19 #include <type_traits>
24 #include "alfstream.h"
26 #include "alnumbers.h"
27 #include "alnumeric.h"
28 #include "aloptional.h"
31 #include "filters/splitter.h"
34 #include "mixer/hrtfdefs.h"
35 #include "opthelpers.h"
36 #include "polyphase_resampler.h"
43 std::string mDispName
;
44 std::string mFilename
;
46 /* GCC warns when it tries to inline this. */
49 HrtfEntry::~HrtfEntry() = default;
52 std::string mFilename
;
53 std::unique_ptr
<HrtfStore
> mEntry
;
55 template<typename T
, typename U
>
56 LoadedHrtf(T
&& name
, U
&& entry
)
57 : mFilename
{std::forward
<T
>(name
)}, mEntry
{std::forward
<U
>(entry
)}
59 LoadedHrtf(LoadedHrtf
&&) = default;
60 /* GCC warns when it tries to inline this. */
63 LoadedHrtf
& operator=(LoadedHrtf
&&) = default;
65 LoadedHrtf::~LoadedHrtf() = default;
68 /* Data set limits must be the same as or more flexible than those defined in
69 * the makemhr utility.
71 constexpr uint MinFdCount
{1};
72 constexpr uint MaxFdCount
{16};
74 constexpr uint MinFdDistance
{50};
75 constexpr uint MaxFdDistance
{2500};
77 constexpr uint MinEvCount
{5};
78 constexpr uint MaxEvCount
{181};
80 constexpr uint MinAzCount
{1};
81 constexpr uint MaxAzCount
{255};
83 constexpr uint MaxHrirDelay
{HrtfHistoryLength
- 1};
85 constexpr uint HrirDelayFracBits
{2};
86 constexpr uint HrirDelayFracOne
{1 << HrirDelayFracBits
};
87 constexpr uint HrirDelayFracHalf
{HrirDelayFracOne
>> 1};
89 static_assert(MaxHrirDelay
*HrirDelayFracOne
< 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
91 constexpr char magicMarker00
[8]{'M','i','n','P','H','R','0','0'};
92 constexpr char magicMarker01
[8]{'M','i','n','P','H','R','0','1'};
93 constexpr char magicMarker02
[8]{'M','i','n','P','H','R','0','2'};
94 constexpr char magicMarker03
[8]{'M','i','n','P','H','R','0','3'};
96 /* First value for pass-through coefficients (remaining are 0), used for omni-
97 * directional sounds. */
98 constexpr auto PassthruCoeff
= static_cast<float>(1.0/al::numbers::sqrt2
);
100 std::mutex LoadedHrtfLock
;
101 al::vector
<LoadedHrtf
> LoadedHrtfs
;
103 std::mutex EnumeratedHrtfLock
;
104 al::vector
<HrtfEntry
> EnumeratedHrtfs
;
107 class databuf final
: public std::streambuf
{
108 int_type
underflow() override
109 { return traits_type::eof(); }
111 pos_type
seekoff(off_type offset
, std::ios_base::seekdir whence
, std::ios_base::openmode mode
) override
113 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
114 return traits_type::eof();
119 case std::ios_base::beg
:
120 if(offset
< 0 || offset
> egptr()-eback())
121 return traits_type::eof();
122 cur
= eback() + offset
;
125 case std::ios_base::cur
:
126 if((offset
>= 0 && offset
> egptr()-gptr()) ||
127 (offset
< 0 && -offset
> gptr()-eback()))
128 return traits_type::eof();
129 cur
= gptr() + offset
;
132 case std::ios_base::end
:
133 if(offset
> 0 || -offset
> egptr()-eback())
134 return traits_type::eof();
135 cur
= egptr() + offset
;
139 return traits_type::eof();
142 setg(eback(), cur
, egptr());
143 return cur
- eback();
146 pos_type
seekpos(pos_type pos
, std::ios_base::openmode mode
) override
148 // Simplified version of seekoff
149 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
150 return traits_type::eof();
152 if(pos
< 0 || pos
> egptr()-eback())
153 return traits_type::eof();
155 setg(eback(), eback() + static_cast<size_t>(pos
), egptr());
160 databuf(const char_type
*start_
, const char_type
*end_
) noexcept
162 setg(const_cast<char_type
*>(start_
), const_cast<char_type
*>(start_
),
163 const_cast<char_type
*>(end_
));
167 class idstream final
: public std::istream
{
171 idstream(const char *start_
, const char *end_
)
172 : std::istream
{nullptr}, mStreamBuf
{start_
, end_
}
173 { init(&mStreamBuf
); }
177 struct IdxBlend
{ uint idx
; float blend
; };
178 /* Calculate the elevation index given the polar elevation in radians. This
179 * will return an index between 0 and (evcount - 1).
181 IdxBlend
CalcEvIndex(uint evcount
, float ev
)
183 ev
= (al::numbers::pi_v
<float>*0.5f
+ ev
) * static_cast<float>(evcount
-1) *
184 al::numbers::inv_pi_v
<float>;
185 uint idx
{float2uint(ev
)};
187 return IdxBlend
{minu(idx
, evcount
-1), ev
-static_cast<float>(idx
)};
190 /* Calculate the azimuth index given the polar azimuth in radians. This will
191 * return an index between 0 and (azcount - 1).
193 IdxBlend
CalcAzIndex(uint azcount
, float az
)
195 az
= (al::numbers::pi_v
<float>*2.0f
+ az
) * static_cast<float>(azcount
) *
196 (al::numbers::inv_pi_v
<float>*0.5f
);
197 uint idx
{float2uint(az
)};
199 return IdxBlend
{idx
%azcount
, az
-static_cast<float>(idx
)};
205 /* Calculates static HRIR coefficients and delays for the given polar elevation
206 * and azimuth in radians. The coefficients are normalized.
