2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
31 #include "alc/effects/base.h"
33 #include "alnumbers.h"
34 #include "alnumeric.h"
36 #include "core/ambidefs.h"
37 #include "core/bufferline.h"
38 #include "core/context.h"
39 #include "core/devformat.h"
40 #include "core/device.h"
41 #include "core/effectslot.h"
42 #include "core/filters/biquad.h"
43 #include "core/filters/splitter.h"
44 #include "core/mixer.h"
45 #include "core/mixer/defs.h"
46 #include "intrusive_ptr.h"
47 #include "opthelpers.h"
51 /* This is a user config option for modifying the overall output of the reverb
54 float ReverbBoost
= 1.0f
;
58 using uint
= unsigned int;
60 constexpr float MaxModulationTime
{4.0f
};
61 constexpr float DefaultModulationTime
{0.25f
};
63 #define MOD_FRACBITS 24
64 #define MOD_FRACONE (1<<MOD_FRACBITS)
65 #define MOD_FRACMASK (MOD_FRACONE-1)
68 using namespace std::placeholders
;
70 /* Max samples per process iteration. Used to limit the size needed for
71 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
73 constexpr size_t MAX_UPDATE_SAMPLES
{256};
75 /* The number of spatialized lines or channels to process. Four channels allows
76 * for a 3D A-Format response. NOTE: This can't be changed without taking care
77 * of the conversion matrices, and a few places where the length arrays are
78 * assumed to have 4 elements.
80 constexpr size_t NUM_LINES
{4u};
83 /* This coefficient is used to define the maximum frequency range controlled by
84 * the modulation depth. The current value of 0.05 will allow it to swing from
85 * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
86 * to stall on the downswing, and above 1 it will cause it to sample backwards.
87 * The value 0.05 seems be nearest to Creative hardware behavior.
89 constexpr float MODULATION_DEPTH_COEFF
{0.05f
};
92 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
93 * deliberately chosen to align the resulting lines to their spatial opposites
94 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
95 * back left). It's not quite opposite, since the A-Format results in a
96 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
97 * in the future, true opposites can be used.
99 alignas(16) constexpr float B2A
[NUM_LINES
][NUM_LINES
]{
100 { 0.5f
, 0.5f
, 0.5f
, 0.5f
},
101 { 0.5f
, -0.5f
, -0.5f
, 0.5f
},
102 { 0.5f
, 0.5f
, -0.5f
, -0.5f
},
103 { 0.5f
, -0.5f
, 0.5f
, -0.5f
}
106 /* Converts A-Format to B-Format for early reflections. */
107 alignas(16) constexpr float EarlyA2B
[NUM_LINES
][NUM_LINES
]{
108 { 0.5f
, 0.5f
, 0.5f
, 0.5f
},
109 { 0.5f
, -0.5f
, 0.5f
, -0.5f
},
110 { 0.5f
, -0.5f
, -0.5f
, 0.5f
},
111 { 0.5f
, 0.5f
, -0.5f
, -0.5f
}
114 /* Converts A-Format to B-Format for late reverb. */
115 constexpr auto InvSqrt2
= static_cast<float>(1.0/al::numbers::sqrt2
);
116 alignas(16) constexpr float LateA2B
[NUM_LINES
][NUM_LINES
]{
117 { 0.5f
, 0.5f
, 0.5f
, 0.5f
},
118 { InvSqrt2
, -InvSqrt2
, 0.0f
, 0.0f
},
119 { 0.0f
, 0.0f
, InvSqrt2
, -InvSqrt2
},
120 { 0.5f
, 0.5f
, -0.5f
, -0.5f
}
123 /* The all-pass and delay lines have a variable length dependent on the
124 * effect's density parameter, which helps alter the perceived environment
125 * size. The size-to-density conversion is a cubed scale:
127 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
129 * The line lengths scale linearly with room size, so the inverse density
130 * conversion is needed, taking the cube root of the re-scaled density to
131 * calculate the line length multiplier:
133 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
135 * The density scale below will result in a max line multiplier of 50, for an
136 * effective size range of 5m to 50m.
138 constexpr float DENSITY_SCALE
{125000.0f
};
140 /* All delay line lengths are specified in seconds.
142 * To approximate early reflections, we break them up into primary (those
143 * arriving from the same direction as the source) and secondary (those
144 * arriving from the opposite direction).
146 * The early taps decorrelate the 4-channel signal to approximate an average
147 * room response for the primary reflections after the initial early delay.
