Merge pull request #483 from jhasse/silence-nodiscard
[openal-soft.git] / examples / alffplay.cpp
blob8d4ab3c89fdf234c6fc3c9d4248710c581d970dc
1 /*
2 * An example showing how to play a stream sync'd to video, using ffmpeg.
4 * Requires C++14.
5 */
7 #include <condition_variable>
8 #include <functional>
9 #include <algorithm>
10 #include <iostream>
11 #include <utility>
12 #include <iomanip>
13 #include <cstdint>
14 #include <cstring>
15 #include <cstdlib>
16 #include <atomic>
17 #include <cerrno>
18 #include <chrono>
19 #include <cstdio>
20 #include <memory>
21 #include <string>
22 #include <thread>
23 #include <vector>
24 #include <array>
25 #include <cmath>
26 #include <deque>
27 #include <mutex>
28 #include <ratio>
30 extern "C" {
31 #ifdef __GNUC__
32 _Pragma("GCC diagnostic push")
33 _Pragma("GCC diagnostic ignored \"-Wconversion\"")
34 _Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
35 #endif
36 #include "libavcodec/avcodec.h"
37 #include "libavformat/avformat.h"
38 #include "libavformat/avio.h"
39 #include "libavformat/version.h"
40 #include "libavutil/avutil.h"
41 #include "libavutil/error.h"
42 #include "libavutil/frame.h"
43 #include "libavutil/mem.h"
44 #include "libavutil/pixfmt.h"
45 #include "libavutil/rational.h"
46 #include "libavutil/samplefmt.h"
47 #include "libavutil/time.h"
48 #include "libavutil/version.h"
49 #include "libavutil/channel_layout.h"
50 #include "libswscale/swscale.h"
51 #include "libswresample/swresample.h"
53 constexpr auto AVNoPtsValue = AV_NOPTS_VALUE;
54 constexpr auto AVErrorEOF = AVERROR_EOF;
56 struct SwsContext;
57 #ifdef __GNUC__
58 _Pragma("GCC diagnostic pop")
59 #endif
62 #include "SDL.h"
64 #include "AL/alc.h"
65 #include "AL/al.h"
66 #include "AL/alext.h"
68 #include "common/alhelpers.h"
70 extern "C" {
71 /* Undefine this to disable use of experimental extensions. Don't use for
72 * production code! Interfaces and behavior may change prior to being
73 * finalized.
75 #define ALLOW_EXPERIMENTAL_EXTS
77 #ifdef ALLOW_EXPERIMENTAL_EXTS
78 #ifndef AL_SOFT_events
79 #define AL_SOFT_events 1
80 #define AL_EVENT_CALLBACK_FUNCTION_SOFT 0x19A2
81 #define AL_EVENT_CALLBACK_USER_PARAM_SOFT 0x19A3
82 #define AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT 0x19A4
83 #define AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT 0x19A5
84 #define AL_EVENT_TYPE_DISCONNECTED_SOFT 0x19A6
85 typedef void (AL_APIENTRY*ALEVENTPROCSOFT)(ALenum eventType, ALuint object, ALuint param,
86 ALsizei length, const ALchar *message,
87 void *userParam);
88 typedef void (AL_APIENTRY*LPALEVENTCONTROLSOFT)(ALsizei count, const ALenum *types, ALboolean enable);
89 typedef void (AL_APIENTRY*LPALEVENTCALLBACKSOFT)(ALEVENTPROCSOFT callback, void *userParam);
90 typedef void* (AL_APIENTRY*LPALGETPOINTERSOFT)(ALenum pname);
91 typedef void (AL_APIENTRY*LPALGETPOINTERVSOFT)(ALenum pname, void **values);
92 #endif
94 #ifndef AL_SOFT_callback_buffer
95 #define AL_SOFT_callback_buffer
96 typedef unsigned int ALbitfieldSOFT;
97 #define AL_BUFFER_CALLBACK_FUNCTION_SOFT 0x19A0
98 #define AL_BUFFER_CALLBACK_USER_PARAM_SOFT 0x19A1
99 typedef ALsizei (AL_APIENTRY*LPALBUFFERCALLBACKTYPESOFT)(ALvoid *userptr, ALvoid *sampledata, ALsizei numsamples);
100 typedef void (AL_APIENTRY*LPALBUFFERCALLBACKSOFT)(ALuint buffer, ALenum format, ALsizei freq, LPALBUFFERCALLBACKTYPESOFT callback, ALvoid *userptr, ALbitfieldSOFT flags);
101 typedef void (AL_APIENTRY*LPALGETBUFFERPTRSOFT)(ALuint buffer, ALenum param, ALvoid **value);
102 typedef void (AL_APIENTRY*LPALGETBUFFER3PTRSOFT)(ALuint buffer, ALenum param, ALvoid **value1, ALvoid **value2, ALvoid **value3);
103 typedef void (AL_APIENTRY*LPALGETBUFFERPTRVSOFT)(ALuint buffer, ALenum param, ALvoid **values);
104 #endif
105 #endif /* ALLOW_EXPERIMENTAL_EXTS */
108 namespace {
110 inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
112 #ifndef M_PI
113 #define M_PI (3.14159265358979323846)
114 #endif
116 using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
117 using nanoseconds = std::chrono::nanoseconds;
118 using microseconds = std::chrono::microseconds;
119 using milliseconds = std::chrono::milliseconds;
120 using seconds = std::chrono::seconds;
121 using seconds_d64 = std::chrono::duration<double>;
122 using std::chrono::duration_cast;
124 const std::string AppName{"alffplay"};
126 ALenum DirectOutMode{AL_FALSE};
127 bool EnableWideStereo{false};
128 bool DisableVideo{false};
129 LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
130 LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
132 #ifdef AL_SOFT_events
133 LPALEVENTCONTROLSOFT alEventControlSOFT;
134 LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
135 #endif
137 #ifdef AL_SOFT_callback_buffer
138 LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
139 #endif
141 const seconds AVNoSyncThreshold{10};
143 #define VIDEO_PICTURE_QUEUE_SIZE 24
145 const seconds_d64 AudioSyncThreshold{0.03};
146 const milliseconds AudioSampleCorrectionMax{50};
147 /* Averaging filter coefficient for audio sync. */
148 #define AUDIO_DIFF_AVG_NB 20
149 const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
150 /* Per-buffer size, in time */
151 constexpr milliseconds AudioBufferTime{20};
152 /* Buffer total size, in time (should be divisible by the buffer time) */
153 constexpr milliseconds AudioBufferTotalTime{800};
154 constexpr auto AudioBufferCount = AudioBufferTotalTime / AudioBufferTime;
156 enum {
157 FF_MOVIE_DONE_EVENT = SDL_USEREVENT
160 enum class SyncMaster {
161 Audio,
162 Video,
163 External,
165 Default = External
169 inline microseconds get_avtime()
170 { return microseconds{av_gettime()}; }
172 /* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
173 struct AVIOContextDeleter {
174 void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
176 using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
178 struct AVFormatCtxDeleter {
179 void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
181 using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
183 struct AVCodecCtxDeleter {
184 void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
186 using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
188 struct AVFrameDeleter {
189 void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
191 using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
193 struct SwrContextDeleter {
194 void operator()(SwrContext *ptr) { swr_free(&ptr); }
196 using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
198 struct SwsContextDeleter {
199 void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
201 using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
204 template<size_t SizeLimit>
205 class PacketQueue {
206 std::mutex mMutex;
207 std::condition_variable mCondVar;
208 std::deque<AVPacket> mPackets;
209 size_t mTotalSize{0};
210 bool mFinished{false};
212 AVPacket *getPacket(std::unique_lock<std::mutex> &lock)
214 while(mPackets.empty() && !mFinished)
215 mCondVar.wait(lock);
216 return mPackets.empty() ? nullptr : &mPackets.front();
219 void pop()
221 AVPacket *pkt = &mPackets.front();
222 mTotalSize -= static_cast<unsigned int>(pkt->size);
223 av_packet_unref(pkt);
224 mPackets.pop_front();