208 void HrtfStore::getCoeffs(float elevation
, float azimuth
, float distance
, float spread
,
209 HrirArray
&coeffs
, const al::span
<uint
,2> delays
)
211 const float dirfact
{1.0f
- (al::numbers::inv_pi_v
<float>/2.0f
* spread
)};
214 auto match_field
= [&ebase
,distance
](const Field
&field
) noexcept
-> bool
216 if(distance
>= field
.distance
)
218 ebase
+= field
.evCount
;
221 auto field
= std::find_if(mFields
.begin(), mFields
.end()-1, match_field
);
223 /* Calculate the elevation indices. */
224 const auto elev0
= CalcEvIndex(field
->evCount
, elevation
);
225 const size_t elev1_idx
{minu(elev0
.idx
+1, field
->evCount
-1)};
226 const size_t ir0offset
{mElev
[ebase
+ elev0
.idx
].irOffset
};
227 const size_t ir1offset
{mElev
[ebase
+ elev1_idx
].irOffset
};
229 /* Calculate azimuth indices. */
230 const auto az0
= CalcAzIndex(mElev
[ebase
+ elev0
.idx
].azCount
, azimuth
);
231 const auto az1
= CalcAzIndex(mElev
[ebase
+ elev1_idx
].azCount
, azimuth
);
233 /* Calculate the HRIR indices to blend. */
236 ir0offset
+ ((az0
.idx
+1) % mElev
[ebase
+ elev0
.idx
].azCount
),
238 ir1offset
+ ((az1
.idx
+1) % mElev
[ebase
+ elev1_idx
].azCount
)
241 /* Calculate bilinear blending weights, attenuated according to the
242 * directional panning factor.
244 const float blend
[4]{
245 (1.0f
-elev0
.blend
) * (1.0f
-az0
.blend
) * dirfact
,
246 (1.0f
-elev0
.blend
) * ( az0
.blend
) * dirfact
,
247 ( elev0
.blend
) * (1.0f
-az1
.blend
) * dirfact
,
248 ( elev0
.blend
) * ( az1
.blend
) * dirfact
251 /* Calculate the blended HRIR delays. */
252 float d
{mDelays
[idx
[0]][0]*blend
[0] + mDelays
[idx
[1]][0]*blend
[1] + mDelays
[idx
[2]][0]*blend
[2]
253 + mDelays
[idx
[3]][0]*blend
[3]};
254 delays
[0] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
255 d
= mDelays
[idx
[0]][1]*blend
[0] + mDelays
[idx
[1]][1]*blend
[1] + mDelays
[idx
[2]][1]*blend
[2]
256 + mDelays
[idx
[3]][1]*blend
[3];
257 delays
[1] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
259 /* Calculate the blended HRIR coefficients. */
260 float *coeffout
{al::assume_aligned
<16>(coeffs
[0].data())};
261 coeffout
[0] = PassthruCoeff
* (1.0f
-dirfact
);
262 coeffout
[1] = PassthruCoeff
* (1.0f
-dirfact
);
263 std::fill_n(coeffout
+2, size_t{HrirLength
-1}*2, 0.0f
);
264 for(size_t c
{0};c
< 4;c
++)
266 const float *srccoeffs
{al::assume_aligned
<16>(mCoeffs
[idx
[c
]][0].data())};
267 const float mult
{blend
[c
]};
268 auto blend_coeffs
= [mult
](const float src
, const float coeff
) noexcept
-> float
269 { return src
*mult
+ coeff
; };
270 std::transform(srccoeffs
, srccoeffs
+ HrirLength
*2, coeffout
, coeffout
, blend_coeffs
);
275 std::unique_ptr
<DirectHrtfState
> DirectHrtfState::Create(size_t num_chans
)
276 { return std::unique_ptr
<DirectHrtfState
>{new(FamCount(num_chans
)) DirectHrtfState
{num_chans
}}; }
278 void DirectHrtfState::build(const HrtfStore
*Hrtf
, const uint irSize
, const bool perHrirMin
,
279 const al::span
<const AngularPoint
> AmbiPoints
, const float (*AmbiMatrix
)[MaxAmbiChannels
],
280 const float XOverFreq
, const al::span
<const float,MaxAmbiOrder
+1> AmbiOrderHFGain
)
282 using double2
= std::array
<double,2>;
283 struct ImpulseResponse
{
284 const ConstHrirSpan hrir
;
288 const double xover_norm
{double{XOverFreq
} / Hrtf
->mSampleRate
};
289 mChannels
[0].mSplitter
.init(static_cast<float>(xover_norm
));
290 for(size_t i
{0};i
< mChannels
.size();++i
)
292 const size_t order
{AmbiIndex::OrderFromChannel()[i
]};
293 mChannels
[i
].mSplitter
= mChannels
[0].mSplitter
;
294 mChannels
[i
].mHfScale
= AmbiOrderHFGain
[order
];
297 uint min_delay
{HrtfHistoryLength
*HrirDelayFracOne
}, max_delay
{0};
298 al::vector
<ImpulseResponse
> impres
; impres
.reserve(AmbiPoints
.size());
299 auto calc_res
= [Hrtf
,&max_delay
,&min_delay
](const AngularPoint
&pt
) -> ImpulseResponse
301 auto &field
= Hrtf
->mFields
[0];
302 const auto elev0
= CalcEvIndex(field
.evCount
, pt
.Elev
.value
);
303 const size_t elev1_idx
{minu(elev0
.idx
+1, field
.evCount
-1)};
304 const size_t ir0offset
{Hrtf
->mElev
[elev0
.idx
].irOffset
};
305 const size_t ir1offset
{Hrtf
->mElev
[elev1_idx
].irOffset
};
307 const auto az0
= CalcAzIndex(Hrtf
->mElev
[elev0
.idx
].azCount
, pt
.Azim
.value
);
308 const auto az1
= CalcAzIndex(Hrtf
->mElev
[elev1_idx
].azCount
, pt
.Azim
.value
);
312 ir0offset
+ ((az0
.idx
+1) % Hrtf
->mElev
[elev0
.idx
].azCount
),
314 ir1offset
+ ((az1
.idx
+1) % Hrtf
->mElev
[elev1_idx
].azCount
)
317 /* The largest blend factor serves as the closest HRIR. */
318 const size_t irOffset
{idx
[(elev0
.blend
>= 0.5f
)*2 + (az1
.blend
>= 0.5f
)]};
319 ImpulseResponse res
{Hrtf
->mCoeffs
[irOffset
],
320 Hrtf
->mDelays
[irOffset
][0], Hrtf
->mDelays
[irOffset
][1]};
322 min_delay
= minu(min_delay
, minu(res
.ldelay
, res
.rdelay
));
323 max_delay
= maxu(max_delay
, maxu(res
.ldelay
, res
.rdelay
));
327 std::transform(AmbiPoints
.begin(), AmbiPoints
.end(), std::back_inserter(impres
), calc_res
);
328 auto hrir_delay_round
= [](const uint d
) noexcept
-> uint
329 { return (d
+HrirDelayFracHalf
) >> HrirDelayFracBits
; };
331 TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
332 min_delay
/double{HrirDelayFracOne
}, max_delay
/double{HrirDelayFracOne
}, irSize
);
334 auto tmpres
= al::vector
<std::array
<double2
,HrirLength
>>(mChannels
.size());
336 for(size_t c
{0u};c