149 * Given an average room dimension (d_a) and the speed of sound (c) we can
150 * calculate the average reflection delay (r_a) regardless of listener and
151 * source positions as:
156 * This can extended to finding the average difference (r_d) between the
157 * maximum (r_1) and minimum (r_0) reflection delays:
168 * As can be determined by integrating the 1D model with a source (s) and
169 * listener (l) positioned across the dimension of length (d_a):
171 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
173 * The initial taps (T_(i=0)^N) are then specified by taking a power series
174 * that ranges between r_0 and half of r_1 less r_0:
176 * R_i = 2^(i / (2 N - 1)) r_d
177 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
180 * = (2^(i / (2 N - 1)) - 1) r_d
182 * Assuming an average of 1m, we get the following taps:
184 constexpr std::array
<float,NUM_LINES
> EARLY_TAP_LENGTHS
{{
185 0.0000000e+0f
, 2.0213520e-4f
, 4.2531060e-4f
, 6.7171600e-4f
188 /* The early all-pass filter lengths are based on the early tap lengths:
192 * Where a is the approximate maximum all-pass cycle limit (20).
194 constexpr std::array
<float,NUM_LINES
> EARLY_ALLPASS_LENGTHS
{{
195 9.7096800e-5f
, 1.0720356e-4f
, 1.1836234e-4f
, 1.3068260e-4f
198 /* The early delay lines are used to transform the primary reflections into
199 * the secondary reflections. The A-format is arranged in such a way that
200 * the channels/lines are spatially opposite:
202 * C_i is opposite C_(N-i-1)
204 * The delays of the two opposing reflections (R_i and O_i) from a source
205 * anywhere along a particular dimension always sum to twice its full delay:
209 * With that in mind we can determine the delay between the two reflections
210 * and thus specify our early line lengths (L_(i=0)^N) using:
212 * O_i = 2 r_a - R_(N-i-1)
213 * L_i = O_i - R_(N-i-1)
214 * = 2 (r_a - R_(N-i-1))
215 * = 2 (r_a - T_(N-i-1) - r_0)
216 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
218 * Using an average dimension of 1m, we get:
220 constexpr std::array
<float,NUM_LINES
> EARLY_LINE_LENGTHS
{{
221 5.9850400e-4f
, 1.0913150e-3f
, 1.5376658e-3f
, 1.9419362e-3f
224 /* The late all-pass filter lengths are based on the late line lengths:
226 * A_i = (5 / 3) L_i / r_1
228 constexpr std::array
<float,NUM_LINES
> LATE_ALLPASS_LENGTHS
{{
229 1.6182800e-4f
, 2.0389060e-4f
, 2.8159360e-4f
, 3.2365600e-4f
232 /* The late lines are used to approximate the decaying cycle of recursive
235 * Splitting the lines in half, we start with the shortest reflection paths
238 * L_i = 2^(i / (N - 1)) r_d
240 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
242 * L_i = 2 r_a - L_(i-N/2)
243 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
245 * For our 1m average room, we get:
247 constexpr std::array
<float,NUM_LINES
> LATE_LINE_LENGTHS
{{
248 1.9419362e-3f
, 2.4466860e-3f
, 3.3791220e-3f
, 3.8838720e-3f
252 using ReverbUpdateLine
= std::array
<float,MAX_UPDATE_SAMPLES
>;
255 /* The delay lines use interleaved samples, with the lengths being powers
256 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
260 uintptr_t LineOffset
{0u};
261 std::array
<float,NUM_LINES
> *Line
;
264 /* Given the allocated sample buffer, this function updates each delay line
267 void realizeLineOffset(std::array
<float,NUM_LINES
> *sampleBuffer
) noexcept
268 { Line
= sampleBuffer
+ LineOffset
; }
270 /* Calculate the length of a delay line and store its mask and offset. */
271 uint
calcLineLength(const float length
, const uintptr_t offset
, const float frequency
,
274 /* All line lengths are powers of 2, calculated from their lengths in
275 * seconds, rounded up.
277 uint samples
{float2uint(std::ceil(length
*frequency
))};
278 samples
= NextPowerOf2(samples
+ extra
);
280 /* All lines share a single sample buffer. */
284 /* Return the sample count for accumulation. */
288 void write(size_t offset
, const size_t c
, const float *RESTRICT in
, const size_t count
) const noexcept
291 for(size_t i
{0u};i
< count
;)
294 size_t td
{minz(Mask
+1 - offset
, count
- i
)};
296 Line
[offset
++][c
] = in
[i
++];
305 size_t Offset
[NUM_LINES
][2]{};
307 void processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
308 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
310 void processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
311 const float xCoeff
, const float yCoeff
, const size_t todo
);
315 /* Two filters are used to adjust the signal. One to control the low
316 * frequencies, and one to control the high frequencies.
318 float MidGain
[2]{0.0f
, 0.0f
};
319 BiquadFilter HFFilter
, LFFilter
;
321 void calcCoeffs(const float length
, const float lfDecayTime
, const float mfDecayTime
,
322 const float hfDecayTime
, const float lf0norm
, const float hf0norm
);
324 /* Applies the two T60 damping filter sections. */
325 void process(const al::span
<float> samples
)
326 { DualBiquad
{HFFilter
, LFFilter
}.process(samples
, samples
.data()); }
329 struct EarlyReflections
{
330 /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
331 * The spread from this filter also helps smooth out the reverb tail.