227 public:
228 ~PacketQueue()
230 for(AVPacket &pkt : mPackets)
231 av_packet_unref(&pkt);
232 mPackets.clear();
233 mTotalSize = 0;
236 int sendTo(AVCodecContext *codecctx)
238 std::unique_lock<std::mutex> lock{mMutex};
240 AVPacket *pkt{getPacket(lock)};
241 if(!pkt) return avcodec_send_packet(codecctx, nullptr);
243 const int ret{avcodec_send_packet(codecctx, pkt)};
244 if(ret != AVERROR(EAGAIN))
246 if(ret < 0)
247 std::cerr<< "Failed to send packet: "<<ret <<std::endl;
248 pop();
250 return ret;
253 void setFinished()
256 std::lock_guard<std::mutex> _{mMutex};
257 mFinished = true;
259 mCondVar.notify_one();
262 bool put(const AVPacket *pkt)
265 std::unique_lock<std::mutex> lock{mMutex};
266 if(mTotalSize >= SizeLimit)
267 return false;
269 mPackets.push_back(AVPacket{});
270 if(av_packet_ref(&mPackets.back(), pkt) != 0)
272 mPackets.pop_back();
273 return true;
276 mTotalSize += static_cast<unsigned int>(mPackets.back().size);
278 mCondVar.notify_one();
279 return true;
284 struct MovieState;
286 struct AudioState {
287 MovieState &mMovie;
289 AVStream *mStream{nullptr};
290 AVCodecCtxPtr mCodecCtx;
292 PacketQueue<2*1024*1024> mPackets;
294 /* Used for clock difference average computation */
295 seconds_d64 mClockDiffAvg{0};
297 /* Time of the next sample to be buffered */
298 nanoseconds mCurrentPts{0};
300 /* Device clock time that the stream started at. */
301 nanoseconds mDeviceStartTime{nanoseconds::min()};
303 /* Decompressed sample frame, and swresample context for conversion */
304 AVFramePtr mDecodedFrame;
305 SwrContextPtr mSwresCtx;
307 /* Conversion format, for what gets fed to OpenAL */
308 uint64_t mDstChanLayout{0};
309 AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
311 /* Storage of converted samples */
312 uint8_t *mSamples{nullptr};
313 int mSamplesLen{0}; /* In samples */
314 int mSamplesPos{0};
315 int mSamplesMax{0};
317 std::unique_ptr<uint8_t[]> mBufferData;
318 size_t mBufferDataSize{0};
319 std::atomic<size_t> mReadPos{0};
320 std::atomic<size_t> mWritePos{0};
322 /* OpenAL format */
323 ALenum mFormat{AL_NONE};
324 ALuint mFrameSize{0};
326 std::mutex mSrcMutex;
327 std::condition_variable mSrcCond;
328 std::atomic_flag mConnected;
329 ALuint mSource{0};
330 std::array<ALuint,AudioBufferCount> mBuffers{};
331 ALuint mBufferIdx{0};
333 AudioState(MovieState &movie) : mMovie(movie)
334 { mConnected.test_and_set(std::memory_order_relaxed); }
335 ~AudioState()
337 if(mSource)
338 alDeleteSources(1, &mSource);
339 if(mBuffers[0])
340 alDeleteBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
342 av_freep(&mSamples);
345 #ifdef AL_SOFT_events
346 static void AL_APIENTRY EventCallback(ALenum eventType, ALuint object, ALuint param,
347 ALsizei length, const ALchar *message, void *userParam);
348 #endif
349 #ifdef AL_SOFT_callback_buffer
350 static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size)
351 { return static_cast<AudioState*>(userptr)->bufferCallback(data, size); }
352 ALsizei bufferCallback(void *data, ALsizei size);
353 #endif
355 nanoseconds getClockNoLock();
356 nanoseconds getClock()
358 std::lock_guard<std::mutex> lock{mSrcMutex};
359 return getClockNoLock();
362 bool startPlayback();
364 int getSync();
365 int decodeFrame();
366 bool readAudio(uint8_t *samples, unsigned int length, int &sample_skip);
367 void readAudio(int sample_skip);
369 int handler();
372 struct VideoState {
373 MovieState &mMovie;
375 AVStream *mStream{nullptr};
376 AVCodecCtxPtr mCodecCtx;
378 PacketQueue<14*1024*1024> mPackets;
380 /* The pts of the currently displayed frame, and the time (av_gettime) it
381 * was last updated - used to have running video pts
383 nanoseconds mDisplayPts{0};
384 microseconds mDisplayPtsTime{microseconds::min()};
385 std::mutex mDispPtsMutex;
387 /* Swscale context for format conversion */
388 SwsContextPtr mSwscaleCtx;
390 struct Picture {
391 AVFramePtr mFrame{};
392 nanoseconds mPts{nanoseconds::min()};
394 std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
395 std::atomic<size_t> mPictQRead{0u}, mPictQWrite{1u};
396 std::mutex mPictQMutex;
397 std::condition_variable mPictQCond;
399 SDL_Texture *mImage{nullptr};
400 int mWidth{0}, mHeight{0}; /* Logical image size (actual size may be larger) */
401 bool mFirstUpdate{true};
403 std::atomic<bool> mEOS{false};
404 std::atomic<bool> mFinalUpdate{false};
406 VideoState(MovieState &movie) : mMovie(movie) { }
407 ~VideoState()
409 if(mImage)
410 SDL_DestroyTexture(mImage);
411 mImage = nullptr;
414 nanoseconds getClock();
416 void display(SDL_Window *screen, SDL_Renderer *renderer);
417 void updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw);
418 int handler();
421 struct MovieState {
422 AVIOContextPtr mIOContext;
423 AVFormatCtxPtr mFormatCtx;
425 SyncMaster mAVSyncType{SyncMaster::Default};
427 microseconds mClockBase{microseconds::min()};
429 std::atomic<bool> mQuit{false};
431 AudioState mAudio;
432 VideoState mVideo;
434 std::thread mParseThread;
435 std::thread mAudioThread;
436 std::thread mVideoThread;
438 std::string mFilename;
440 MovieState(std::string fname)
441 : mAudio(*this), mVideo(*this), mFilename(std::move(fname))
443 ~MovieState()
445 mQuit = true;
446 if(mParseThread.joinable())
447 mParseThread.join();
450 static int decode_interrupt_cb(void *ctx);
451 bool prepare();
452 void setTitle(SDL_Window *window);
454 nanoseconds getClock();
456 nanoseconds getMasterClock();
458 nanoseconds getDuration();
460 int streamComponentOpen(unsigned int stream_index);
461 int parse_handler();
465 nanoseconds AudioState::getClockNoLock()
467 // The audio clock is the timestamp of the sample currently being heard.
468 if(alcGetInteger64vSOFT)
470 // If device start time = min, we aren't playing yet.
471 if(mDeviceStartTime == nanoseconds::min())
472 return nanoseconds::zero();
474 // Get the current device clock time and latency.
475 auto device = alcGetContextsDevice(alcGetCurrentContext());
476 ALCint64SOFT devtimes[2]{0,0};
477 alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes);
478 auto latency = nanoseconds{devtimes[1]};
479 auto device_time = nanoseconds{devtimes[0]};
481 // The clock is simply the current device time relative to the recorded
482 // start time. We can also subtract the latency to get more a accurate
483 // position of where the audio device actually is in the output stream.
484 return device_time - mDeviceStartTime - latency;
487 if(mBufferDataSize > 0)
489 if(mDeviceStartTime == nanoseconds::min())
490 return nanoseconds::zero();
492 /* With a callback buffer and no device clock, mDeviceStartTime is
493 * actually the timestamp of the first sample frame played. The audio
494 * clock, then, is that plus the current source offset.
496 ALint64SOFT offset[2];
497 if(alGetSourcei64vSOFT)
498 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
499 else
501 ALint ioffset;
502 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
503 offset[0] = ALint64SOFT{ioffset} << 32;
504 offset[1] = 0;
506 /* NOTE: The source state must be checked last, in case an underrun
507 * occurs and the source stops between getting the state and retrieving
508 * the offset+latency.