< AmbiPoints
.size();++c
)
338 const ConstHrirSpan hrir
{impres
[c
].hrir
};
339 const uint base_delay
{perHrirMin
? minu(impres
[c
].ldelay
, impres
[c
].rdelay
) : min_delay
};
340 const uint ldelay
{hrir_delay_round(impres
[c
].ldelay
- base_delay
)};
341 const uint rdelay
{hrir_delay_round(impres
[c
].rdelay
- base_delay
)};
342 max_delay
= maxu(max_delay
, maxu(impres
[c
].ldelay
, impres
[c
].rdelay
) - base_delay
);
344 for(size_t i
{0u};i
< mChannels
.size();++i
)
346 const double mult
{AmbiMatrix
[c
][i
]};
347 const size_t numirs
{HrirLength
- maxz(ldelay
, rdelay
)};
348 size_t lidx
{ldelay
}, ridx
{rdelay
};
349 for(size_t j
{0};j
< numirs
;++j
)
351 tmpres
[i
][lidx
++][0] += hrir
[j
][0] * mult
;
352 tmpres
[i
][ridx
++][1] += hrir
[j
][1] * mult
;
358 for(size_t i
{0u};i
< mChannels
.size();++i
)
360 auto copy_arr
= [](const double2
&in
) noexcept
-> float2
361 { return float2
{{static_cast<float>(in
[0]), static_cast<float>(in
[1])}}; };
362 std::transform(tmpres
[i
].cbegin(), tmpres
[i
].cend(), mChannels
[i
].mCoeffs
.begin(),
367 const uint max_length
{minu(hrir_delay_round(max_delay
) + irSize
, HrirLength
)};
368 TRACE("New max delay: %.2f, FIR length: %u\n", max_delay
/double{HrirDelayFracOne
},
370 mIrSize
= max_length
;
376 std::unique_ptr
<HrtfStore
> CreateHrtfStore(uint rate
, uint8_t irSize
,
377 const al::span
<const HrtfStore::Field
> fields
,
378 const al::span
<const HrtfStore::Elevation
> elevs
, const HrirArray
*coeffs
,
379 const ubyte2
*delays
, const char *filename
)
381 const size_t irCount
{size_t{elevs
.back().azCount
} + elevs
.back().irOffset
};
382 size_t total
{sizeof(HrtfStore
)};
383 total
= RoundUp(total
, alignof(HrtfStore::Field
)); /* Align for field infos */
384 total
+= sizeof(std::declval
<HrtfStore
&>().mFields
[0])*fields
.size();
385 total
= RoundUp(total
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
386 total
+= sizeof(std::declval
<HrtfStore
&>().mElev
[0])*elevs
.size();
387 total
= RoundUp(total
, 16); /* Align for coefficients using SIMD */
388 total
+= sizeof(std::declval
<HrtfStore
&>().mCoeffs
[0])*irCount
;
389 total
+= sizeof(std::declval
<HrtfStore
&>().mDelays
[0])*irCount
;
391 std::unique_ptr
<HrtfStore
> Hrtf
{};
392 if(void *ptr
{al_calloc(16, total
)})
394 Hrtf
.reset(al::construct_at(static_cast<HrtfStore
*>(ptr
)));
395 InitRef(Hrtf
->mRef
, 1u);
396 Hrtf
->mSampleRate
= rate
;
397 Hrtf
->mIrSize
= irSize
;
399 /* Set up pointers to storage following the main HRTF struct. */
400 char *base
= reinterpret_cast<char*>(Hrtf
.get());
401 size_t offset
{sizeof(HrtfStore
)};
403 offset
= RoundUp(offset
, alignof(HrtfStore::Field
)); /* Align for field infos */
404 auto field_
= reinterpret_cast<HrtfStore::Field
*>(base
+ offset
);
405 offset
+= sizeof(field_
[0])*fields
.size();
407 offset
= RoundUp(offset
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
408 auto elev_
= reinterpret_cast<HrtfStore::Elevation
*>(base
+ offset
);
409 offset
+= sizeof(elev_
[0])*elevs
.size();
411 offset
= RoundUp(offset
, 16); /* Align for coefficients using SIMD */
412 auto coeffs_
= reinterpret_cast<HrirArray
*>(base
+ offset
);
413 offset
+= sizeof(coeffs_
[0])*irCount
;
415 auto delays_
= reinterpret_cast<ubyte2
*>(base
+ offset
);
416 offset
+= sizeof(delays_
[0])*irCount
;
419 throw std::runtime_error
{"HrtfStore allocation size mismatch"};
421 /* Copy input data to storage. */
422 std::uninitialized_copy(fields
.cbegin(), fields
.cend(), field_
);
423 std::uninitialized_copy(elevs
.cbegin(), elevs
.cend(), elev_
);
424 std::uninitialized_copy_n(coeffs
, irCount
, coeffs_
);
425 std::uninitialized_copy_n(delays
, irCount
, delays_
);
427 /* Finally, assign the storage pointers. */
428 Hrtf
->mFields
= al::as_span(field_
, fields
.size());
430 Hrtf
->mCoeffs
= coeffs_
;
431 Hrtf
->mDelays
= delays_
;
434 ERR("Out of memory allocating storage for %s.\n", filename
);
439 void MirrorLeftHrirs(const al::span
<const HrtfStore::Elevation
> elevs
, HrirArray
*coeffs
,
442 for(const auto &elev
: elevs
)
444 const ushort evoffset
{elev
.irOffset
};
445 const ushort azcount
{elev
.azCount
};
446 for(size_t j
{0};j
< azcount
;j
++)
448 const size_t lidx
{evoffset
+ j
};
449 const size_t ridx
{evoffset
+ ((azcount
-j
) % azcount
)};
451 const size_t irSize
{coeffs
[ridx
].size()};
452 for(size_t k
{0};k
< irSize
;k
++)
453 coeffs
[ridx
][k
][1] = coeffs
[lidx
][k
][0];
454 delays
[ridx
][1] = delays
[lidx
][0];
460 template<size_t num_bits
, typename T
>
461 constexpr std::enable_if_t
<std::is_signed
<T
>::value
&& num_bits
< sizeof(T
)*8,
462 T
> fixsign(T value
) noexcept
464 constexpr auto signbit
= static_cast<T
>(1u << (num_bits
-1));
465 return static_cast<T
>((value
^signbit
) - signbit
);
468 template<size_t num_bits
, typename T
>
469 constexpr std::enable_if_t
<!std::is_signed
<T
>::value
|| num_bits
== sizeof(T
)*8,
470 T
> fixsign(T value
) noexcept
473 template<typename T
, size_t num_bits
=sizeof(T
)*8>
474 inline std::enable_if_t
<al::endian::native
== al::endian::little
,
475 T
> readle(std::istream
&data
)
477 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
478 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
481 if(!data
.read(reinterpret_cast<char*>(&ret
), num_bits
/8))
482 return static_cast<T
>(EOF
);
484 return fixsign
<num_bits
>(ret
);
487 template<typename T
, size_t num_bits