335 /* An echo line is used to complete the second half of the early
339 size_t Offset
[NUM_LINES
][2]{};
340 float Coeff
[NUM_LINES
][2]{};
342 /* The gain for each output channel based on 3D panning. */
343 float CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
344 float PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
346 void updateLines(const float density_mult
, const float diffusion
, const float decayTime
,
347 const float frequency
);
352 /* The vibrato time is tracked with an index over a (MOD_FRACONE)
357 /* The depth of frequency change, in samples. */
360 float ModDelays
[MAX_UPDATE_SAMPLES
];
362 void updateModulator(float modTime
, float modDepth
, float frequency
);
364 void calcDelays(size_t todo
);
365 void calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
);
369 /* A recursive delay line is used fill in the reverb tail. */
371 size_t Offset
[NUM_LINES
][2]{};
373 /* Attenuation to compensate for the modal density and decay rate of the
376 float DensityGain
[2]{0.0f
, 0.0f
};
378 /* T60 decay filters are used to simulate absorption. */
379 T60Filter T60
[NUM_LINES
];
383 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
386 /* The gain for each output channel based on 3D panning. */
387 float CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
388 float PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
390 void updateLines(const float density_mult
, const float diffusion
, const float lfDecayTime
,
391 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
392 const float hf0norm
, const float frequency
);
395 struct ReverbState final
: public EffectState
{
396 /* All delay lines are allocated as a single buffer to reduce memory
397 * fragmentation and management code.
399 al::vector
<std::array
<float,NUM_LINES
>,16> mSampleBuffer
;
402 /* Calculated parameters which indicate if cross-fading is needed after
406 float Diffusion
{1.0f
};
407 float DecayTime
{1.49f
};
408 float HFDecayTime
{0.83f
* 1.49f
};
409 float LFDecayTime
{1.0f
* 1.49f
};
410 float ModulationTime
{0.25f
};
411 float ModulationDepth
{0.0f
};
412 float HFReference
{5000.0f
};
413 float LFReference
{250.0f
};
416 /* Master effect filters */
420 } mFilter
[NUM_LINES
];
422 /* Core delay line (early reflections and late reverb tap from this). */
425 /* Tap points for early reflection delay. */
426 size_t mEarlyDelayTap
[NUM_LINES
][2]{};
427 float mEarlyDelayCoeff
[NUM_LINES
][2]{};
429 /* Tap points for late reverb feed and delay. */
430 size_t mLateFeedTap
{};
431 size_t mLateDelayTap
[NUM_LINES
][2]{};
433 /* Coefficients for the all-pass and line scattering matrices. */
437 EarlyReflections mEarly
;
443 /* Maximum number of samples to process at once. */
444 size_t mMaxUpdate
[2]{MAX_UPDATE_SAMPLES
, MAX_UPDATE_SAMPLES
};
446 /* The current write offset for all delay lines. */
449 /* Temporary storage used when processing. */
451 alignas(16) FloatBufferLine mTempLine
{};
452 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mTempSamples
;
454 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mEarlySamples
{};
455 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mLateSamples
{};
458 bool mUpmixOutput
{false};
459 std::array
<float,MaxAmbiOrder
+1> mOrderScales
{};
460 std::array
<std::array
<BandSplitter
,NUM_LINES
>,2> mAmbiSplitter
;
463 static void DoMixRow(const al::span
<float> OutBuffer
, const al::span
<const float> Gains
,
464 const float *InSamples
, const size_t InStride
)
466 std::fill(OutBuffer
.begin(), OutBuffer
.end(), 0.0f
);
467 for(const float gain
: Gains
)
469 const float *RESTRICT input
{al::assume_aligned
<16>(InSamples
)};
470 InSamples
+= InStride
;
472 if(!(std::fabs(gain
) > GainSilenceThreshold
))
475 for(float &sample
: OutBuffer
)
477 sample
+= *input
* gain
;
484 void MixOutPlain(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
485 const size_t offset
, const size_t todo
)
489 /* Convert back to B-Format, and mix the results to output. */
490 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), todo
};
491 for(size_t c
{0u};c
< NUM_LINES
;c
++)
493 DoMixRow(tmpspan
, EarlyA2B
[c
], mEarlySamples
[0].data(), mEarlySamples
[0].size());
494 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
497 for(size_t c
{0u};c
< NUM_LINES
;c
++)
499 DoMixRow(tmpspan
, LateA2B
[c
], mLateSamples
[0].data(), mLateSamples
[0].size());
500 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
505 void MixOutAmbiUp(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
506 const size_t offset
, const size_t todo
)
510 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), todo
};
511 for(size_t c
{0u};c
< NUM_LINES
;c
++)
513 DoMixRow(tmpspan
, EarlyA2B
[c
], mEarlySamples
[0].data(), mEarlySamples
[0].size());
515 /* Apply scaling to the B-Format's HF response to "upsample" it to
516 * higher-order output.