510 ALint status;
511 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
513 nanoseconds pts{};
514 if(status == AL_PLAYING || status == AL_PAUSED)
515 pts = mDeviceStartTime - nanoseconds{offset[1]} +
516 duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
517 else
519 /* If the source is stopped, the pts of the next sample to be heard
520 * is the pts of the next sample to be buffered, minus the amount
521 * already in the buffer ready to play.
523 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
524 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
525 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
526 roffset};
528 pts = mCurrentPts - nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
531 return pts;
534 /* The source-based clock is based on 4 components:
535 * 1 - The timestamp of the next sample to buffer (mCurrentPts)
536 * 2 - The length of the source's buffer queue
537 * (AudioBufferTime*AL_BUFFERS_QUEUED)
538 * 3 - The offset OpenAL is currently at in the source (the first value
539 * from AL_SAMPLE_OFFSET_LATENCY_SOFT)
540 * 4 - The latency between OpenAL and the DAC (the second value from
541 * AL_SAMPLE_OFFSET_LATENCY_SOFT)
543 * Subtracting the length of the source queue from the next sample's
544 * timestamp gives the timestamp of the sample at the start of the source
545 * queue. Adding the source offset to that results in the timestamp for the
546 * sample at OpenAL's current position, and subtracting the source latency
547 * from that gives the timestamp of the sample currently at the DAC.
549 nanoseconds pts{mCurrentPts};
550 if(mSource)
552 ALint64SOFT offset[2];
553 if(alGetSourcei64vSOFT)
554 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
555 else
557 ALint ioffset;
558 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
559 offset[0] = ALint64SOFT{ioffset} << 32;
560 offset[1] = 0;
562 ALint queued, status;
563 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
564 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
566 /* If the source is AL_STOPPED, then there was an underrun and all
567 * buffers are processed, so ignore the source queue. The audio thread
568 * will put the source into an AL_INITIAL state and clear the queue
569 * when it starts recovery.
571 if(status != AL_STOPPED)
573 pts -= AudioBufferTime*queued;
574 pts += duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
576 /* Don't offset by the latency if the source isn't playing. */
577 if(status == AL_PLAYING)
578 pts -= nanoseconds{offset[1]};
581 return std::max(pts, nanoseconds::zero());
584 bool AudioState::startPlayback()
586 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
587 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
588 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
589 roffset};
591 if(mBufferDataSize > 0)
593 if(readable == 0)
594 return false;
595 if(!alcGetInteger64vSOFT)
596 mDeviceStartTime = mCurrentPts -
597 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
599 else
601 ALint queued{};
602 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
603 if(queued == 0) return false;
606 alSourcePlay(mSource);
607 if(alcGetInteger64vSOFT)
609 /* Subtract the total buffer queue time from the current pts to get the
610 * pts of the start of the queue.
612 int64_t srctimes[2]{0,0};
613 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes);
614 auto device_time = nanoseconds{srctimes[1]};
615 auto src_offset = duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
616 mCodecCtx->sample_rate;
618 /* The mixer may have ticked and incremented the device time and sample
619 * offset, so subtract the source offset from the device time to get
620 * the device time the source started at. Also subtract startpts to get
621 * the device time the stream would have started at to reach where it
622 * is now.
624 if(mBufferDataSize > 0)
626 nanoseconds startpts{mCurrentPts -
627 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate};
628 mDeviceStartTime = device_time - src_offset - startpts;
630 else
632 nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
633 mDeviceStartTime = device_time - src_offset - startpts;
636 return true;
639 int AudioState::getSync()
641 if(mMovie.mAVSyncType == SyncMaster::Audio)
642 return 0;
644 auto ref_clock = mMovie.getMasterClock();
645 auto diff = ref_clock - getClockNoLock();
647 if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
649 /* Difference is TOO big; reset accumulated average */
650 mClockDiffAvg = seconds_d64::zero();
651 return 0;
654 /* Accumulate the diffs */
655 mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
656 auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
657 if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
658 return 0;
660 /* Constrain the per-update difference to avoid exceedingly large skips */
661 diff = std::min<nanoseconds>(diff, AudioSampleCorrectionMax);
662 return static_cast<int>(duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
665 int AudioState::decodeFrame()
667 while(!mMovie.mQuit.load(std::memory_order_relaxed))
669 int ret;
670 while((ret=avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get())) == AVERROR(EAGAIN))
671 mPackets.sendTo(mCodecCtx.get());
672 if(ret != 0)
674 if(ret == AVErrorEOF) break;
675 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
676 continue;
679 if(mDecodedFrame->nb_samples <= 0)
680 continue;
682 /* If provided, update w/ pts */
683 if(mDecodedFrame->best_effort_timestamp != AVNoPtsValue)
684 mCurrentPts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
685 static_cast<double>(mDecodedFrame->best_effort_timestamp)});
687 if(mDecodedFrame->nb_samples > mSamplesMax)
689 av_freep(&mSamples);
690 av_samples_alloc(&mSamples, nullptr, mCodecCtx->channels, mDecodedFrame->nb_samples,
691 mDstSampleFmt, 0);
692 mSamplesMax = mDecodedFrame->nb_samples;
694 /* Return the amount of sample frames converted */
695 int data_size{swr_convert(mSwresCtx.get(), &mSamples, mDecodedFrame->nb_samples,
696 const_cast<const uint8_t**>(mDecodedFrame->data), mDecodedFrame->nb_samples)};
698 av_frame_unref(mDecodedFrame.get());
699 return data_size;
702 return 0;
705 /* Duplicates the sample at in to out, count times. The frame size is a
706 * multiple of the template type size.
708 template<typename T>
709 static void sample_dup(uint8_t *out, const uint8_t *in, size_t count, size_t frame_size)
711 auto *sample = reinterpret_cast<const T*>(in);
712 auto *dst = reinterpret_cast<T*>(out);
713 if(frame_size == sizeof(T))
714 std::fill_n(dst, count, *sample);
715 else
717 /* NOTE: frame_size is a multiple of sizeof(T). */
718 size_t type_mult{frame_size / sizeof(T)};
719 size_t i{0};
720 std::generate_n(dst, count*type_mult,
721 [sample,type_mult,&i]() -> T
723 T ret = sample[i];
724 i = (i+1)%type_mult;
725 return ret;
732 bool AudioState::readAudio(uint8_t *samples, unsigned int length, int &sample_skip)
734 unsigned int audio_size{0};
736 /* Read the next chunk of data, refill the buffer, and queue it
737 * on the source */
738 length /= mFrameSize;
739 while(mSamplesLen > 0 && audio_size < length)
741 unsigned int rem{length - audio_size};
742 if(mSamplesPos >= 0)
744 const auto len = static_cast<unsigned int>(mSamplesLen - mSamplesPos);
745 if(rem > len) rem = len;
746 std::copy_n(mSamples + static_cast<unsigned int>(mSamplesPos)*mFrameSize,
747 rem*mFrameSize, samples);
749 else
751 rem = std::min(rem, static_cast<unsigned int>(-mSamplesPos));
753 /* Add samples by copying the first sample */
754 if((mFrameSize&7) == 0)
755 sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
756 else if((mFrameSize&3) == 0)
757 sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
758 else if((mFrameSize&1) == 0)
759 sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
760 else
761 sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
764 mSamplesPos += rem;
765 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
766 samples += rem*mFrameSize;
767 audio_size += rem;
769 while(mSamplesPos >= mSamplesLen)
771 int frame_len = decodeFrame();
772 if(frame_len <= 0) break;
774 mSamplesLen = frame_len;
775 mSamplesPos = std::min(mSamplesLen, sample_skip);
776 sample_skip -= mSamplesPos;
778 // Adjust the device start time and current pts by the amount we're
779 // skipping/duplicating, so that the clock remains correct for the
780 // current stream position.