=sizeof(T
)*8>
488 inline std::enable_if_t
<al::endian::native
== al::endian::big
,
489 T
> readle(std::istream
&data
)
491 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
492 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
495 al::byte b
[sizeof(T
)]{};
496 if(!data
.read(reinterpret_cast<char*>(b
), num_bits
/8))
497 return static_cast<T
>(EOF
);
498 std::reverse_copy(std::begin(b
), std::end(b
), reinterpret_cast<al::byte
*>(&ret
));
500 return fixsign
<num_bits
>(ret
);
504 inline uint8_t readle
<uint8_t,8>(std::istream
&data
)
505 { return static_cast<uint8_t>(data
.get()); }
508 std::unique_ptr
<HrtfStore
> LoadHrtf00(std::istream
&data
, const char *filename
)
510 uint rate
{readle
<uint32_t>(data
)};
511 ushort irCount
{readle
<uint16_t>(data
)};
512 ushort irSize
{readle
<uint16_t>(data
)};
513 ubyte evCount
{readle
<uint8_t>(data
)};
514 if(!data
|| data
.eof())
516 ERR("Failed reading %s\n", filename
);
520 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
522 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
525 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
527 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
528 evCount
, MinEvCount
, MaxEvCount
);
532 auto elevs
= al::vector
<HrtfStore::Elevation
>(evCount
);
533 for(auto &elev
: elevs
)
534 elev
.irOffset
= readle
<uint16_t>(data
);
535 if(!data
|| data
.eof())
537 ERR("Failed reading %s\n", filename
);
540 for(size_t i
{1};i
< evCount
;i
++)
542 if(elevs
[i
].irOffset
<= elevs
[i
-1].irOffset
)
544 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i
, elevs
[i
].irOffset
,
545 elevs
[i
-1].irOffset
);
549 if(irCount
<= elevs
.back().irOffset
)
551 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
552 elevs
.size()-1, elevs
.back().irOffset
, irCount
);
556 for(size_t i
{1};i
< evCount
;i
++)
558 elevs
[i
-1].azCount
= static_cast<ushort
>(elevs
[i
].irOffset
- elevs
[i
-1].irOffset
);
559 if(elevs
[i
-1].azCount
< MinAzCount
|| elevs
[i
-1].azCount
> MaxAzCount
)
561 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
562 i
-1, elevs
[i
-1].azCount
, MinAzCount
, MaxAzCount
);
566 elevs
.back().azCount
= static_cast<ushort
>(irCount
- elevs
.back().irOffset
);
567 if(elevs
.back().azCount
< MinAzCount
|| elevs
.back().azCount
> MaxAzCount
)
569 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
570 elevs
.size()-1, elevs
.back().azCount
, MinAzCount
, MaxAzCount
);
574 auto coeffs
= al::vector
<HrirArray
>(irCount
, HrirArray
{});
575 auto delays
= al::vector
<ubyte2
>(irCount
);
576 for(auto &hrir
: coeffs
)
578 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
579 val
[0] = readle
<int16_t>(data
) / 32768.0f
;
581 for(auto &val
: delays
)
582 val
[0] = readle
<uint8_t>(data
);
583 if(!data
|| data
.eof())
585 ERR("Failed reading %s\n", filename
);
588 for(size_t i
{0};i
< irCount
;i
++)
590 if(delays
[i
][0] > MaxHrirDelay
)
592 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
595 delays
[i
][0] <<= HrirDelayFracBits
;
598 /* Mirror the left ear responses to the right ear. */
599 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
601 const HrtfStore::Field field
[1]{{0.0f
, evCount
}};
602 return CreateHrtfStore(rate
, static_cast<uint8_t>(irSize
), field
, {elevs
.data(), elevs
.size()},
603 coeffs
.data(), delays
.data(), filename
);
606 std::unique_ptr
<HrtfStore
> LoadHrtf01(std::istream
&data
, const char *filename
)
608 uint rate
{readle
<uint32_t>(data
)};
609 uint8_t irSize
{readle
<uint8_t>(data
)};
610 ubyte evCount
{readle
<uint8_t>(data
)};
611 if(!data
|| data
.eof())
613 ERR("Failed reading %s\n", filename
);
617 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
619 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
622 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
624 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
625 evCount
, MinEvCount
, MaxEvCount
);
629 auto elevs
= al::vector
<HrtfStore::Elevation
>(evCount
);
630 for(auto &elev
: elevs
)
631 elev
.azCount
= readle
<uint8_t>(data
);
632 if(!data
|| data
.eof())
634 ERR("Failed reading %s\n", filename
);
637 for(size_t i
{0};i
< evCount
;++i
)
639 if(elevs
[i
].azCount
< MinAzCount
|| elevs
[i
].azCount
> MaxAzCount
)
641 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i
, elevs
[i
].azCount
,
642 MinAzCount
, MaxAzCount
);
647 elevs
[0].irOffset
= 0;
648 for(size_t i
{1};i
< evCount
;i
++)
649 elevs
[i
].irOffset
= static_cast<ushort
>(elevs
[i
-1].irOffset
+ elevs
[i
-1].azCount
);
650 const ushort irCount
{static_cast<ushort
>(elevs
.back().irOffset
+ elevs
.back().azCount
)};
652 auto coeffs
= al::vector
<HrirArray
>(irCount
, HrirArray
{});
653 auto delays
= al::vector
<ubyte2
>(irCount
);
654 for(auto &hrir
: coeffs
)
656 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
657 val
[0] = readle
<int16_t>(data
) / 32768.0f
;
659 for(auto &val
: delays
)
660 val
[0] = readle
<uint8_t>(data
);
661 if(!data
|| data
.eof())
663 ERR("Failed reading %s\n", filename
);
666 for(size_t i
{0};i
< irCount
;i
++)
668 if(delays
[i
][0] > MaxHrirDelay
)
670 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
673 delays
[i
][0] <<= HrirDelayFracBits
;
676 /* Mirror the left ear responses to the right ear. */
677 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
679 const HrtfStore::Field field
[1]{{0.0f
, evCount
}};
680 return CreateHrtfStore(rate