518 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
519 mAmbiSplitter
[0][c
].processHfScale(tmpspan
, hfscale
);
521 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
524 for(size_t c
{0u};c
< NUM_LINES
;c
++)
526 DoMixRow(tmpspan
, LateA2B
[c
], mLateSamples
[0].data(), mLateSamples
[0].size());
528 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
529 mAmbiSplitter
[1][c
].processHfScale(tmpspan
, hfscale
);
531 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
536 void mixOut(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
537 const size_t offset
, const size_t todo
)
540 MixOutAmbiUp(samplesOut
, counter
, offset
, todo
);
542 MixOutPlain(samplesOut
, counter
, offset
, todo
);
545 void allocLines(const float frequency
);
547 void updateDelayLine(const float earlyDelay
, const float lateDelay
, const float density_mult
,
548 const float decayTime
, const float frequency
);
549 void update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
550 const float earlyGain
, const float lateGain
, const EffectTarget
&target
);
552 void earlyUnfaded(const size_t offset
, const size_t todo
);
553 void earlyFaded(const size_t offset
, const size_t todo
, const float fade
,
554 const float fadeStep
);
556 void lateUnfaded(const size_t offset
, const size_t todo
);
557 void lateFaded(const size_t offset
, const size_t todo
, const float fade
,
558 const float fadeStep
);
560 void deviceUpdate(const DeviceBase
*device
, const Buffer
&buffer
) override
;
561 void update(const ContextBase
*context
, const EffectSlot
*slot
, const EffectProps
*props
,
562 const EffectTarget target
) override
;
563 void process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
,
564 const al::span
<FloatBufferLine
> samplesOut
) override
;
566 DEF_NEWDEL(ReverbState
)
569 /**************************************
571 **************************************/
573 inline float CalcDelayLengthMult(float density
)
574 { return maxf(5.0f
, std::cbrt(density
*DENSITY_SCALE
)); }
576 /* Calculates the delay line metrics and allocates the shared sample buffer
577 * for all lines given the sample rate (frequency).
579 void ReverbState::allocLines(const float frequency
)
581 /* All delay line lengths are calculated to accomodate the full range of
582 * lengths given their respective paramters.
584 size_t totalSamples
{0u};
586 /* Multiplier for the maximum density value, i.e. density=1, which is
587 * actually the least density...
589 const float multiplier
{CalcDelayLengthMult(1.0f
)};
591 /* The main delay length includes the maximum early reflection delay, the
592 * largest early tap width, the maximum late reverb delay, and the
593 * largest late tap width. Finally, it must also be extended by the
594 * update size (BufferLineSize) for block processing.
596 constexpr float LateLineDiffAvg
{(LATE_LINE_LENGTHS
.back()-LATE_LINE_LENGTHS
.front()) /
598 float length
{ReverbMaxReflectionsDelay
+ EARLY_TAP_LENGTHS
.back()*multiplier
+
599 ReverbMaxLateReverbDelay
+ LateLineDiffAvg
*multiplier
};
600 totalSamples
+= mDelay
.calcLineLength(length
, totalSamples
, frequency
, BufferLineSize
);
602 /* The early vector all-pass line. */
603 length
= EARLY_ALLPASS_LENGTHS
.back() * multiplier
;
604 totalSamples
+= mEarly
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
606 /* The early reflection line. */
607 length
= EARLY_LINE_LENGTHS
.back() * multiplier
;
608 totalSamples
+= mEarly
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
610 /* The late vector all-pass line. */
611 length
= LATE_ALLPASS_LENGTHS
.back() * multiplier
;
612 totalSamples
+= mLate
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
614 /* The modulator's line length is calculated from the maximum modulation
615 * time and depth coefficient, and halfed for the low-to-high frequency
618 constexpr float max_mod_delay
{MaxModulationTime
*MODULATION_DEPTH_COEFF
/ 2.0f
};
620 /* The late delay lines are calculated from the largest maximum density
621 * line length, and the maximum modulation delay. An additional sample is
622 * added to keep it stable when there is no modulation.
624 length
= LATE_LINE_LENGTHS
.back()*multiplier
+ max_mod_delay
;
625 totalSamples
+= mLate
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 1);
627 if(totalSamples
!= mSampleBuffer
.size())
628 decltype(mSampleBuffer
)(totalSamples
).swap(mSampleBuffer
);
630 /* Clear the sample buffer. */
631 std::fill(mSampleBuffer
.begin(), mSampleBuffer
.end(), decltype(mSampleBuffer
)::value_type
{});
633 /* Update all delays to reflect the new sample buffer. */
634 mDelay
.realizeLineOffset(mSampleBuffer
.data());
635 mEarly
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
636 mEarly
.Delay
.realizeLineOffset(mSampleBuffer
.data());
637 mLate
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
638 mLate
.Delay
.realizeLineOffset(mSampleBuffer
.data());
641 void ReverbState::deviceUpdate(const DeviceBase
*device
, const Buffer
&)
643 const auto frequency
= static_cast<float>(device
->Frequency
);
645 /* Allocate the delay lines. */
646 allocLines(frequency
);
648 const float multiplier
{CalcDelayLengthMult(1.0f
)};
650 /* The late feed taps are set a fixed position past the latest delay tap. */
651 mLateFeedTap
= float2uint((ReverbMaxReflectionsDelay
+ EARLY_TAP_LENGTHS
.back()*multiplier
) *
654 /* Clear filters and gain coefficients since the delay lines were all just
655 * cleared (if not reallocated).
