Improve formatting for setting the UWP default device callback
[openal-soft.git] / alc / effects / equalizer.cpp
blobbf951f670efade56b783b70fa8b302fb891f0797
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2013 by Mike Gorchak
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cmath>
26 #include <cstdlib>
27 #include <functional>
28 #include <variant>
30 #include "alc/effects/base.h"
31 #include "alspan.h"
32 #include "core/ambidefs.h"
33 #include "core/bufferline.h"
34 #include "core/context.h"
35 #include "core/device.h"
36 #include "core/effects/base.h"
37 #include "core/effectslot.h"
38 #include "core/filters/biquad.h"
39 #include "core/mixer.h"
40 #include "intrusive_ptr.h"
42 struct BufferStorage;
44 namespace {
46 /* The document "Effects Extension Guide.pdf" says that low and high *
47 * frequencies are cutoff frequencies. This is not fully correct, they *
48 * are corner frequencies for low and high shelf filters. If they were *
49 * just cutoff frequencies, there would be no need in cutoff frequency *
50 * gains, which are present. Documentation for "Creative Proteus X2" *
51 * software describes 4-band equalizer functionality in a much better *
52 * way. This equalizer seems to be a predecessor of OpenAL 4-band *
53 * equalizer. With low and high shelf filters we are able to cutoff *
54 * frequencies below and/or above corner frequencies using attenuation *
55 * gains (below 1.0) and amplify all low and/or high frequencies using *
56 * gains above 1.0. *
57 * *
58 * Low-shelf Low Mid Band High Mid Band High-shelf *
59 * corner center center corner *
60 * frequency frequency frequency frequency *
61 * 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz *
62 * *
63 * | | | | *
64 * | | | | *
65 * B -----+ /--+--\ /--+--\ +----- *
66 * O |\ | | | | | | /| *
67 * O | \ - | - - | - / | *
68 * S + | \ | | | | | | / | *
69 * T | | | | | | | | | | *
70 * ---------+---------------+------------------+---------------+-------- *
71 * C | | | | | | | | | | *
72 * U - | / | | | | | | \ | *
73 * T | / - | - - | - \ | *
74 * O |/ | | | | | | \| *
75 * F -----+ \--+--/ \--+--/ +----- *
76 * F | | | | *
77 * | | | | *
78 * *
79 * Gains vary from 0.126 up to 7.943, which means from -18dB attenuation *
80 * up to +18dB amplification. Band width varies from 0.01 up to 1.0 in *
81 * octaves for two mid bands. *
82 * *
83 * Implementation is based on the "Cookbook formulae for audio EQ biquad *
84 * filter coefficients" by Robert Bristow-Johnson *
85 * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */
88 struct EqualizerState final : public EffectState {
89 struct OutParams {
90 uint mTargetChannel{InvalidChannelIndex};
92 /* Effect parameters */
93 std::array<BiquadFilter,4> mFilter;
95 /* Effect gains for each channel */
96 float mCurrentGain{};
97 float mTargetGain{};
99 std::array<OutParams,MaxAmbiChannels> mChans;
101 alignas(16) FloatBufferLine mSampleBuffer{};
104 void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
105 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
106 const EffectTarget target) override;
107 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
108 const al::span<FloatBufferLine> samplesOut) override;
111 void EqualizerState::deviceUpdate(const DeviceBase*, const BufferStorage*)
113 for(auto &e : mChans)
115 e.mTargetChannel = InvalidChannelIndex;
116 std::for_each(e.mFilter.begin(), e.mFilter.end(), std::mem_fn(&BiquadFilter::clear));
117 e.mCurrentGain = 0.0f;
121 void EqualizerState::update(const ContextBase *context, const EffectSlot *slot,
122 const EffectProps *props_, const EffectTarget target)
124 auto &props = std::get<EqualizerProps>(*props_);
125 const DeviceBase *device{context->mDevice};
126 auto frequency = static_cast<float>(device->Frequency);
128 /* Calculate coefficients for the each type of filter. Note that the shelf
129 * and peaking filters' gain is for the centerpoint of the transition band,
130 * while the effect property gains are for the shelf/peak itself. So the
131 * property gains need their dB halved (sqrt of linear gain) for the
132 * shelf/peak to reach the provided gain.
134 float gain{std::sqrt(props.LowGain)};
135 float f0norm{props.LowCutoff / frequency};
136 mChans[0].mFilter[0].setParamsFromSlope(BiquadType::LowShelf, f0norm, gain, 0.75f);
138 gain = std::sqrt(props.Mid1Gain);
139 f0norm = props.Mid1Center / frequency;
140 mChans[0].mFilter[1].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain,
141 props.Mid1Width);
143 gain = std::sqrt(props.Mid2Gain);
144 f0norm = props.Mid2Center / frequency;
145 mChans[0].mFilter[2].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain,
146 props.Mid2Width);
148 gain = std::sqrt(props.HighGain);
149 f0norm = props.HighCutoff / frequency;
150 mChans[0].mFilter[3].setParamsFromSlope(BiquadType::HighShelf, f0norm, gain, 0.75f);
152 /* Copy the filter coefficients for the other input channels. */
153 for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
155 mChans[i].mFilter[0].copyParamsFrom(mChans[0].mFilter[0]);
156 mChans[i].mFilter[1].copyParamsFrom(mChans[0].mFilter[1]);
157 mChans[i].mFilter[2].copyParamsFrom(mChans[0].mFilter[2]);
158 mChans[i].mFilter[3].copyParamsFrom(mChans[0].mFilter[3]);
161 mOutTarget = target.Main->Buffer;
162 auto set_channel = [this](size_t idx, uint outchan, float outgain)
164 mChans[idx].mTargetChannel = outchan;
165 mChans[idx].mTargetGain = outgain;
167 target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
170 void EqualizerState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
172 const auto buffer = al::span{mSampleBuffer}.first(samplesToDo);
173 auto chan = mChans.begin();
174 for(const auto &input : samplesIn)
176 if(const size_t outidx{chan->mTargetChannel}; outidx != InvalidChannelIndex)
178 const auto inbuf = al::span{input}.first(samplesToDo);
179 DualBiquad{chan->mFilter[0], chan->mFilter[1]}.process(inbuf, buffer);
180 DualBiquad{chan->mFilter[2], chan->mFilter[3]}.process(buffer, buffer);
182 MixSamples(buffer, samplesOut[outidx], chan->mCurrentGain, chan->mTargetGain,
183 samplesToDo);
185 ++chan;
190 struct EqualizerStateFactory final : public EffectStateFactory {
191 al::intrusive_ptr<EffectState> create() override
192 { return al::intrusive_ptr<EffectState>{new EqualizerState{}}; }
195 } // namespace
197 EffectStateFactory *EqualizerStateFactory_getFactory()
199 static EqualizerStateFactory EqualizerFactory{};
200 return &EqualizerFactory;