Avoid static constexpr for arrays iterated over at run-time
[openal-soft.git] / alc / filters / biquad.cpp
blob8a8810e256d2ef9bedbb7d9d8655196aa4874461
2 #include "config.h"
4 #include "biquad.h"
6 #include <algorithm>
7 #include <cassert>
8 #include <cmath>
10 #include "opthelpers.h"
13 template<typename Real>
14 void BiquadFilterR<Real>::setParams(BiquadType type, Real gain, Real f0norm, Real rcpQ)
16 // Limit gain to -100dB
17 assert(gain > 0.00001f);
19 const Real w0{al::MathDefs<Real>::Tau() * f0norm};
20 const Real sin_w0{std::sin(w0)};
21 const Real cos_w0{std::cos(w0)};
22 const Real alpha{sin_w0/2.0f * rcpQ};
24 Real sqrtgain_alpha_2;
25 Real a[3]{ 1.0f, 0.0f, 0.0f };
26 Real b[3]{ 1.0f, 0.0f, 0.0f };
28 /* Calculate filter coefficients depending on filter type */
29 switch(type)
31 case BiquadType::HighShelf:
32 sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
33 b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
34 b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 );
35 b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
36 a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
37 a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 );
38 a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
39 break;
40 case BiquadType::LowShelf:
41 sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
42 b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
43 b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 );
44 b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
45 a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
46 a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 );
47 a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
48 break;
49 case BiquadType::Peaking:
50 b[0] = 1.0f + alpha * gain;
51 b[1] = -2.0f * cos_w0;
52 b[2] = 1.0f - alpha * gain;
53 a[0] = 1.0f + alpha / gain;
54 a[1] = -2.0f * cos_w0;
55 a[2] = 1.0f - alpha / gain;
56 break;
58 case BiquadType::LowPass:
59 b[0] = (1.0f - cos_w0) / 2.0f;
60 b[1] = 1.0f - cos_w0;
61 b[2] = (1.0f - cos_w0) / 2.0f;
62 a[0] = 1.0f + alpha;
63 a[1] = -2.0f * cos_w0;
64 a[2] = 1.0f - alpha;
65 break;
66 case BiquadType::HighPass:
67 b[0] = (1.0f + cos_w0) / 2.0f;
68 b[1] = -(1.0f + cos_w0);
69 b[2] = (1.0f + cos_w0) / 2.0f;
70 a[0] = 1.0f + alpha;
71 a[1] = -2.0f * cos_w0;
72 a[2] = 1.0f - alpha;
73 break;
74 case BiquadType::BandPass:
75 b[0] = alpha;
76 b[1] = 0.0f;
77 b[2] = -alpha;
78 a[0] = 1.0f + alpha;
79 a[1] = -2.0f * cos_w0;
80 a[2] = 1.0f - alpha;
81 break;
84 mA1 = a[1] / a[0];
85 mA2 = a[2] / a[0];
86 mB0 = b[0] / a[0];
87 mB1 = b[1] / a[0];
88 mB2 = b[2] / a[0];
91 template<typename Real>
92 void BiquadFilterR<Real>::process(Real *dst, const Real *src, const size_t numsamples)
94 ASSUME(numsamples > 0);
96 const Real b0{mB0};
97 const Real b1{mB1};
98 const Real b2{mB2};
99 const Real a1{mA1};
100 const Real a2{mA2};
101 Real z1{mZ1};
102 Real z2{mZ2};
104 /* Processing loop is Transposed Direct Form II. This requires less storage
105 * compared to Direct Form I (only two delay components, instead of a four-
106 * sample history; the last two inputs and outputs), and works better for
107 * floating-point which favors summing similarly-sized values while being
108 * less bothered by overflow.
110 * See: http://www.earlevel.com/main/2003/02/28/biquads/
112 auto proc_sample = [b0,b1,b2,a1,a2,&z1,&z2](Real input) noexcept -> Real
114 Real output = input*b0 + z1;
115 z1 = input*b1 - output*a1 + z2;
116 z2 = input*b2 - output*a2;
117 return output;
119 std::transform(src, src+numsamples, dst, proc_sample);
121 mZ1 = z1;
122 mZ2 = z2;
125 template class BiquadFilterR<float>;
126 template class BiquadFilterR<double>;