781 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
782 mDeviceStartTime -= skip;
783 mCurrentPts += skip;
784 continue;
787 if(audio_size <= 0)
788 return false;
790 if(audio_size < length)
792 const unsigned int rem{length - audio_size};
793 std::fill_n(samples, rem*mFrameSize,
794 (mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
795 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
796 audio_size += rem;
798 return true;
801 void AudioState::readAudio(int sample_skip)
803 size_t woffset{mWritePos.load(std::memory_order_acquire)};
804 while(mSamplesLen > 0)
806 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
808 if(mSamplesPos < 0)
810 size_t rem{(((roffset > woffset) ? roffset-1
811 : ((roffset == 0) ? mBufferDataSize-1
812 : mBufferDataSize)) - woffset) / mFrameSize};
813 rem = std::min<size_t>(rem, static_cast<ALuint>(-mSamplesPos));
814 if(rem == 0) break;
816 auto *splout{&mBufferData[woffset]};
817 if((mFrameSize&7) == 0)
818 sample_dup<uint64_t>(splout, mSamples, rem, mFrameSize);
819 else if((mFrameSize&3) == 0)
820 sample_dup<uint32_t>(splout, mSamples, rem, mFrameSize);
821 else if((mFrameSize&1) == 0)
822 sample_dup<uint16_t>(splout, mSamples, rem, mFrameSize);
823 else
824 sample_dup<uint8_t>(splout, mSamples, rem, mFrameSize);
825 woffset += rem * mFrameSize;
826 if(woffset == mBufferDataSize)
827 woffset = 0;
828 mWritePos.store(woffset, std::memory_order_release);
829 mSamplesPos += static_cast<int>(rem);
830 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
831 continue;
834 const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
835 const size_t nbytes{static_cast<ALuint>(mSamplesLen)*size_t{mFrameSize} -
836 boffset};
837 if(roffset > woffset)
839 const size_t writable{roffset-woffset-1};
840 if(writable < nbytes) break;
842 memcpy(&mBufferData[woffset], mSamples+boffset, nbytes);
843 woffset += nbytes;
845 else
847 const size_t writable{mBufferDataSize+roffset-woffset-1};
848 if(writable < nbytes) break;
850 const size_t todo1{std::min<size_t>(nbytes, mBufferDataSize-woffset)};
851 const size_t todo2{nbytes - todo1};
853 memcpy(&mBufferData[woffset], mSamples+boffset, todo1);
854 woffset += todo1;
855 if(woffset == mBufferDataSize)
857 woffset = 0;
858 if(todo2 > 0)
860 memcpy(&mBufferData[woffset], mSamples+boffset+todo1, todo2);
861 woffset += todo2;
865 mWritePos.store(woffset, std::memory_order_release);
866 mCurrentPts += nanoseconds{seconds{mSamplesLen-mSamplesPos}} / mCodecCtx->sample_rate;
868 do {
869 mSamplesLen = decodeFrame();
870 if(mSamplesLen <= 0) break;
872 mSamplesPos = std::min(mSamplesLen, sample_skip);
873 sample_skip -= mSamplesPos;
875 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
876 mDeviceStartTime -= skip;
877 mCurrentPts += skip;
878 } while(mSamplesPos >= mSamplesLen);
883 #ifdef AL_SOFT_events
884 void AL_APIENTRY AudioState::EventCallback(ALenum eventType, ALuint object, ALuint param,
885 ALsizei length, const ALchar *message, void *userParam)
887 auto self = static_cast<AudioState*>(userParam);
889 if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
891 /* Temporarily lock the source mutex to ensure it's not between
892 * checking the processed count and going to sleep.
894 std::unique_lock<std::mutex>{self->mSrcMutex}.unlock();
895 self->mSrcCond.notify_one();
896 return;
899 std::cout<< "\n---- AL Event on AudioState "<<self<<" ----\nEvent: ";
900 switch(eventType)
902 case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: std::cout<< "Buffer completed"; break;
903 case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: std::cout<< "Source state changed"; break;
904 case AL_EVENT_TYPE_DISCONNECTED_SOFT: std::cout<< "Disconnected"; break;
905 default:
906 std::cout<< "0x"<<std::hex<<std::setw(4)<<std::setfill('0')<<eventType<<std::dec<<
907 std::setw(0)<<std::setfill(' '); break;
909 std::cout<< "\n"
910 "Object ID: "<<object<<"\n"
911 "Parameter: "<<param<<"\n"
912 "Message: "<<std::string{message, static_cast<ALuint>(length)}<<"\n----"<<
913 std::endl;
915 if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
918 std::lock_guard<std::mutex> lock{self->mSrcMutex};
919 self->mConnected.clear(std::memory_order_release);
921 self->mSrcCond.notify_one();
924 #endif
926 #ifdef AL_SOFT_callback_buffer
927 ALsizei AudioState::bufferCallback(void *data, ALsizei size)
929 ALsizei got{0};
931 size_t roffset{mReadPos.load(std::memory_order_acquire)};
932 while(got < size)
934 const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
935 if(woffset == roffset) break;
937 size_t todo{((woffset < roffset) ? mBufferDataSize : woffset) - roffset};
938 todo = std::min<size_t>(todo, static_cast<ALuint>(size-got));
940 memcpy(data, &mBufferData[roffset], todo);
941 data = static_cast<ALbyte*>(data) + todo;
942 got += static_cast<ALsizei>(todo);
944 roffset += todo;
945 if(roffset == mBufferDataSize)
946 roffset = 0;
948 mReadPos.store(roffset, std::memory_order_release);
950 return got;
952 #endif
954 int AudioState::handler()
956 std::unique_lock<std::mutex> srclock{mSrcMutex, std::defer_lock};
957 milliseconds sleep_time{AudioBufferTime / 3};
958 ALenum fmt;
960 #ifdef AL_SOFT_events
961 const std::array<ALenum,3> evt_types{{
962 AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
963 AL_EVENT_TYPE_DISCONNECTED_SOFT}};
964 if(alEventControlSOFT)
966 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_TRUE);
967 alEventCallbackSOFT(EventCallback, this);
968 sleep_time = AudioBufferTotalTime;
970 #endif
971 #ifdef AL_SOFT_bformat_ex
972 const bool has_bfmt_ex{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE};
973 ALenum ambi_layout{AL_FUMA_SOFT};
974 ALenum ambi_scale{AL_FUMA_SOFT};
975 #endif
977 /* Find a suitable format for OpenAL. */
978 mDstChanLayout = 0;
979 mFormat = AL_NONE;
980 if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) &&
981 alIsExtensionPresent("AL_EXT_FLOAT32"))
983 mDstSampleFmt = AV_SAMPLE_FMT_FLT;
984 mFrameSize = 4;
985 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
986 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
987 (fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1)
989 mDstChanLayout = mCodecCtx->channel_layout;
990 mFrameSize *= 8;
991 mFormat = fmt;
993 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
994 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
995 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
996 (fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1)
998 mDstChanLayout = mCodecCtx->channel_layout;
999 mFrameSize *= 6;
1000 mFormat = fmt;
1002 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1004 mDstChanLayout = mCodecCtx->channel_layout;
1005 mFrameSize *= 1;
1006 mFormat = AL_FORMAT_MONO_FLOAT32;
1008 /* Assume 3D B-Format (ambisonics) if the channel layout is blank and
1009 * there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
1010 * have no way to specify if the source is actually B-Format (let alone
1011 * if it's 2D or 3D).
1013 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1014 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1015 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32")) != AL_NONE && fmt != -1)
1017 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1018 if((order+1)*(order+1) == mCodecCtx->channels ||
1019 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1021 /* OpenAL only supports first-order with AL_EXT_BFORMAT, which
1022 * is 4 channels for 3D buffers.
