Improve formatting for setting the UWP default device callback
[openal-soft.git] / alc / effects / chorus.cpp
blob4e6d36c55dfe0de35455e40eaad202aa2ae315cd
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2013 by Mike Gorchak
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cmath>
26 #include <cstdlib>
27 #include <limits>
28 #include <variant>
29 #include <vector>
31 #include "alc/effects/base.h"
32 #include "alnumbers.h"
33 #include "alnumeric.h"
34 #include "alspan.h"
35 #include "core/ambidefs.h"
36 #include "core/bufferline.h"
37 #include "core/context.h"
38 #include "core/cubic_tables.h"
39 #include "core/device.h"
40 #include "core/effects/base.h"
41 #include "core/effectslot.h"
42 #include "core/mixer.h"
43 #include "core/mixer/defs.h"
44 #include "core/resampler_limits.h"
45 #include "intrusive_ptr.h"
46 #include "opthelpers.h"
48 struct BufferStorage;
50 namespace {
52 using uint = unsigned int;
54 constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
55 constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
56 constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
57 constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
58 constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
61 struct ChorusState final : public EffectState {
62 std::vector<float> mDelayBuffer;
63 uint mOffset{0};
65 uint mLfoOffset{0};
66 uint mLfoRange{1};
67 float mLfoScale{0.0f};
68 uint mLfoDisp{0};
70 /* Calculated delays to apply to the left and right outputs. */
71 std::array<std::array<uint,BufferLineSize>,2> mModDelays{};
73 /* Temp storage for the modulated left and right outputs. */
74 alignas(16) std::array<FloatBufferLine,2> mBuffer{};
76 /* Gains for left and right outputs. */
77 struct OutGains {
78 std::array<float,MaxAmbiChannels> Current{};
79 std::array<float,MaxAmbiChannels> Target{};
81 std::array<OutGains,2> mGains;
83 /* effect parameters */
84 ChorusWaveform mWaveform{};
85 int mDelay{0};
86 float mDepth{0.0f};
87 float mFeedback{0.0f};
89 void calcTriangleDelays(const size_t todo);
90 void calcSinusoidDelays(const size_t todo);
92 void deviceUpdate(const DeviceBase *device, const float MaxDelay);
93 void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform,
94 const float delay, const float depth, const float feedback, const float rate,
95 int phase, const EffectTarget target);
97 void deviceUpdate(const DeviceBase *device, const BufferStorage*) final;
98 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_,
99 const EffectTarget target) final;
100 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
101 const al::span<FloatBufferLine> samplesOut) final;
105 void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
107 constexpr auto MaxDelay = std::max(ChorusMaxDelay, FlangerMaxDelay);
108 const auto frequency = static_cast<float>(Device->Frequency);
109 const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)};
110 if(maxlen != mDelayBuffer.size())
111 decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer);
113 std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f);
114 for(auto &e : mGains)
116 e.Current.fill(0.0f);
117 e.Target.fill(0.0f);
121 void ChorusState::update(const ContextBase *context, const EffectSlot *slot,
122 const EffectProps *props_, const EffectTarget target)
124 static constexpr int mindelay{MaxResamplerEdge << gCubicTable.sTableBits};
125 auto &props = std::get<ChorusProps>(*props_);
127 /* The LFO depth is scaled to be relative to the sample delay. Clamp the
128 * delay and depth to allow enough padding for resampling.
130 const DeviceBase *device{context->mDevice};
131 const auto frequency = static_cast<float>(device->Frequency);
133 mWaveform = props.Waveform;
135 const auto stepscale = float{frequency * gCubicTable.sTableSteps};
136 mDelay = std::max(float2int(std::round(props.Delay * stepscale)), mindelay);
137 mDepth = std::min(static_cast<float>(mDelay) * props.Depth,
138 static_cast<float>(mDelay - mindelay));
140 mFeedback = props.Feedback;
142 /* Gains for left and right sides */
143 const bool ispairwise{device->mRenderMode == RenderMode::Pairwise};
144 const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw};
145 const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw};
147 /* Attenuate the outputs by -3dB, since we duplicate a single mono input to
148 * separate left/right outputs.
150 const auto gain = slot->Gain * (1.0f/al::numbers::sqrt2_v<float>);
151 mOutTarget = target.Main->Buffer;
152 ComputePanGains(target.Main, lcoeffs, gain, mGains[0].Target);
153 ComputePanGains(target.Main, rcoeffs, gain, mGains[1].Target);
155 if(!(props.Rate > 0.0f))
157 mLfoOffset = 0;
158 mLfoRange = 1;
159 mLfoScale = 0.0f;
160 mLfoDisp = 0;
162 else
164 /* Calculate LFO coefficient (number of samples per cycle). Limit the
165 * max range to avoid overflow when calculating the displacement.