657 for(auto &filter
: mFilter
)
663 for(auto &coeff
: mEarlyDelayCoeff
)
664 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
665 for(auto &coeff
: mEarly
.Coeff
)
666 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
668 mLate
.DensityGain
[0] = 0.0f
;
669 mLate
.DensityGain
[1] = 0.0f
;
670 for(auto &t60
: mLate
.T60
)
672 t60
.MidGain
[0] = 0.0f
;
673 t60
.MidGain
[1] = 0.0f
;
674 t60
.HFFilter
.clear();
675 t60
.LFFilter
.clear();
680 std::fill(std::begin(mLate
.Mod
.Depth
), std::end(mLate
.Mod
.Depth
), 0.0f
);
682 for(auto &gains
: mEarly
.CurrentGain
)
683 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
684 for(auto &gains
: mEarly
.PanGain
)
685 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
686 for(auto &gains
: mLate
.CurrentGain
)
687 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
688 for(auto &gains
: mLate
.PanGain
)
689 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
691 /* Reset fading and offset base. */
693 std::fill(std::begin(mMaxUpdate
), std::end(mMaxUpdate
), MAX_UPDATE_SAMPLES
);
696 if(device
->mAmbiOrder
> 1)
699 mOrderScales
= AmbiScale::GetHFOrderScales(1, device
->mAmbiOrder
);
703 mUpmixOutput
= false;
704 mOrderScales
.fill(1.0f
);
706 mAmbiSplitter
[0][0].init(device
->mXOverFreq
/ frequency
);
707 std::fill(mAmbiSplitter
[0].begin()+1, mAmbiSplitter
[0].end(), mAmbiSplitter
[0][0]);
708 std::fill(mAmbiSplitter
[1].begin(), mAmbiSplitter
[1].end(), mAmbiSplitter
[0][0]);
711 /**************************************
713 **************************************/
715 /* Calculate a decay coefficient given the length of each cycle and the time
716 * until the decay reaches -60 dB.
718 inline float CalcDecayCoeff(const float length
, const float decayTime
)
719 { return std::pow(ReverbDecayGain
, length
/decayTime
); }
721 /* Calculate a decay length from a coefficient and the time until the decay
724 inline float CalcDecayLength(const float coeff
, const float decayTime
)
726 constexpr float log10_decaygain
{-3.0f
/*std::log10(ReverbDecayGain)*/};
727 return std::log10(coeff
) * decayTime
/ log10_decaygain
;
730 /* Calculate an attenuation to be applied to the input of any echo models to
731 * compensate for modal density and decay time.
733 inline float CalcDensityGain(const float a
)
735 /* The energy of a signal can be obtained by finding the area under the
736 * squared signal. This takes the form of Sum(x_n^2), where x is the
737 * amplitude for the sample n.
739 * Decaying feedback matches exponential decay of the form Sum(a^n),
740 * where a is the attenuation coefficient, and n is the sample. The area
741 * under this decay curve can be calculated as: 1 / (1 - a).
743 * Modifying the above equation to find the area under the squared curve
744 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
745 * calculated by inverting the square root of this approximation,
746 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
748 return std::sqrt(1.0f
- a
*a
);
751 /* Calculate the scattering matrix coefficients given a diffusion factor. */
752 inline void CalcMatrixCoeffs(const float diffusion
, float *x
, float *y
)
754 /* The matrix is of order 4, so n is sqrt(4 - 1). */
755 constexpr float n
{al::numbers::sqrt3_v
<float>};
756 const float t
{diffusion
* std::atan(n
)};
758 /* Calculate the first mixing matrix coefficient. */
760 /* Calculate the second mixing matrix coefficient. */
761 *y
= std::sin(t
) / n
;
764 /* Calculate the limited HF ratio for use with the late reverb low-pass
767 float CalcLimitedHfRatio(const float hfRatio
, const float airAbsorptionGainHF
,
768 const float decayTime
)
770 /* Find the attenuation due to air absorption in dB (converting delay
771 * time to meters using the speed of sound). Then reversing the decay
772 * equation, solve for HF ratio. The delay length is cancelled out of
773 * the equation, so it can be calculated once for all lines.
775 float limitRatio
{1.0f
/ SpeedOfSoundMetersPerSec
/
776 CalcDecayLength(airAbsorptionGainHF
, decayTime
)};
778 /* Using the limit calculated above, apply the upper bound to the HF ratio. */
779 return minf(limitRatio
, hfRatio
);
783 /* Calculates the 3-band T60 damping coefficients for a particular delay line
784 * of specified length, using a combination of two shelf filter sections given
785 * decay times for each band split at two reference frequencies.