1024 mFrameSize *= 4;
1025 mFormat = fmt;
1028 if(!mFormat)
1030 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1031 mFrameSize *= 2;
1032 mFormat = AL_FORMAT_STEREO_FLOAT32;
1035 if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
1037 mDstSampleFmt = AV_SAMPLE_FMT_U8;
1038 mFrameSize = 1;
1039 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1040 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1041 (fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1)
1043 mDstChanLayout = mCodecCtx->channel_layout;
1044 mFrameSize *= 8;
1045 mFormat = fmt;
1047 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1048 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1049 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1050 (fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1)
1052 mDstChanLayout = mCodecCtx->channel_layout;
1053 mFrameSize *= 6;
1054 mFormat = fmt;
1056 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1058 mDstChanLayout = mCodecCtx->channel_layout;
1059 mFrameSize *= 1;
1060 mFormat = AL_FORMAT_MONO8;
1062 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1063 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1064 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D8")) != AL_NONE && fmt != -1)
1066 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1067 if((order+1)*(order+1) == mCodecCtx->channels ||
1068 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1070 mFrameSize *= 4;
1071 mFormat = fmt;
1074 if(!mFormat)
1076 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1077 mFrameSize *= 2;
1078 mFormat = AL_FORMAT_STEREO8;
1081 if(!mFormat)
1083 mDstSampleFmt = AV_SAMPLE_FMT_S16;
1084 mFrameSize = 2;
1085 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1086 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1087 (fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1)
1089 mDstChanLayout = mCodecCtx->channel_layout;
1090 mFrameSize *= 8;
1091 mFormat = fmt;
1093 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1094 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1095 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1096 (fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1)
1098 mDstChanLayout = mCodecCtx->channel_layout;
1099 mFrameSize *= 6;
1100 mFormat = fmt;
1102 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1104 mDstChanLayout = mCodecCtx->channel_layout;
1105 mFrameSize *= 1;
1106 mFormat = AL_FORMAT_MONO16;
1108 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1109 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1110 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D16")) != AL_NONE && fmt != -1)
1112 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1113 if((order+1)*(order+1) == mCodecCtx->channels ||
1114 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1116 mFrameSize *= 4;
1117 mFormat = fmt;
1120 if(!mFormat)
1122 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1123 mFrameSize *= 2;
1124 mFormat = AL_FORMAT_STEREO16;
1127 void *samples{nullptr};
1128 ALsizei buffer_len{0};
1130 mSamples = nullptr;
1131 mSamplesMax = 0;
1132 mSamplesPos = 0;
1133 mSamplesLen = 0;
1135 mDecodedFrame.reset(av_frame_alloc());
1136 if(!mDecodedFrame)
1138 std::cerr<< "Failed to allocate audio frame" <<std::endl;
1139 goto finish;
1142 if(!mDstChanLayout)
1144 /* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
1145 * we have to drop any extra channels.
1147 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1148 (1_i64<<4)-1, mDstSampleFmt, mCodecCtx->sample_rate,
1149 (1_i64<<mCodecCtx->channels)-1, mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1150 0, nullptr));
1152 /* Note that ffmpeg/libavcodec has no method to check the ambisonic
1153 * channel order and normalization, so we can only assume AmbiX as the
1154 * defacto-standard. This is not true for .amb files, which use FuMa.
1156 std::vector<double> mtx(64*64, 0.0);
1157 #ifdef AL_SOFT_bformat_ex
1158 ambi_layout = AL_ACN_SOFT;
1159 ambi_scale = AL_SN3D_SOFT;
1160 if(has_bfmt_ex)
1162 /* An identity matrix that doesn't remix any channels. */
1163 std::cout<< "Found AL_SOFT_bformat_ex" <<std::endl;
1164 mtx[0 + 0*64] = 1.0;
1165 mtx[1 + 1*64] = 1.0;
1166 mtx[2 + 2*64] = 1.0;
1167 mtx[3 + 3*64] = 1.0;
1169 else
1170 #endif
1172 std::cout<< "Found AL_EXT_BFORMAT" <<std::endl;
1173 /* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
1174 * ordering and normalization, so a custom matrix is needed to
1175 * scale and reorder the source from AmbiX.
1177 mtx[0 + 0*64] = std::sqrt(0.5);
1178 mtx[3 + 1*64] = 1.0;
1179 mtx[1 + 2*64] = 1.0;
1180 mtx[2 + 3*64] = 1.0;
1182 swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
1184 else
1185 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1186 static_cast<int64_t>(mDstChanLayout), mDstSampleFmt, mCodecCtx->sample_rate,
1187 mCodecCtx->channel_layout ? static_cast<int64_t>(mCodecCtx->channel_layout)
1188 : av_get_default_channel_layout(mCodecCtx->channels),
1189 mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1190 0, nullptr));
1191 if(!mSwresCtx || swr_init(mSwresCtx.get()) != 0)
1193 std::cerr<< "Failed to initialize audio converter" <<std::endl;
1194 goto finish;
1197 alGenBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
1198 alGenSources(1, &mSource);
1200 if(DirectOutMode)
1201 alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, DirectOutMode);
1202 if(EnableWideStereo)
1204 const float angles[2]{static_cast<float>(M_PI / 3.0), static_cast<float>(-M_PI / 3.0)};
1205 alSourcefv(mSource, AL_STEREO_ANGLES, angles);
1207 #ifdef AL_SOFT_bformat_ex
1208 if(has_bfmt_ex)
1210 for(ALuint bufid : mBuffers)
1212 alBufferi(bufid, AL_AMBISONIC_LAYOUT_SOFT, ambi_layout);
1213 alBufferi(bufid, AL_AMBISONIC_SCALING_SOFT, ambi_scale);
1216 #endif
1218 if(alGetError() != AL_NO_ERROR)
1219 goto finish;
1221 #ifdef AL_SOFT_callback_buffer
1222 if(alBufferCallbackSOFT)
1224 alBufferCallbackSOFT(mBuffers[0], mFormat, mCodecCtx->sample_rate, bufferCallbackC, this,
1226 alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffers[0]));
1227 if(alGetError() != AL_NO_ERROR)
1229 fprintf(stderr, "Failed to set buffer callback\n");
1230 alSourcei(mSource, AL_BUFFER, 0);
1231 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1232 AudioBufferTime).count() * mFrameSize);
1234 else
1236 mBufferDataSize = static_cast<size_t>(duration_cast<seconds>(mCodecCtx->sample_rate *
1237 AudioBufferTotalTime).count()) * mFrameSize;
1238 mBufferData.reset(new uint8_t[mBufferDataSize]);
1239 mReadPos.store(0, std::memory_order_relaxed);
1240 mWritePos.store(0, std::memory_order_relaxed);
1242 ALCint refresh{};
1243 alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
1244 sleep_time = milliseconds{seconds{1}} / refresh;
1247 else
1248 #endif
1249 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1250 AudioBufferTime).count() * mFrameSize);
1251 if(buffer_len > 0)
1252 samples = av_malloc(static_cast<ALuint>(buffer_len));
1254 /* Prefill the codec buffer. */
1255 do {
1256 const int ret{mPackets.sendTo(mCodecCtx.get())};
1257 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1258 break;
1259 } while(1);
1261 srclock.lock();
1262 if(alcGetInteger64vSOFT)
1264 int64_t devtime{};
1265 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT,
1266 1, &devtime);
1267 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1270 mSamplesLen = decodeFrame();
1271 if(mSamplesLen > 0)
1273 mSamplesPos = std::min(mSamplesLen, getSync());
1275 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
1276 mDeviceStartTime -= skip;
1277 mCurrentPts += skip;
1280 while(!mMovie.mQuit.load(std::memory_order_relaxed)
1281 && mConnected.test_and_set(std::memory_order_relaxed))
1283 ALenum state;
1284 if(mBufferDataSize > 0)
1286 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1287 readAudio(getSync());
1289 else
1291 ALint processed, queued;
1293 /* First remove any processed buffers. */
1294 alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
1295 while(processed > 0)
1297 ALuint bid;
1298 alSourceUnqueueBuffers(mSource, 1, &bid);
1299 --processed;
1302 /* Refill the buffer queue. */
1303 int sync_skip{getSync()};
1304 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
1305 while(static_cast<ALuint>(queued) < mBuffers.size())
1307 /* Read the next chunk of data, filling the buffer, and queue
1308 * it on the source.
1310 const bool got_audio{readAudio(static_cast<uint8_t*>(samples),
1311 static_cast<ALuint>(buffer_len), sync_skip)};
1312 if(!got_audio) break;
1314 const ALuint bufid{mBuffers[mBufferIdx]};
1315 mBufferIdx = static_cast<ALuint>((mBufferIdx+1) % mBuffers.size());
1317 alBufferData(bufid, mFormat, samples, buffer_len, mCodecCtx->sample_rate);
1318 alSourceQueueBuffers(mSource, 1, &bufid);
1319 ++queued;
1322 /* Check that the source is playing. */
1323 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1324 if(state == AL_STOPPED)
1326 /* AL_STOPPED means there was an underrun. Clear the buffer
1327 * queue since this likely means we're late, and rewind the
1328 * source to get it back into an AL_INITIAL state.