167 static constexpr int range_limit{std::numeric_limits<int>::max()/360 - 180};
168 const auto range = std::round(frequency / props.Rate);
169 const uint lfo_range{float2uint(std::min(range, float{range_limit}))};
171 mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
172 mLfoRange = lfo_range;
173 switch(mWaveform)
175 case ChorusWaveform::Triangle:
176 mLfoScale = 4.0f / static_cast<float>(mLfoRange);
177 break;
178 case ChorusWaveform::Sinusoid:
179 mLfoScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mLfoRange);
180 break;
183 /* Calculate lfo phase displacement */
184 auto phase = props.Phase;
185 if(phase < 0) phase += 360;
186 mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360;
191 void ChorusState::calcTriangleDelays(const size_t todo)
193 const uint lfo_range{mLfoRange};
194 const float lfo_scale{mLfoScale};
195 const float depth{mDepth};
196 const int delay{mDelay};
198 auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
200 const float offset_norm{static_cast<float>(offset) * lfo_scale};
201 return static_cast<uint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
204 uint offset{mLfoOffset};
205 ASSUME(lfo_range > offset);
206 auto ldelays = mModDelays[0].begin();
207 for(size_t i{0};i < todo;)
209 const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
210 ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
211 if(offset == lfo_range) offset = 0;
212 i += rem;
215 offset = (mLfoOffset+mLfoDisp) % lfo_range;
216 auto rdelays = mModDelays[1].begin();
217 for(size_t i{0};i < todo;)
219 const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
220 rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
221 if(offset == lfo_range) offset = 0;
222 i += rem;
225 mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
228 void ChorusState::calcSinusoidDelays(const size_t todo)
230 const uint lfo_range{mLfoRange};
231 const float lfo_scale{mLfoScale};
232 const float depth{mDepth};
233 const int delay{mDelay};
235 auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
237 const float offset_norm{static_cast<float>(offset) * lfo_scale};
238 return static_cast<uint>(fastf2i(std::sin(offset_norm)*depth) + delay);
241 uint offset{mLfoOffset};
242 ASSUME(lfo_range > offset);
243 auto ldelays = mModDelays[0].begin();
244 for(size_t i{0};i < todo;)
246 const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
247 ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
248 if(offset == lfo_range) offset = 0;
249 i += rem;
252 offset = (mLfoOffset+mLfoDisp) % lfo_range;
253 auto rdelays = mModDelays[1].begin();
254 for(size_t i{0};i < todo;)
256 const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
257 rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
258 if(offset == lfo_range) offset = 0;
259 i += rem;
262 mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
265 void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
267 const auto delaybuf = al::span{mDelayBuffer};
268 const size_t bufmask{delaybuf.size()-1};
269 const float feedback{mFeedback};
270 const uint avgdelay{(static_cast<uint>(mDelay) + MixerFracHalf) >> MixerFracBits};
271 uint offset{mOffset};
273 if(mWaveform == ChorusWaveform::Sinusoid)
274 calcSinusoidDelays(samplesToDo);
275 else /*if(mWaveform == ChorusWaveform::Triangle)*/
276 calcTriangleDelays(samplesToDo);
278 const auto ldelays = al::span{mModDelays[0]};
279 const auto rdelays = al::span{mModDelays[1]};
280 const auto lbuffer = al::span{mBuffer[0]};
281 const auto rbuffer = al::span{mBuffer[1]};
282 for(size_t i{0u};i < samplesToDo;++i)
284 // Feed the buffer's input first (necessary for delays < 1).
285 delaybuf[offset&bufmask] = samplesIn[0][i];
287 // Tap for the left output.
288 size_t delay{offset - (ldelays[i] >> gCubicTable.sTableBits)};
289 size_t phase{ldelays[i] & gCubicTable.sTableMask};
290 lbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
291 delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
292 delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
293 delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
295 // Tap for the right output.
296 delay = offset - (rdelays[i] >> gCubicTable.sTableBits);
297 phase = rdelays[i] & gCubicTable.sTableMask;
298 rbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
299 delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
300 delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
301 delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
303 // Accumulate feedback from the average delay of the taps.
304 delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
305 ++offset;
308 MixSamples(lbuffer.first(samplesToDo), samplesOut, mGains[0].Current, mGains[0].Target,
309 samplesToDo, 0);
310 MixSamples(rbuffer.first(samplesToDo), samplesOut, mGains[1].Current, mGains[1].Target,
311 samplesToDo, 0);
313 mOffset = offset;
317 struct ChorusStateFactory final : public EffectStateFactory {
318 al::intrusive_ptr<EffectState> create() override
319 { return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
322 } // namespace
324 EffectStateFactory *ChorusStateFactory_getFactory()
326 static ChorusStateFactory ChorusFactory{};
327 return &ChorusFactory;