787 void T60Filter::calcCoeffs(const float length
, const float lfDecayTime
,
788 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
791 const float mfGain
{CalcDecayCoeff(length
, mfDecayTime
)};
792 const float lfGain
{CalcDecayCoeff(length
, lfDecayTime
) / mfGain
};
793 const float hfGain
{CalcDecayCoeff(length
, hfDecayTime
) / mfGain
};
796 LFFilter
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, lfGain
, 1.0f
);
797 HFFilter
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, hfGain
, 1.0f
);
800 /* Update the early reflection line lengths and gain coefficients. */
801 void EarlyReflections::updateLines(const float density_mult
, const float diffusion
,
802 const float decayTime
, const float frequency
)
804 /* Calculate the all-pass feed-back/forward coefficient. */
805 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
807 for(size_t i
{0u};i
< NUM_LINES
;i
++)
809 /* Calculate the delay length of each all-pass line. */
810 float length
{EARLY_ALLPASS_LENGTHS
[i
] * density_mult
};
811 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
813 /* Calculate the delay length of each delay line. */
814 length
= EARLY_LINE_LENGTHS
[i
] * density_mult
;
815 Offset
[i
][1] = float2uint(length
* frequency
);
817 /* Calculate the gain (coefficient) for each line. */
818 Coeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
822 /* Update the EAX modulation step and depth. Keep in mind that this kind of
823 * vibrato is additive and not multiplicative as one may expect. The downswing
824 * will sound stronger than the upswing.
826 void Modulation::updateModulator(float modTime
, float modDepth
, float frequency
)
828 /* Modulation is calculated in two parts.
830 * The modulation time effects the sinus rate, altering the speed of
831 * frequency changes. An index is incremented for each sample with an
832 * appropriate step size to generate an LFO, which will vary the feedback
835 Step
= maxu(fastf2u(MOD_FRACONE
/ (frequency
* modTime
)), 1);
837 /* The modulation depth effects the amount of frequency change over the
838 * range of the sinus. It needs to be scaled by the modulation time so that
839 * a given depth produces a consistent change in frequency over all ranges
840 * of time. Since the depth is applied to a sinus value, it needs to be
841 * halved once for the sinus range and again for the sinus swing in time
842 * (half of it is spent decreasing the frequency, half is spent increasing
845 if(modTime
>= DefaultModulationTime
)
847 /* To cancel the effects of a long period modulation on the late
848 * reverberation, the amount of pitch should be varied (decreased)
849 * according to the modulation time. The natural form is varying
850 * inversely, in fact resulting in an invariant.
852 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* DefaultModulationTime
* modDepth
* frequency
;
855 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* modTime
* modDepth
* frequency
;
858 /* Update the late reverb line lengths and T60 coefficients. */
859 void LateReverb::updateLines(const float density_mult
, const float diffusion
,
860 const float lfDecayTime
, const float mfDecayTime
, const float hfDecayTime
,
861 const float lf0norm
, const float hf0norm
, const float frequency
)
863 /* Scaling factor to convert the normalized reference frequencies from
864 * representing 0...freq to 0...max_reference.
866 constexpr float MaxHFReference
{20000.0f
};
867 const float norm_weight_factor
{frequency
/ MaxHFReference
};
869 const float late_allpass_avg
{
870 std::accumulate(LATE_ALLPASS_LENGTHS
.begin(), LATE_ALLPASS_LENGTHS
.end(), 0.0f
) /
873 /* To compensate for changes in modal density and decay time of the late
874 * reverb signal, the input is attenuated based on the maximal energy of
875 * the outgoing signal. This approximation is used to keep the apparent
876 * energy of the signal equal for all ranges of density and decay time.
878 * The average length of the delay lines is used to calculate the
879 * attenuation coefficient.
881 float length
{std::accumulate(LATE_LINE_LENGTHS
.begin(), LATE_LINE_LENGTHS
.end(), 0.0f
) /
882 float{NUM_LINES
} + late_allpass_avg
};
883 length
*= density_mult
;
884 /* The density gain calculation uses an average decay time weighted by
885 * approximate bandwidth. This attempts to compensate for losses of energy
886 * that reduce decay time due to scattering into highly attenuated bands.
888 const float decayTimeWeighted
{
889 lf0norm
*norm_weight_factor
*lfDecayTime
+
890 (hf0norm
- lf0norm
)*norm_weight_factor
*mfDecayTime
+
891 (1.0f
- hf0norm
*norm_weight_factor
)*hfDecayTime
};
892 DensityGain
[1] = CalcDensityGain(CalcDecayCoeff(length
, decayTimeWeighted
));
894 /* Calculate the all-pass feed-back/forward coefficient. */
895 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
897 for(size_t i
{0u};i
< NUM_LINES
;i
++)
899 /* Calculate the delay length of each all-pass line. */
900 length
= LATE_ALLPASS_LENGTHS
[i
] * density_mult
;
901 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
903 /* Calculate the delay length of each feedback delay line. */
904 length
= LATE_LINE_LENGTHS
[i
] * density_mult
;
905 Offset
[i
][1] = float2uint(length
*frequency
+ 0.5f
);
907 /* Approximate the absorption that the vector all-pass would exhibit
908 * given the current diffusion so we don't have to process a full T60
909 * filter for each of its four lines. Also include the average
910 * modulation delay (depth is half the max delay in samples).
