s
{load4(src
[j
*2], src
[j
*2 + 2], src
[j
*2 + 4], src
[j
*2 + 6])};
194 r4
= vmlaq_f32(r4
, s
, coeffs
);
196 r4
= vaddq_f32(r4
, vrev64q_f32(r4
));
197 dst
[pos
] = vget_lane_f32(vadd_f32(vget_low_f32(r4
), vget_high_f32(r4
)), 0);
202 for(float &output
: dst
)
205 for(size_t j
{0};j
< mCoeffs
.size();++j
)
206 ret
+= src
[j
*2] * mCoeffs
[j
];
214 #endif /* PHASE_SHIFTER_H */