1330 alSourceRewind(mSource);
1331 alSourcei(mSource, AL_BUFFER, 0);
1332 if(alcGetInteger64vSOFT)
1334 /* Also update the device start time with the current
1335 * device clock, so the decoder knows we're running behind.
1337 int64_t devtime{};
1338 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
1339 ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
1340 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1342 continue;
1346 /* (re)start the source if needed, and wait for a buffer to finish */
1347 if(state != AL_PLAYING && state != AL_PAUSED)
1349 if(!startPlayback())
1350 break;
1352 if(alGetError() != AL_NO_ERROR)
1353 return false;
1355 mSrcCond.wait_for(srclock, sleep_time);
1358 alSourceRewind(mSource);
1359 alSourcei(mSource, AL_BUFFER, 0);
1360 srclock.unlock();
1362 finish:
1363 av_freep(&samples);
1365 #ifdef AL_SOFT_events
1366 if(alEventControlSOFT)
1368 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_FALSE);
1369 alEventCallbackSOFT(nullptr, nullptr);
1371 #endif
1373 return 0;
1377 nanoseconds VideoState::getClock()
1379 /* NOTE: This returns incorrect times while not playing. */
1380 std::lock_guard<std::mutex> _{mDispPtsMutex};
1381 if(mDisplayPtsTime == microseconds::min())
1382 return nanoseconds::zero();
1383 auto delta = get_avtime() - mDisplayPtsTime;
1384 return mDisplayPts + delta;
1387 /* Called by VideoState::updateVideo to display the next video frame. */
1388 void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer)
1390 if(!mImage)
1391 return;
1393 double aspect_ratio;
1394 int win_w, win_h;
1395 int w, h, x, y;
1397 if(mCodecCtx->sample_aspect_ratio.num == 0)
1398 aspect_ratio = 0.0;
1399 else
1401 aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width /
1402 mCodecCtx->height;
1404 if(aspect_ratio <= 0.0)
1405 aspect_ratio = static_cast<double>(mCodecCtx->width) / mCodecCtx->height;
1407 SDL_GetWindowSize(screen, &win_w, &win_h);
1408 h = win_h;
1409 w = (static_cast<int>(std::rint(h * aspect_ratio)) + 3) & ~3;
1410 if(w > win_w)
1412 w = win_w;
1413 h = (static_cast<int>(std::rint(w / aspect_ratio)) + 3) & ~3;
1415 x = (win_w - w) / 2;
1416 y = (win_h - h) / 2;
1418 SDL_Rect src_rect{ 0, 0, mWidth, mHeight };
1419 SDL_Rect dst_rect{ x, y, w, h };
1420 SDL_RenderCopy(renderer, mImage, &src_rect, &dst_rect);
1421 SDL_RenderPresent(renderer);
1424 /* Called regularly on the main thread where the SDL_Renderer was created. It
1425 * handles updating the textures of decoded frames and displaying the latest
1426 * frame.
1428 void VideoState::updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw)
1430 size_t read_idx{mPictQRead.load(std::memory_order_relaxed)};
1431 Picture *vp{&mPictQ[read_idx]};
1433 auto clocktime = mMovie.getMasterClock();
1434 bool updated{false};
1435 while(1)
1437 size_t next_idx{(read_idx+1)%mPictQ.size()};
1438 if(next_idx == mPictQWrite.load(std::memory_order_acquire))
1439 break;
1440 Picture *nextvp{&mPictQ[next_idx]};
1441 if(clocktime < nextvp->mPts)
1442 break;
1444 vp = nextvp;
1445 updated = true;
1446 read_idx = next_idx;
1448 if(mMovie.mQuit.load(std::memory_order_relaxed))
1450 if(mEOS)
1451 mFinalUpdate = true;
1452 mPictQRead.store(read_idx, std::memory_order_release);
1453 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1454 mPictQCond.notify_one();
1455 return;
1458 if(updated)
1460 mPictQRead.store(read_idx, std::memory_order_release);
1461 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1462 mPictQCond.notify_one();
1464 /* allocate or resize the buffer! */
1465 bool fmt_updated{false};
1466 if(!mImage || mWidth != mCodecCtx->width || mHeight != mCodecCtx->height)
1468 fmt_updated = true;
1469 if(mImage)
1470 SDL_DestroyTexture(mImage);
1471 mImage = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
1472 mCodecCtx->coded_width, mCodecCtx->coded_height);
1473 if(!mImage)
1474 std::cerr<< "Failed to create YV12 texture!" <<std::endl;
1475 mWidth = mCodecCtx->width;
1476 mHeight = mCodecCtx->height;
1478 if(mFirstUpdate && mWidth > 0 && mHeight > 0)
1480 /* For the first update, set the window size to the video size. */
1481 mFirstUpdate = false;
1483 int w{mWidth};
1484 int h{mHeight};
1485 if(mCodecCtx->sample_aspect_ratio.den != 0)
1487 double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio);
1488 if(aspect_ratio >= 1.0)
1489 w = static_cast<int>(w*aspect_ratio + 0.5);
1490 else if(aspect_ratio > 0.0)
1491 h = static_cast<int>(h/aspect_ratio + 0.5);
1493 SDL_SetWindowSize(screen, w, h);
1497 if(mImage)
1499 AVFrame *frame{vp->mFrame.get()};
1500 void *pixels{nullptr};
1501 int pitch{0};
1503 if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
1504 SDL_UpdateYUVTexture(mImage, nullptr,
1505 frame->data[0], frame->linesize[0],
1506 frame->data[1], frame->linesize[1],
1507 frame->data[2], frame->linesize[2]
1509 else if(SDL_LockTexture(mImage, nullptr, &pixels, &pitch) != 0)
1510 std::cerr<< "Failed to lock texture" <<std::endl;
1511 else
1513 // Convert the image into YUV format that SDL uses
1514 int coded_w{mCodecCtx->coded_width};
1515 int coded_h{mCodecCtx->coded_height};
1516 int w{mCodecCtx->width};
1517 int h{mCodecCtx->height};
1518 if(!mSwscaleCtx || fmt_updated)
1520 mSwscaleCtx.reset(sws_getContext(
1521 w, h, mCodecCtx->pix_fmt,
1522 w, h, AV_PIX_FMT_YUV420P, 0,
1523 nullptr, nullptr, nullptr
1527 /* point pict at the queue */
1528 uint8_t *pict_data[3];
1529 pict_data[0] = static_cast<uint8_t*>(pixels);
1530 pict_data[1] = pict_data[0] + coded_w*coded_h;
1531 pict_data[2] = pict_data[1] + coded_w*coded_h/4;
1533 int pict_linesize[3];
1534 pict_linesize[0] = pitch;
1535 pict_linesize[1] = pitch / 2;
1536 pict_linesize[2] = pitch / 2;
1538 sws_scale(mSwscaleCtx.get(), reinterpret_cast<uint8_t**>(frame->data), frame->linesize,
1539 0, h, pict_data, pict_linesize);
1540 SDL_UnlockTexture(mImage);
1544 redraw = true;
1547 if(redraw)
1549 /* Show the picture! */
1550 display(screen, renderer);
1553 if(updated)
1555 auto disp_time = get_avtime();
1557 std::lock_guard<std::mutex> _{mDispPtsMutex};
1558 mDisplayPts = vp->mPts;
1559 mDisplayPtsTime = disp_time;
1561 if(mEOS.load(std::memory_order_acquire))
1563 if((read_idx+1)%mPictQ.size() == mPictQWrite.load(std::memory_order_acquire))
1565 mFinalUpdate = true;
1566 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1567 mPictQCond.notify_one();
1572 int VideoState::handler()
1574 std::for_each(mPictQ.begin(), mPictQ.end(),
1575 [](Picture &pict) -> void
1576 { pict.mFrame = AVFramePtr{av_frame_alloc()}; });
1578 /* Prefill the codec buffer. */
1579 do {
1580 const int ret{mPackets.sendTo(mCodecCtx.get())};
1581 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1582 break;
1583 } while(1);
1586 std::lock_guard<std::mutex> _{mDispPtsMutex};
1587 mDisplayPtsTime = get_avtime();
1590 auto current_pts = nanoseconds::zero();
1591 while(!mMovie.mQuit.load(std::memory_order_relaxed))
1593 size_t write_idx{mPictQWrite.load(std::memory_order_relaxed)};
1594 Picture *vp{&mPictQ[write_idx]};
1596 /* Retrieve video frame. */
1597 AVFrame *decoded_frame{vp->mFrame.get()};
1598 int ret;
1599 while((ret=avcodec_receive_frame(mCodecCtx.get(), decoded_frame)) == AVERROR(EAGAIN))
1600 mPackets.sendTo(mCodecCtx.get());
1601 if(ret != 0)
1603 if(ret == AVErrorEOF) break;
1604 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
1605 continue;
1608 /* Get the PTS for this frame. */
1609 if(decoded_frame->best_effort_timestamp != AVNoPtsValue)
1610 current_pts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
1611 static_cast<double>(decoded_frame->best_effort_timestamp)});
1612 vp->mPts = current_pts;
1614 /* Update the video clock to the next expected PTS. */
1615 auto frame_delay = av_q2d(mCodecCtx->time_base);
1616 frame_delay += decoded_frame->repeat_pict * (frame_delay * 0.5);
1617 current_pts += duration_cast<nanoseconds>(seconds_d64{frame_delay});
1619 /* Put the frame in the queue to be loaded into a texture and displayed
1620 * by the rendering thread.