912 length
+= lerpf(LATE_ALLPASS_LENGTHS
[i
], late_allpass_avg
, diffusion
)*density_mult
+
913 Mod
.Depth
[1]/frequency
;
915 /* Calculate the T60 damping coefficients for each line. */
916 T60
[i
].calcCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
, lf0norm
, hf0norm
);
921 /* Update the offsets for the main effect delay line. */
922 void ReverbState::updateDelayLine(const float earlyDelay
, const float lateDelay
,
923 const float density_mult
, const float decayTime
, const float frequency
)
925 /* Early reflection taps are decorrelated by means of an average room
926 * reflection approximation described above the definition of the taps.
927 * This approximation is linear and so the above density multiplier can
928 * be applied to adjust the width of the taps. A single-band decay
929 * coefficient is applied to simulate initial attenuation and absorption.
931 * Late reverb taps are based on the late line lengths to allow a zero-
932 * delay path and offsets that would continue the propagation naturally
933 * into the late lines.
935 for(size_t i
{0u};i
< NUM_LINES
;i
++)
937 float length
{EARLY_TAP_LENGTHS
[i
]*density_mult
};
938 mEarlyDelayTap
[i
][1] = float2uint((earlyDelay
+length
) * frequency
);
939 mEarlyDelayCoeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
941 length
= (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*density_mult
+
943 mLateDelayTap
[i
][1] = mLateFeedTap
+ float2uint(length
* frequency
);
947 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
948 * reflections toward the given direction, using its magnitude (up to 1) as a
949 * focal strength. This function results in a B-Format transformation matrix
950 * that spatially focuses the signal in the desired direction.
952 alu::Matrix
GetTransformFromVector(const float *vec
)
954 /* Normalize the panning vector according to the N3D scale, which has an
955 * extra sqrt(3) term on the directional components. Converting from OpenAL
956 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
957 * that the reverb panning vectors use left-handed coordinates, unlike the
958 * rest of OpenAL which use right-handed. This is fixed by negating Z,
959 * which cancels out with the B-Format Z negation.
962 float mag
{std::sqrt(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2])};
965 norm
[0] = vec
[0] / mag
* -al::numbers::sqrt3_v
<float>;
966 norm
[1] = vec
[1] / mag
* al::numbers::sqrt3_v
<float>;
967 norm
[2] = vec
[2] / mag
* al::numbers::sqrt3_v
<float>;
972 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
973 * term. There's no need to renormalize the magnitude since it would
974 * just be reapplied in the matrix.
976 norm
[0] = vec
[0] * -al::numbers::sqrt3_v
<float>;
977 norm
[1] = vec
[1] * al::numbers::sqrt3_v
<float>;
978 norm
[2] = vec
[2] * al::numbers::sqrt3_v
<float>;
982 1.0f
, 0.0f
, 0.0f
, 0.0f
,
983 norm
[0], 1.0f
-mag
, 0.0f
, 0.0f
,
984 norm
[1], 0.0f
, 1.0f
-mag
, 0.0f
,
985 norm
[2], 0.0f
, 0.0f
, 1.0f
-mag
989 /* Update the early and late 3D panning gains. */
990 void ReverbState::update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
991 const float earlyGain
, const float lateGain
, const EffectTarget
&target
)
993 /* Create matrices that transform a B-Format signal according to the
996 const alu::Matrix earlymat
{GetTransformFromVector(ReflectionsPan
)};
997 const alu::Matrix latemat
{GetTransformFromVector(LateReverbPan
)};
999 mOutTarget
= target
.Main
->Buffer
;
1000 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1002 const float coeffs
[MaxAmbiChannels
]{earlymat
[0][i
], earlymat
[1][i
], earlymat
[2][i
],
1004 ComputePanGains(target
.Main
, coeffs
, earlyGain
, mEarly
.PanGain
[i
]);
1006 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1008 const float coeffs
[MaxAmbiChannels
]{latemat
[0][i
], latemat
[1][i
], latemat
[2][i
],
1010 ComputePanGains(target
.Main
, coeffs
, lateGain
, mLate
.PanGain
[i
]);
1014 void ReverbState::update(const ContextBase
*Context
, const EffectSlot
*Slot
,
1015 const EffectProps
*props
, const EffectTarget target
)
1017 const DeviceBase
*Device
{Context
->mDevice
};
1018 const auto frequency
= static_cast<float>(Device
->Frequency
);
1020 /* Calculate the master filters */
1021 float hf0norm
{minf(props
->Reverb
.HFReference
/frequency
, 0.49f
)};
1022 mFilter
[0].Lp
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, props
->Reverb
.GainHF
, 1.0f
);
1023 float lf0norm
{minf(props
->Reverb
.LFReference
/frequency
, 0.49f
)};
1024 mFilter
[0].Hp
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, props
->Reverb
.GainLF
, 1.0f
);
1025 for(size_t i
{1u};i
< NUM_LINES
;i
++)
1027 mFilter
[i
].Lp
.copyParamsFrom(mFilter
[0].Lp
);
1028 mFilter
[i
].Hp
.copyParamsFrom(mFilter
[0].Hp
);
1031 /* The density-based room size (delay length) multiplier. */
1032 const float density_mult
{CalcDelayLengthMult(props
->Reverb
.Density
)};
1034 /* Update the main effect delay and associated taps. */
1035 updateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
1036 density_mult
, props
->Reverb
.DecayTime
, frequency
);
1038 /* Update the early lines. */
1039 mEarly
.updateLines(density_mult
, props
->Reverb
.Diffusion
, props
->Reverb
.DecayTime
, frequency
);
1041 /* Get the mixing matrix coefficients. */
1042 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &mMixX
, &mMixY
);
1044 /* If the HF limit parameter is flagged, calculate an appropriate limit
1045 * based on the air absorption parameter.
