Improve formatting for setting the UWP default device callback
[openal-soft.git] / alc / effects / pshifter.cpp
blob8b3c6d291cf58d3923dd336e51f2760221fa3a6b
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2018 by Raul Herraiz.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cmath>
26 #include <complex>
27 #include <cstdlib>
28 #include <variant>
30 #include "alc/effects/base.h"
31 #include "alnumbers.h"
32 #include "alnumeric.h"
33 #include "alspan.h"
34 #include "core/ambidefs.h"
35 #include "core/bufferline.h"
36 #include "core/device.h"
37 #include "core/effects/base.h"
38 #include "core/effectslot.h"
39 #include "core/mixer.h"
40 #include "core/mixer/defs.h"
41 #include "intrusive_ptr.h"
42 #include "pffft.h"
44 struct BufferStorage;
45 struct ContextBase;
48 namespace {
50 using uint = unsigned int;
51 using complex_f = std::complex<float>;
53 constexpr size_t StftSize{1024};
54 constexpr size_t StftHalfSize{StftSize >> 1};
55 constexpr size_t OversampleFactor{8};
57 static_assert(StftSize%OversampleFactor == 0, "Factor must be a clean divisor of the size");
58 constexpr size_t StftStep{StftSize / OversampleFactor};
60 /* Define a Hann window, used to filter the STFT input and output. */
61 struct Windower {
62 alignas(16) std::array<float,StftSize> mData{};
64 Windower()
66 /* Create lookup table of the Hann window for the desired size. */
67 for(size_t i{0};i < StftHalfSize;i++)
69 constexpr double scale{al::numbers::pi / double{StftSize}};
70 const double val{std::sin((static_cast<double>(i)+0.5) * scale)};
71 mData[i] = mData[StftSize-1-i] = static_cast<float>(val * val);
75 const Windower gWindow{};
78 struct FrequencyBin {
79 float Magnitude;
80 float FreqBin;
84 struct PshifterState final : public EffectState {
85 /* Effect parameters */
86 size_t mCount{};
87 size_t mPos{};
88 uint mPitchShiftI{};
89 float mPitchShift{};
91 /* Effects buffers */
92 std::array<float,StftSize> mFIFO{};
93 std::array<float,StftHalfSize+1> mLastPhase{};
94 std::array<float,StftHalfSize+1> mSumPhase{};
95 std::array<float,StftSize> mOutputAccum{};
97 PFFFTSetup mFft;
98 alignas(16) std::array<float,StftSize> mFftBuffer{};
99 alignas(16) std::array<float,StftSize> mFftWorkBuffer{};
101 std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer{};
102 std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer{};
104 alignas(16) FloatBufferLine mBufferOut{};
106 /* Effect gains for each output channel */
107 std::array<float,MaxAmbiChannels> mCurrentGains{};
108 std::array<float,MaxAmbiChannels> mTargetGains{};
111 void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
112 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
113 const EffectTarget target) override;
114 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
115 const al::span<FloatBufferLine> samplesOut) override;
118 void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*)
120 /* (Re-)initializing parameters and clear the buffers. */
121 mCount = 0;
122 mPos = StftSize - StftStep;
123 mPitchShiftI = MixerFracOne;
124 mPitchShift = 1.0f;
126 mFIFO.fill(0.0f);
127 mLastPhase.fill(0.0f);
128 mSumPhase.fill(0.0f);
129 mOutputAccum.fill(0.0f);
130 mFftBuffer.fill(0.0f);
131 mAnalysisBuffer.fill(FrequencyBin{});
132 mSynthesisBuffer.fill(FrequencyBin{});
134 mCurrentGains.fill(0.0f);
135 mTargetGains.fill(0.0f);
137 if(!mFft)
138 mFft = PFFFTSetup{StftSize, PFFFT_REAL};
141 void PshifterState::update(const ContextBase*, const EffectSlot *slot,
142 const EffectProps *props_, const EffectTarget target)
144 auto &props = std::get<PshifterProps>(*props_);
145 const int tune{props.CoarseTune*100 + props.FineTune};
146 const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
147 mPitchShiftI = std::clamp(fastf2u(pitch*MixerFracOne), uint{MixerFracHalf},
148 uint{MixerFracOne}*2u);
149 mPitchShift = static_cast<float>(mPitchShiftI) * float{1.0f/MixerFracOne};
151 static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
153 mOutTarget = target.Main->Buffer;
154 ComputePanGains(target.Main, coeffs, slot->Gain, mTargetGains);
157 void PshifterState::process(const size_t samplesToDo,
158 const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
160 /* Pitch shifter engine based on the work of Stephan Bernsee.
161 * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
164 /* Cycle offset per update expected of each frequency bin (bin 0 is none,
165 * bin 1 is x1, bin 2 is x2, etc).
167 constexpr float expected_cycles{al::numbers::pi_v<float>*2.0f / OversampleFactor};
169 for(size_t base{0u};base < samplesToDo;)
171 const size_t todo{std::min(StftStep-mCount, samplesToDo-base)};
173 /* Retrieve the output samples from the FIFO and fill in the new input
174 * samples.
176 auto fifo_iter = mFIFO.begin()+mPos + mCount;
177 std::copy_n(fifo_iter, todo, mBufferOut.begin()+base);
179 std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
180 mCount += todo;
181 base += todo;
183 /* Check whether FIFO buffer is filled with new samples. */
184 if(mCount < StftStep) break;
185 mCount = 0;
186 mPos = (mPos+StftStep) & (mFIFO.size()-1);
188 /* Time-domain signal windowing, store in FftBuffer, and apply a
189 * forward FFT to get the frequency-domain signal.