1622 write_idx = (write_idx+1)%mPictQ.size();
1623 mPictQWrite.store(write_idx, std::memory_order_release);
1625 /* Send a packet now so it's hopefully ready by the time it's needed. */
1626 mPackets.sendTo(mCodecCtx.get());
1628 if(write_idx == mPictQRead.load(std::memory_order_acquire))
1630 /* Wait until we have space for a new pic */
1631 std::unique_lock<std::mutex> lock{mPictQMutex};
1632 while(write_idx == mPictQRead.load(std::memory_order_acquire) &&
1633 !mMovie.mQuit.load(std::memory_order_relaxed))
1634 mPictQCond.wait(lock);
1637 mEOS = true;
1639 std::unique_lock<std::mutex> lock{mPictQMutex};
1640 while(!mFinalUpdate) mPictQCond.wait(lock);
1642 return 0;
1646 int MovieState::decode_interrupt_cb(void *ctx)
1648 return static_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
1651 bool MovieState::prepare()
1653 AVIOContext *avioctx{nullptr};
1654 AVIOInterruptCB intcb{decode_interrupt_cb, this};
1655 if(avio_open2(&avioctx, mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr))
1657 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1658 return false;
1660 mIOContext.reset(avioctx);
1662 /* Open movie file. If avformat_open_input fails it will automatically free
1663 * this context, so don't set it onto a smart pointer yet.
1665 AVFormatContext *fmtctx{avformat_alloc_context()};
1666 fmtctx->pb = mIOContext.get();
1667 fmtctx->interrupt_callback = intcb;
1668 if(avformat_open_input(&fmtctx, mFilename.c_str(), nullptr, nullptr) != 0)
1670 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1671 return false;
1673 mFormatCtx.reset(fmtctx);
1675 /* Retrieve stream information */
1676 if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
1678 std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
1679 return false;
1682 /* Dump information about file onto standard error */
1683 av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
1685 mParseThread = std::thread{std::mem_fn(&MovieState::parse_handler), this};
1686 return true;
1689 void MovieState::setTitle(SDL_Window *window)
1691 auto pos1 = mFilename.rfind('/');
1692 auto pos2 = mFilename.rfind('\\');
1693 auto fpos = ((pos1 == std::string::npos) ? pos2 :
1694 (pos2 == std::string::npos) ? pos1 :
1695 std::max(pos1, pos2)) + 1;
1696 SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
1699 nanoseconds MovieState::getClock()
1701 if(mClockBase == microseconds::min())
1702 return nanoseconds::zero();
1703 return get_avtime() - mClockBase;
1706 nanoseconds MovieState::getMasterClock()
1708 if(mAVSyncType == SyncMaster::Video)
1709 return mVideo.getClock();
1710 if(mAVSyncType == SyncMaster::Audio)
1711 return mAudio.getClock();
1712 return getClock();
1715 nanoseconds MovieState::getDuration()
1716 { return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
1718 int MovieState::streamComponentOpen(unsigned int stream_index)
1720 if(stream_index >= mFormatCtx->nb_streams)
1721 return -1;
1723 /* Get a pointer to the codec context for the stream, and open the
1724 * associated codec.
1726 AVCodecCtxPtr avctx{avcodec_alloc_context3(nullptr)};
1727 if(!avctx) return -1;
1729 if(avcodec_parameters_to_context(avctx.get(), mFormatCtx->streams[stream_index]->codecpar))
1730 return -1;
1732 AVCodec *codec{avcodec_find_decoder(avctx->codec_id)};
1733 if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
1735 std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
1736 << " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
1737 return -1;
1740 /* Initialize and start the media type handler */
1741 switch(avctx->codec_type)
1743 case AVMEDIA_TYPE_AUDIO:
1744 mAudio.mStream = mFormatCtx->streams[stream_index];
1745 mAudio.mCodecCtx = std::move(avctx);
1746 break;
1748 case AVMEDIA_TYPE_VIDEO:
1749 mVideo.mStream = mFormatCtx->streams[stream_index];
1750 mVideo.mCodecCtx = std::move(avctx);
1751 break;
1753 default:
1754 return -1;
1757 return static_cast<int>(stream_index);
1760 int MovieState::parse_handler()
1762 auto &audio_queue = mAudio.mPackets;
1763 auto &video_queue = mVideo.mPackets;
1765 int video_index{-1};
1766 int audio_index{-1};
1768 /* Find the first video and audio streams */
1769 for(unsigned int i{0u};i < mFormatCtx->nb_streams;i++)
1771 auto codecpar = mFormatCtx->streams[i]->codecpar;
1772 if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && !DisableVideo && video_index < 0)
1773 video_index = streamComponentOpen(i);
1774 else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
1775 audio_index = streamComponentOpen(i);
1778 if(video_index < 0 && audio_index < 0)
1780 std::cerr<< mFilename<<": could not open codecs" <<std::endl;
1781 mQuit = true;
1784 /* Set the base time 750ms ahead of the current av time. */
1785 mClockBase = get_avtime() + milliseconds{750};
1787 if(audio_index >= 0)
1788 mAudioThread = std::thread{std::mem_fn(&AudioState::handler), &mAudio};
1789 if(video_index >= 0)
1790 mVideoThread = std::thread{std::mem_fn(&VideoState::handler), &mVideo};
1792 /* Main packet reading/dispatching loop */
1793 while(!mQuit.load(std::memory_order_relaxed))
1795 AVPacket packet;
1796 if(av_read_frame(mFormatCtx.get(), &packet) < 0)
1797 break;
1799 /* Copy the packet into the queue it's meant for. */
1800 if(packet.stream_index == video_index)
1802 while(!mQuit.load(std::memory_order_acquire) && !video_queue.put(&packet))
1803 std::this_thread::sleep_for(milliseconds{100});
1805 else if(packet.stream_index == audio_index)
1807 while(!mQuit.load(std::memory_order_acquire) && !audio_queue.put(&packet))
1808 std::this_thread::sleep_for(milliseconds{100});
1811 av_packet_unref(&packet);
1813 /* Finish the queues so the receivers know nothing more is coming. */
1814 if(mVideo.mCodecCtx) video_queue.setFinished();
1815 if(mAudio.mCodecCtx) audio_queue.setFinished();
1817 /* all done - wait for it */
1818 if(mVideoThread.joinable())
1819 mVideoThread.join();
1820 if(mAudioThread.joinable())
1821 mAudioThread.join();
1823 mVideo.mEOS = true;
1824 std::unique_lock<std::mutex> lock{mVideo.mPictQMutex};
1825 while(!mVideo.mFinalUpdate)
1826 mVideo.mPictQCond.wait(lock);
1827 lock.unlock();
1829 SDL_Event evt{};
1830 evt.user.type = FF_MOVIE_DONE_EVENT;
1831 SDL_PushEvent(&evt);
1833 return 0;
1837 // Helper class+method to print the time with human-readable formatting.