, irSize
, field
, {elevs
.data(), elevs
.size()}, coeffs
.data(),
681 delays
.data(), filename
);
684 std::unique_ptr
<HrtfStore
> LoadHrtf02(std::istream
&data
, const char *filename
)
686 constexpr ubyte SampleType_S16
{0};
687 constexpr ubyte SampleType_S24
{1};
688 constexpr ubyte ChanType_LeftOnly
{0};
689 constexpr ubyte ChanType_LeftRight
{1};
691 uint rate
{readle
<uint32_t>(data
)};
692 ubyte sampleType
{readle
<uint8_t>(data
)};
693 ubyte channelType
{readle
<uint8_t>(data
)};
694 uint8_t irSize
{readle
<uint8_t>(data
)};
695 ubyte fdCount
{readle
<uint8_t>(data
)};
696 if(!data
|| data
.eof())
698 ERR("Failed reading %s\n", filename
);
702 if(sampleType
> SampleType_S24
)
704 ERR("Unsupported sample type: %d\n", sampleType
);
707 if(channelType
> ChanType_LeftRight
)
709 ERR("Unsupported channel type: %d\n", channelType
);
713 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
715 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
718 if(fdCount
< 1 || fdCount
> MaxFdCount
)
720 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
725 auto fields
= al::vector
<HrtfStore::Field
>(fdCount
);
726 auto elevs
= al::vector
<HrtfStore::Elevation
>{};
727 for(size_t f
{0};f
< fdCount
;f
++)
729 const ushort distance
{readle
<uint16_t>(data
)};
730 const ubyte evCount
{readle
<uint8_t>(data
)};
731 if(!data
|| data
.eof())
733 ERR("Failed reading %s\n", filename
);
737 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
739 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
740 MinFdDistance
, MaxFdDistance
);
743 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
745 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
746 MinEvCount
, MaxEvCount
);
750 fields
[f
].distance
= distance
/ 1000.0f
;
751 fields
[f
].evCount
= evCount
;
752 if(f
> 0 && fields
[f
].distance
<= fields
[f
-1].distance
)
754 ERR("Field distance[%zu] is not after previous (%f > %f)\n", f
, fields
[f
].distance
,
755 fields
[f
-1].distance
);
759 const size_t ebase
{elevs
.size()};
760 elevs
.resize(ebase
+ evCount
);
761 for(auto &elev
: al::span
<HrtfStore::Elevation
>(elevs
.data()+ebase
, evCount
))
762 elev
.azCount
= readle
<uint8_t>(data
);
763 if(!data
|| data
.eof())
765 ERR("Failed reading %s\n", filename
);
769 for(size_t e
{0};e
< evCount
;e
++)
771 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
773 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
774 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
780 elevs
[0].irOffset
= 0;
781 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
782 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
783 -> HrtfStore::Elevation
785 return HrtfStore::Elevation
{cur
.azCount
,
786 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
788 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
790 auto coeffs
= al::vector
<HrirArray
>(irTotal
, HrirArray
{});
791 auto delays
= al::vector
<ubyte2
>(irTotal
);
792 if(channelType
== ChanType_LeftOnly
)
794 if(sampleType
== SampleType_S16
)
796 for(auto &hrir
: coeffs
)
798 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
799 val
[0] = readle
<int16_t>(data
) / 32768.0f
;
802 else if(sampleType
== SampleType_S24
)
804 for(auto &hrir
: coeffs
)
806 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
807 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
810 for(auto &val
: delays
)
811 val
[0] = readle
<uint8_t>(data
);
812 if(!data
|| data
.eof())
814 ERR("Failed reading %s\n", filename
);
817 for(size_t i
{0};i
< irTotal
;++i
)
819 if(delays
[i
][0] > MaxHrirDelay
)
821 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
824 delays
[i
][0] <<= HrirDelayFracBits
;
827 /* Mirror the left ear responses to the right ear. */
828 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
830 else if(channelType
== ChanType_LeftRight
)
832 if(sampleType
== SampleType_S16
)
834 for(auto &hrir
: coeffs
)
836 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
838 val
[0] = readle
<int16_t>(data
) / 32768.0f
;
839 val
[1] = readle
<int16_t>(data
) / 32768.0f
;
843 else if(sampleType
== SampleType_S24
)
845 for(auto &hrir
: coeffs
)
847 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
849 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
850 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
854 for(auto &val
: delays
)
856 val
[0] = readle
<uint8_t>(data
);
857 val
[1] = readle
<uint8_t>(data
);
859 if(!data
|| data
.eof())
861 ERR("Failed reading %s\n", filename
);
865 for(size_t i
{0};i
< irTotal
;++i
)
867 if(delays
[i
][0] > MaxHrirDelay
)
869 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
872 if(delays
[i
][1] > MaxHrirDelay
)
874 ERR("Invalid delays[%zu][1]: %d (%d)\n", i
, delays
[i
][1], MaxHrirDelay
);
877 delays
[i
][0] <<= HrirDelayFracBits
;
878 delays
[i
][1] <<= HrirDelayFracBits
;
884 auto fields_
= al::vector
<HrtfStore::Field
>(fields
.size());
885 auto elevs_
= al::vector
<HrtfStore::Elevation
>(elevs
.size());
886 auto coeffs_
= al::vector
<HrirArray
>(coeffs
.size());
887 auto delays_
= al::vector
<ubyte2
>(delays
.size());
889 /* Simple reverse for the per-field elements. */
890 std::reverse_copy(fields
.cbegin(), fields
.cend(), fields_
.begin());
892 /* Each field has a group of elevations, which each have an azimuth
893 * count. Reverse the order of the groups, keeping the relative order
894 * of per-group azimuth counts.