191 for(size_t src{mPos}, k{0u};src < StftSize;++src,++k)
192 mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
193 for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k)
194 mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
195 mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
196 PFFFT_FORWARD);
198 /* Analyze the obtained data. Since the real FFT is symmetric, only
199 * StftHalfSize+1 samples are needed.
201 for(size_t k{0u};k < StftHalfSize+1;++k)
203 const auto cplx = (k == 0) ? complex_f{mFftBuffer[0]} :
204 (k == StftHalfSize) ? complex_f{mFftBuffer[1]} :
205 complex_f{mFftBuffer[k*2], mFftBuffer[k*2 + 1]};
206 const float magnitude{std::abs(cplx)};
207 const float phase{std::arg(cplx)};
209 /* Compute the phase difference from the last update and subtract
210 * the expected phase difference for this bin.
212 * When oversampling, the expected per-update offset increments by
213 * 1/OversampleFactor for every frequency bin. So, the offset wraps
214 * every 'OversampleFactor' bin.
216 const auto bin_offset = static_cast<float>(k % OversampleFactor);
217 float tmp{(phase - mLastPhase[k]) - bin_offset*expected_cycles};
218 /* Store the actual phase for the next update. */
219 mLastPhase[k] = phase;
221 /* Normalize from pi, and wrap the delta between -1 and +1. */
222 tmp *= al::numbers::inv_pi_v<float>;
223 int qpd{float2int(tmp)};
224 tmp -= static_cast<float>(qpd + (qpd%2));
226 /* Get deviation from bin frequency (-0.5 to +0.5), and account for
227 * oversampling.
229 tmp *= 0.5f * OversampleFactor;
231 /* Compute the k-th partials' frequency bin target and store the
232 * magnitude and frequency bin in the analysis buffer. We don't
233 * need the "true frequency" since it's a linear relationship with
234 * the bin.
236 mAnalysisBuffer[k].Magnitude = magnitude;
237 mAnalysisBuffer[k].FreqBin = static_cast<float>(k) + tmp;
240 /* Shift the frequency bins according to the pitch adjustment,
241 * accumulating the magnitudes of overlapping frequency bins.
243 std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
245 static constexpr size_t bin_limit{((StftHalfSize+1)<<MixerFracBits) - MixerFracHalf - 1};
246 const size_t bin_count{std::min(StftHalfSize+1, bin_limit/mPitchShiftI + 1)};
247 for(size_t k{0u};k < bin_count;k++)
249 const size_t j{(k*mPitchShiftI + MixerFracHalf) >> MixerFracBits};
251 /* If more than two bins end up together, use the target frequency
252 * bin for the one with the dominant magnitude. There might be a
253 * better way to handle this, but it's better than last-index-wins.
255 if(mAnalysisBuffer[k].Magnitude > mSynthesisBuffer[j].Magnitude)
256 mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift;
257 mSynthesisBuffer[j].Magnitude += mAnalysisBuffer[k].Magnitude;
260 /* Reconstruct the frequency-domain signal from the adjusted frequency
261 * bins.
263 for(size_t k{0u};k < StftHalfSize+1;k++)
265 /* Calculate the actual delta phase for this bin's target frequency
266 * bin, and accumulate it to get the actual bin phase.
268 float tmp{mSumPhase[k] + mSynthesisBuffer[k].FreqBin*expected_cycles};
270 /* Wrap between -pi and +pi for the sum. If mSumPhase is left to
271 * grow indefinitely, it will lose precision and produce less exact
272 * phase over time.
274 tmp *= al::numbers::inv_pi_v<float>;
275 int qpd{float2int(tmp)};
276 tmp -= static_cast<float>(qpd + (qpd%2));
277 mSumPhase[k] = tmp * al::numbers::pi_v<float>;
279 const complex_f cplx{std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k])};
280 if(k == 0)
281 mFftBuffer[0] = cplx.real();
282 else if(k == StftHalfSize)
283 mFftBuffer[1] = cplx.real();
284 else
286 mFftBuffer[k*2 + 0] = cplx.real();
287 mFftBuffer[k*2 + 1] = cplx.imag();
291 /* Apply an inverse FFT to get the time-domain signal, and accumulate
292 * for the output with windowing.
294 mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
295 PFFFT_BACKWARD);
297 static constexpr float scale{3.0f / OversampleFactor / StftSize};
298 for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k)
299 mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
300 for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k)
301 mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
303 /* Copy out the accumulated result, then clear for the next iteration. */
304 std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos);
305 std::fill_n(mOutputAccum.begin() + mPos, StftStep, 0.0f);
308 /* Now, mix the processed sound data to the output. */
309 MixSamples(al::span{mBufferOut}.first(samplesToDo), samplesOut, mCurrentGains, mTargetGains,
310 std::max(samplesToDo, 512_uz), 0);
314 struct PshifterStateFactory final : public EffectStateFactory {
315 al::intrusive_ptr<EffectState> create() override
316 { return al::intrusive_ptr<EffectState>{new PshifterState{}}; }
319 } // namespace
321 EffectStateFactory *PshifterStateFactory_getFactory()
323 static PshifterStateFactory PshifterFactory{};
324 return &PshifterFactory;