1838 struct PrettyTime {
1839 seconds mTime;
1841 std::ostream &operator<<(std::ostream &os, const PrettyTime &rhs)
1843 using hours = std::chrono::hours;
1844 using minutes = std::chrono::minutes;
1846 seconds t{rhs.mTime};
1847 if(t.count() < 0)
1849 os << '-';
1850 t *= -1;
1853 // Only handle up to hour formatting
1854 if(t >= hours{1})
1855 os << duration_cast<hours>(t).count() << 'h' << std::setfill('0') << std::setw(2)
1856 << (duration_cast<minutes>(t).count() % 60) << 'm';
1857 else
1858 os << duration_cast<minutes>(t).count() << 'm' << std::setfill('0');
1859 os << std::setw(2) << (duration_cast<seconds>(t).count() % 60) << 's' << std::setw(0)
1860 << std::setfill(' ');
1861 return os;
1864 } // namespace
1867 int main(int argc, char *argv[])
1869 std::unique_ptr<MovieState> movState;
1871 if(argc < 2)
1873 std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
1874 return 1;
1876 /* Register all formats and codecs */
1877 #if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
1878 av_register_all();
1879 #endif
1880 /* Initialize networking protocols */
1881 avformat_network_init();
1883 if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS))
1885 std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
1886 return 1;
1889 /* Make a window to put our video */
1890 SDL_Window *screen{SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE)};
1891 if(!screen)
1893 std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
1894 return 1;
1896 /* Make a renderer to handle the texture image surface and rendering. */
1897 Uint32 render_flags{SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC};
1898 SDL_Renderer *renderer{SDL_CreateRenderer(screen, -1, render_flags)};
1899 if(renderer)
1901 SDL_RendererInfo rinf{};
1902 bool ok{false};
1904 /* Make sure the renderer supports IYUV textures. If not, fallback to a
1905 * software renderer. */
1906 if(SDL_GetRendererInfo(renderer, &rinf) == 0)
1908 for(Uint32 i{0u};!ok && i < rinf.num_texture_formats;i++)
1909 ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
1911 if(!ok)
1913 std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
1914 SDL_DestroyRenderer(renderer);
1915 renderer = nullptr;
1918 if(!renderer)
1920 render_flags = SDL_RENDERER_SOFTWARE | SDL_RENDERER_PRESENTVSYNC;
1921 renderer = SDL_CreateRenderer(screen, -1, render_flags);
1923 if(!renderer)
1925 std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
1926 return 1;
1928 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
1929 SDL_RenderFillRect(renderer, nullptr);
1930 SDL_RenderPresent(renderer);
1932 /* Open an audio device */
1933 ++argv; --argc;
1934 if(InitAL(&argv, &argc))
1936 std::cerr<< "Failed to set up audio device" <<std::endl;
1937 return 1;
1941 auto device = alcGetContextsDevice(alcGetCurrentContext());
1942 if(alcIsExtensionPresent(device, "ALC_SOFT_device_clock"))
1944 std::cout<< "Found ALC_SOFT_device_clock" <<std::endl;
1945 alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
1946 alcGetProcAddress(device, "alcGetInteger64vSOFT")
1951 if(alIsExtensionPresent("AL_SOFT_source_latency"))
1953 std::cout<< "Found AL_SOFT_source_latency" <<std::endl;
1954 alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
1955 alGetProcAddress("alGetSourcei64vSOFT")
1958 #ifdef AL_SOFT_events
1959 if(alIsExtensionPresent("AL_SOFTX_events"))
1961 std::cout<< "Found AL_SOFT_events" <<std::endl;
1962 alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
1963 alGetProcAddress("alEventControlSOFT"));
1964 alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
1965 alGetProcAddress("alEventCallbackSOFT"));
1967 #endif
1968 #ifdef AL_SOFT_callback_buffer
1969 if(alIsExtensionPresent("AL_SOFTX_callback_buffer"))
1971 std::cout<< "Found AL_SOFT_callback_buffer" <<std::endl;
1972 alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
1973 alGetProcAddress("alBufferCallbackSOFT"));
1975 #endif
1977 int fileidx{0};
1978 for(;fileidx < argc;++fileidx)
1980 if(strcmp(argv[fileidx], "-direct") == 0)
1982 if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
1984 std::cout<< "Found AL_SOFT_direct_channels_remix" <<std::endl;
1985 DirectOutMode = AL_REMIX_UNMATCHED_SOFT;
1987 else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
1989 std::cout<< "Found AL_SOFT_direct_channels" <<std::endl;
1990 DirectOutMode = AL_DROP_UNMATCHED_SOFT;
1992 else
1993 std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
1995 else if(strcmp(argv[fileidx], "-wide") == 0)
1997 if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
1998 std::cerr<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl;
1999 else
2001 std::cout<< "Found AL_EXT_STEREO_ANGLES" <<std::endl;
2002 EnableWideStereo = true;
2005 else if(strcmp(argv[fileidx], "-novideo") == 0)
2006 DisableVideo = true;
2007 else
2008 break;
2011 while(fileidx < argc && !movState)
2013 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
2014 if(!movState->prepare()) movState = nullptr;
2016 if(!movState)
2018 std::cerr<< "Could not start a video" <<std::endl;
2019 return 1;
2021 movState->setTitle(screen);
2023 /* Default to going to the next movie at the end of one. */
2024 enum class EomAction {
2025 Next, Quit
2026 } eom_action{EomAction::Next};
2027 seconds last_time{seconds::min()};
2028 while(1)
2030 SDL_Event event{};
2031 int have_evt{SDL_WaitEventTimeout(&event, 10)};
2033 auto cur_time = std::chrono::duration_cast<seconds>(movState->getMasterClock());
2034 if(cur_time != last_time)
2036 auto end_time = std::chrono::duration_cast<seconds>(movState->getDuration());
2037 std::cout<< " \r "<<PrettyTime{cur_time}<<" / "<<PrettyTime{end_time} <<std::flush;
2038 last_time = cur_time;
2041 bool force_redraw{false};
2042 if(have_evt) do {
2043 switch(event.type)
2045 case SDL_KEYDOWN:
2046 switch(event.key.keysym.sym)
2048 case SDLK_ESCAPE:
2049 movState->mQuit = true;
2050 eom_action = EomAction::Quit;
2051 break;
2053 case SDLK_n:
2054 movState->mQuit = true;
2055 eom_action = EomAction::Next;
2056 break;
2058 default:
2059 break;
2061 break;
2063 case SDL_WINDOWEVENT:
2064 switch(event.window.event)
2066 case SDL_WINDOWEVENT_RESIZED:
2067 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
2068 SDL_RenderFillRect(renderer, nullptr);
2069 force_redraw = true;
2070 break;
2072 case SDL_WINDOWEVENT_EXPOSED:
2073 force_redraw = true;
2074 break;
2076 default:
2077 break;
2079 break;
2081 case SDL_QUIT:
2082 movState->mQuit = true;
2083 eom_action = EomAction::Quit;
2084 break;
2086 case FF_MOVIE_DONE_EVENT:
2087 std::cout<<'\n';
2088 last_time = seconds::min();
2089 if(eom_action != EomAction::Quit)
2091 movState = nullptr;
2092 while(fileidx < argc && !movState)
2094 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
2095 if(!movState->prepare()) movState = nullptr;
2097 if(movState)
2099 movState->setTitle(screen);
2100 break;
2104 /* Nothing more to play. Shut everything down and quit. */
2105 movState = nullptr;
2107 CloseAL();
2109 SDL_DestroyRenderer(renderer);
2110 renderer = nullptr;
2111 SDL_DestroyWindow(screen);
2112 screen = nullptr;
2114 SDL_Quit();
2115 exit(0);
2117 default:
2118 break;
2120 } while(SDL_PollEvent(&event));
2122 movState->mVideo.updateVideo(screen, renderer, force_redraw);
2125 std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
2126 return 1;