896 auto elevs__end
= elevs_
.end();
897 auto copy_azs
= [&elevs
,&elevs__end
](const ptrdiff_t ebase
, const HrtfStore::Field
&field
)
900 auto elevs_src
= elevs
.begin()+ebase
;
901 elevs__end
= std::copy_backward(elevs_src
, elevs_src
+field
.evCount
, elevs__end
);
902 return ebase
+ field
.evCount
;
904 (void)std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_azs
);
905 assert(elevs_
.begin() == elevs__end
);
907 /* Reestablish the IR offset for each elevation index, given the new
908 * ordering of elevations.
910 elevs_
[0].irOffset
= 0;
911 std::partial_sum(elevs_
.cbegin(), elevs_
.cend(), elevs_
.begin(),
912 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
913 -> HrtfStore::Elevation
915 return HrtfStore::Elevation
{cur
.azCount
,
916 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
919 /* Reverse the order of each field's group of IRs. */
920 auto coeffs_end
= coeffs_
.end();
921 auto delays_end
= delays_
.end();
922 auto copy_irs
= [&elevs
,&coeffs
,&delays
,&coeffs_end
,&delays_end
](
923 const ptrdiff_t ebase
, const HrtfStore::Field
&field
) -> ptrdiff_t
925 auto accum_az
= [](int count
, const HrtfStore::Elevation
&elev
) noexcept
-> int
926 { return count
+ elev
.azCount
; };
927 const auto elevs_mid
= elevs
.cbegin() + ebase
;
928 const auto elevs_end
= elevs_mid
+ field
.evCount
;
929 const int abase
{std::accumulate(elevs
.cbegin(), elevs_mid
, 0, accum_az
)};
930 const int num_azs
{std::accumulate(elevs_mid
, elevs_end
, 0, accum_az
)};
932 coeffs_end
= std::copy_backward(coeffs
.cbegin() + abase
,
933 coeffs
.cbegin() + (abase
+num_azs
), coeffs_end
);
934 delays_end
= std::copy_backward(delays
.cbegin() + abase
,
935 delays
.cbegin() + (abase
+num_azs
), delays_end
);
937 return ebase
+ field
.evCount
;
939 (void)std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_irs
);
940 assert(coeffs_
.begin() == coeffs_end
);
941 assert(delays_
.begin() == delays_end
);
943 fields
= std::move(fields_
);
944 elevs
= std::move(elevs_
);
945 coeffs
= std::move(coeffs_
);
946 delays
= std::move(delays_
);
949 return CreateHrtfStore(rate
, irSize
, {fields
.data(), fields
.size()},
950 {elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data(), filename
);
953 std::unique_ptr
<HrtfStore
> LoadHrtf03(std::istream
&data
, const char *filename
)
955 constexpr ubyte ChanType_LeftOnly
{0};
956 constexpr ubyte ChanType_LeftRight
{1};
958 uint rate
{readle
<uint32_t>(data
)};
959 ubyte channelType
{readle
<uint8_t>(data
)};
960 uint8_t irSize
{readle
<uint8_t>(data
)};
961 ubyte fdCount
{readle
<uint8_t>(data
)};
962 if(!data
|| data
.eof())
964 ERR("Failed reading %s\n", filename
);
968 if(channelType
> ChanType_LeftRight
)
970 ERR("Unsupported channel type: %d\n", channelType
);
974 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
976 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
979 if(fdCount
< 1 || fdCount
> MaxFdCount
)
981 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
986 auto fields
= al::vector
<HrtfStore::Field
>(fdCount
);
987 auto elevs
= al::vector
<HrtfStore::Elevation
>{};
988 for(size_t f
{0};f
< fdCount
;f
++)
990 const ushort distance
{readle
<uint16_t>(data
)};
991 const ubyte evCount
{readle
<uint8_t>(data
)};
992 if(!data
|| data
.eof())
994 ERR("Failed reading %s\n", filename
);
998 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
1000 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
1001 MinFdDistance
, MaxFdDistance
);
1004 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
1006 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
1007 MinEvCount
, MaxEvCount
);
1011 fields
[f
].distance
= distance
/ 1000.0f
;
1012 fields
[f
].evCount
= evCount
;
1013 if(f
> 0 && fields
[f
].distance
> fields
[f
-1].distance
)
1015 ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f
, fields
[f
].distance
,
1016 fields
[f
-1].distance
);
1020 const size_t ebase
{elevs
.size()};
1021 elevs
.resize(ebase
+ evCount
);
1022 for(auto &elev
: al::span
<HrtfStore::Elevation
>(elevs
.data()+ebase
, evCount
))
1023 elev
.azCount
= readle
<uint8_t>(data
);
1024 if(!data
|| data
.eof())
1026 ERR("Failed reading %s\n", filename
);
1030 for(size_t e
{0};e
< evCount
;e
++)
1032 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
1034 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
1035 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
1041 elevs
[0].irOffset
= 0;
1042 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
1043 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
1044 -> HrtfStore::Elevation
1046 return HrtfStore::Elevation
{cur
.azCount
,
1047 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
1049 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
1051 auto coeffs
= al::vector
<HrirArray
>(irTotal
, HrirArray
{});
1052 auto delays
= al::vector
<ubyte2
>(irTotal
);
1053 if(channelType
== ChanType_LeftOnly
)
1055 for(auto &hrir
: coeffs
)
1057 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
1058 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1060 for(auto &val
: delays
)
1061 val
[0] = readle
<uint8_t>(data
);
1062 if(!data
|| data
.eof())
1064 ERR("Failed reading %s\n", filename
);
1067 for(size_t i
{0};i
< irTotal
;++i
)
1069 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1071 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1072 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1077 /* Mirror the left ear responses to the right ear. */
1078 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
1080 else if(channelType
== ChanType_LeftRight
)
1082 for(auto &hrir
: coeffs
)
1084 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
1086 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1087 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1090 for(auto &val
: delays
)
1092 val
[0] = readle
<uint8_t>(data
);
1093 val
[1] = readle
<uint8_t>(data
);
1095 if(!data
|| data
.eof())
1097 ERR("Failed reading %s\n", filename
);
1101 for(size_t i
{0};i
< irTotal
;++i
)
1103 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1105 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1106 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1109 if(delays
[i
][1] > MaxHrirDelay
<<HrirDelayFracBits
)
1111 ERR("Invalid delays[%zu][1]: %f (%d)\n", i
,
1112 delays
[i
][1] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1118 return CreateHrtfStore(rate
, irSize
, {fields
.data(), fields
.size()},
1119 {elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data(), filename
);
1123 bool checkName(const std::string
&name
)
1125 auto match_name
= [&name
](const HrtfEntry
&entry
) -> bool { return name
== entry
.mDispName
; };
1126 auto &enum_names
= EnumeratedHrtfs
;
1127 return std::find_if(enum_names
.cbegin(), enum_names
.cend(), match_name
) != enum_names
.cend();
1130 void AddFileEntry(const std::string
&filename
)
1132 /* Check if this file has already been enumerated. */
1133 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1134 [&filename
](const HrtfEntry
&entry
) -> bool
1135 { return entry
.mFilename
== filename
; });
1136 if(enum_iter
!= EnumeratedHrtfs
.cend())
1138 TRACE("Skipping duplicate file entry %s\n", filename
.c_str());
1142 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1143 * format update). */
1144 size_t namepos
{filename
.find_last_of('/')+1};
1145 if(!namepos
) namepos
= filename
.find_last_of('\\')+1;
1147 size_t extpos
{filename
.find_last_of('.')};
1148 if(extpos
<= namepos
) extpos
= std::string::npos
;
1150 const std::string basename
{(extpos
== std::string::npos
) ?
1151 filename
.substr(namepos
) : filename
.substr(namepos
, extpos
-namepos
)};
1152 std::string newname
{basename
};
1154 while(checkName(newname
))
1158 newname
+= std::to_string(++count
);
1160 EnumeratedHrtfs
.emplace_back(HrtfEntry
{newname
, filename
});
1161 const HrtfEntry
&entry
= EnumeratedHrtfs
.back();
1163 TRACE("Adding file entry \"%s\"\n", entry
.mFilename
.c_str());
1166 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1167 * for input instead of opening the given filename.
1169 void AddBuiltInEntry(const std::string
&dispname
, uint residx
)
1171 const std::string filename
{'!'+std::to_string(residx
)+'_'+dispname
};
1173 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1174 [&filename
](const HrtfEntry
&entry
) -> bool
1175 { return entry
.mFilename
== filename
; });
1176 if(enum_iter
!= EnumeratedHrtfs
.cend())
1178 TRACE("Skipping duplicate file entry %s\n", filename
.c_str());
1182 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1183 * format update). */
1185 std::string newname
{dispname
};
1187 while(checkName(newname
))
1191 newname
+= std::to_string(++count
);
1193 EnumeratedHrtfs
.emplace_back(HrtfEntry
{newname
, filename
});
1194 const HrtfEntry
&entry
= EnumeratedHrtfs
.back();
1196 TRACE("Adding built-in entry \"%s\"\n", entry
.mFilename
.c_str());
1200 #define IDR_DEFAULT_HRTF_MHR 1
1202 #ifndef ALSOFT_EMBED_HRTF_DATA
1204 al::span
<const char> GetResource(int /*name*/)
1209 constexpr unsigned char hrtf_default
[]{
1210 #include "default_hrtf.txt"
1213 al::span
<const char> GetResource(int name
)
1215 if(name
== IDR_DEFAULT_HRTF_MHR
)
1216 return {reinterpret_cast<const char*>(hrtf_default
), sizeof(hrtf_default
)};
1224 al::vector
<std::string
> EnumerateHrtf(al::optional
<std::string
> pathopt
)
1226 std::lock_guard
<std::mutex
> _
{EnumeratedHrtfLock
};
1227 EnumeratedHrtfs
.clear();
1229 bool usedefaults
{true};
1232 const char *pathlist
{pathopt
->c_str()};
1233 while(pathlist
&& *pathlist
)
1235 const char *next
, *end
;
1237 while(isspace(*pathlist
) || *pathlist
== ',')
1239 if(*pathlist
== '\0')
1242 next
= strchr(pathlist
, ',');
1247 end
= pathlist
+ strlen(pathlist
);
1248 usedefaults
= false;
1251 while(end
!= pathlist
&& isspace(*(end
-1)))
1255 const std::string pname
{pathlist
, end
};
1256 for(const auto &fname
: SearchDataFiles(".mhr", pname
.c_str()))
1257 AddFileEntry(fname
);
1266 for(const auto &fname
: SearchDataFiles(".mhr", "openal/hrtf"))
1267 AddFileEntry(fname
);
1269 if(!GetResource(IDR_DEFAULT_HRTF_MHR
).empty())
1270 AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR
);
1273 al::vector
<std::string
> list
;
1274 list
.reserve(EnumeratedHrtfs
.size());
1275 for(auto &entry
: EnumeratedHrtfs
)
1276 list
.emplace_back(entry
.mDispName
);
1281 HrtfStorePtr
GetLoadedHrtf(const std::string
&name
, const uint devrate
)
1283 std::lock_guard
<std::mutex
> _
{EnumeratedHrtfLock
};
1284 auto entry_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1285 [&name
](const HrtfEntry
&entry
) -> bool { return entry
.mDispName
== name
; });
1286 if(entry_iter
== EnumeratedHrtfs
.cend())
1288 const std::string
&fname
= entry_iter
->mFilename
;
1290 std::lock_guard
<std::mutex
> __
{LoadedHrtfLock
};
1291 auto hrtf_lt_fname
= [](LoadedHrtf
&hrtf
, const std::string
&filename
) -> bool
1292 { return hrtf
.mFilename
< filename
; };
1293 auto handle
= std::lower_bound(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), fname
, hrtf_lt_fname
);
1294 while(handle
!= LoadedHrtfs
.end() && handle
->mFilename
== fname
)
1296 HrtfStore
*hrtf
{handle
->mEntry
.get()};
1297 if(hrtf
&& hrtf
->mSampleRate
== devrate
)
1300 return HrtfStorePtr
{hrtf
};
1305 std::unique_ptr
<std::istream
> stream
;
1308 if(sscanf(fname
.c_str(), "!%d%c", &residx
, &ch
) == 2 && ch
== '_')
1310 TRACE("Loading %s...\n", fname
.c_str());
1311 al::span
<const char> res
{GetResource(residx
)};
1314 ERR("Could not get resource %u, %s\n", residx
, name
.c_str());
1317 stream
= std::make_unique
<idstream
>(res
.begin(), res
.end());
1321 TRACE("Loading %s...\n", fname
.c_str());
1322 auto fstr
= std::make_unique
<al::ifstream
>(fname
.c_str(), std::ios::binary
);
1323 if(!fstr
->is_open())
1325 ERR("Could not open %s\n", fname
.c_str());
1328 stream
= std::move(fstr
);
1331 std::unique_ptr
<HrtfStore
> hrtf
;
1332 char magic
[sizeof(magicMarker03
)];
1333 stream
->read(magic
, sizeof(magic
));
1334 if(stream
->gcount() < static_cast<std::streamsize
>(sizeof(magicMarker03
)))
1335 ERR("%s data is too short (%zu bytes)\n", name
.c_str(), stream
->gcount());
1336 else if(memcmp(magic
, magicMarker03
, sizeof(magicMarker03
)) == 0)
1338 TRACE("Detected data set format v3\n");
1339 hrtf
= LoadHrtf03(*stream
, name
.c_str());
1341 else if(memcmp(magic
, magicMarker02
, sizeof(magicMarker02
)) == 0)
1343 TRACE("Detected data set format v2\n");
1344 hrtf
= LoadHrtf02(*stream
, name
.c_str());
1346 else if(memcmp(magic
, magicMarker01
, sizeof(magicMarker01
)) == 0)
1348 TRACE("Detected data set format v1\n");
1349 hrtf
= LoadHrtf01(*stream
, name
.c_str());
1351 else if(memcmp(magic
, magicMarker00
, sizeof(magicMarker00
)) == 0)
1353 TRACE("Detected data set format v0\n");
1354 hrtf
= LoadHrtf00(*stream
, name
.c_str());
1357 ERR("Invalid header in %s: \"%.8s\"\n", name
.c_str(), magic
);
1362 ERR("Failed to load %s\n", name
.c_str());
1366 if(hrtf
->mSampleRate
!= devrate
)
1368 TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name
.c_str(), hrtf
->mSampleRate
, devrate
);
1370 /* Calculate the last elevation's index and get the total IR count. */
1371 const size_t lastEv
{std::accumulate(hrtf
->mFields
.begin(), hrtf
->mFields
.end(), size_t{0},
1372 [](const size_t curval
, const HrtfStore::Field
&field
) noexcept
-> size_t
1373 { return curval
+ field
.evCount
; }
1375 const size_t irCount
{size_t{hrtf
->mElev
[lastEv
].irOffset
} + hrtf
->mElev
[lastEv
].azCount
};
1377 /* Resample all the IRs. */
1378 std::array
<std::array
<double,HrirLength
>,2> inout
;
1380 rs
.init(hrtf
->mSampleRate
, devrate
);
1381 for(size_t i
{0};i
< irCount
;++i
)
1383 HrirArray
&coeffs
= const_cast<HrirArray
&>(hrtf
->mCoeffs
[i
]);
1384 for(size_t j
{0};j
< 2;++j
)
1386 std::transform(coeffs
.cbegin(), coeffs
.cend(), inout
[0].begin(),
1387 [j
](const float2
&in
) noexcept
-> double { return in
[j
]; });
1388 rs
.process(HrirLength
, inout
[0].data(), HrirLength
, inout
[1].data());
1389 for(size_t k
{0};k
< HrirLength
;++k
)
1390 coeffs
[k
][j
] = static_cast<float>(inout
[1][k
]);
1395 /* Scale the delays for the new sample rate. */
1396 float max_delay
{0.0f
};
1397 auto new_delays
= al::vector
<float2
>(irCount
);
1398 const float rate_scale
{static_cast<float>(devrate
)/static_cast<float>(hrtf
->mSampleRate
)};
1399 for(size_t i
{0};i
< irCount
;++i
)
1401 for(size_t j
{0};j
< 2;++j
)
1403 const float new_delay
{std::round(hrtf
->mDelays
[i
][j
] * rate_scale
) /
1404 float{HrirDelayFracOne
}};
1405 max_delay
= maxf(max_delay
, new_delay
);
1406 new_delays
[i
][j
] = new_delay
;
1410 /* If the new delays exceed the max, scale it down to fit (essentially
1411 * shrinking the head radius; not ideal but better than a per-delay
1414 float delay_scale
{HrirDelayFracOne
};
1415 if(max_delay
> MaxHrirDelay
)
1417 WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay
, MaxHrirDelay
);
1418 delay_scale
*= float{MaxHrirDelay
} / max_delay
;
1421 for(size_t i
{0};i
< irCount
;++i
)
1423 ubyte2
&delays
= const_cast<ubyte2
&>(hrtf
->mDelays
[i
]);
1424 for(size_t j
{0};j
< 2;++j
)
1425 delays
[j
] = static_cast<ubyte
>(float2int(new_delays
[i
][j
]*delay_scale
+ 0.5f
));
1428 /* Scale the IR size for the new sample rate and update the stored
1431 const float newIrSize
{std::round(static_cast<float>(hrtf
->mIrSize
) * rate_scale
)};
1432 hrtf
->mIrSize
= static_cast<uint8_t>(minf(HrirLength
, newIrSize
));
1433 hrtf
->mSampleRate
= devrate
;
1436 TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name
.c_str(),
1437 hrtf
->mSampleRate
, hrtf
->mIrSize
);
1438 handle
= LoadedHrtfs
.emplace(handle
, fname
, std::move(hrtf
));
1440 return HrtfStorePtr
{handle
->mEntry
.get()};
1444 void HrtfStore::add_ref()
1446 auto ref
= IncrementRef(mRef
);
1447 TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1450 void HrtfStore::dec_ref()
1452 auto ref
= DecrementRef(mRef
);
1453 TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1456 std::lock_guard
<std::mutex
> _
{LoadedHrtfLock
};
1458 /* Go through and remove all unused HRTFs. */
1459 auto remove_unused
= [](LoadedHrtf
&hrtf
) -> bool
1461 HrtfStore
*entry
{hrtf
.mEntry
.get()};
1462 if(entry
&& ReadRef(entry
->mRef
) == 0)
1464 TRACE("Unloading unused HRTF %s\n", hrtf
.mFilename
.data());
1465 hrtf
.mEntry
= nullptr;
1470 auto iter
= std::remove_if(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), remove_unused
);
1471 LoadedHrtfs
.erase(iter
, LoadedHrtfs
.end());