1047 float hfRatio
{props
->Reverb
.DecayHFRatio
};
1048 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1049 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
1050 props
->Reverb
.DecayTime
);
1052 /* Calculate the LF/HF decay times. */
1053 constexpr float MinDecayTime
{0.1f
}, MaxDecayTime
{20.0f
};
1054 const float lfDecayTime
{clampf(props
->Reverb
.DecayTime
*props
->Reverb
.DecayLFRatio
,
1055 MinDecayTime
, MaxDecayTime
)};
1056 const float hfDecayTime
{clampf(props
->Reverb
.DecayTime
*hfRatio
, MinDecayTime
, MaxDecayTime
)};
1058 /* Update the modulator rate and depth. */
1059 mLate
.Mod
.updateModulator(props
->Reverb
.ModulationTime
, props
->Reverb
.ModulationDepth
,
1062 /* Update the late lines. */
1063 mLate
.updateLines(density_mult
, props
->Reverb
.Diffusion
, lfDecayTime
,
1064 props
->Reverb
.DecayTime
, hfDecayTime
, lf0norm
, hf0norm
, frequency
);
1066 /* Update early and late 3D panning. */
1067 const float gain
{props
->Reverb
.Gain
* Slot
->Gain
* ReverbBoost
};
1068 update3DPanning(props
->Reverb
.ReflectionsPan
, props
->Reverb
.LateReverbPan
,
1069 props
->Reverb
.ReflectionsGain
*gain
, props
->Reverb
.LateReverbGain
*gain
, target
);
1071 /* Calculate the max update size from the smallest relevant delay. */
1072 mMaxUpdate
[1] = minz(MAX_UPDATE_SAMPLES
, minz(mEarly
.Offset
[0][1], mLate
.Offset
[0][1]));
1074 /* Determine if delay-line cross-fading is required. Density is essentially
1075 * a master control for the feedback delays, so changes the offsets of many
1078 mDoFading
|= (mParams
.Density
!= props
->Reverb
.Density
||
1079 /* Diffusion and decay times influences the decay rate (gain) of the
1080 * late reverb T60 filter.
1082 mParams
.Diffusion
!= props
->Reverb
.Diffusion
||
1083 mParams
.DecayTime
!= props
->Reverb
.DecayTime
||
1084 mParams
.HFDecayTime
!= hfDecayTime
||
1085 mParams
.LFDecayTime
!= lfDecayTime
||
1086 /* Modulation time and depth both require fading the modulation delay. */
1087 mParams
.ModulationTime
!= props
->Reverb
.ModulationTime
||
1088 mParams
.ModulationDepth
!= props
->Reverb
.ModulationDepth
||
1089 /* HF/LF References control the weighting used to calculate the density
1092 mParams
.HFReference
!= props
->Reverb
.HFReference
||
1093 mParams
.LFReference
!= props
->Reverb
.LFReference
);
1096 mParams
.Density
= props
->Reverb
.Density
;
1097 mParams
.Diffusion
= props
->Reverb
.Diffusion
;
1098 mParams
.DecayTime
= props
->Reverb
.DecayTime
;
1099 mParams
.HFDecayTime
= hfDecayTime
;
1100 mParams
.LFDecayTime
= lfDecayTime
;
1101 mParams
.ModulationTime
= props
->Reverb
.ModulationTime
;
1102 mParams
.ModulationDepth
= props
->Reverb
.ModulationDepth
;
1103 mParams
.HFReference
= props
->Reverb
.HFReference
;
1104 mParams
.LFReference
= props
->Reverb
.LFReference
;
1109 /**************************************
1110 * Effect Processing *
1111 **************************************/
1113 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1114 * for both the below vector all-pass model and to perform modal feed-back
1115 * delay network (FDN) mixing.
1117 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1118 * matrix with a single unitary rotational parameter:
1120 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1125 * The rotation is constructed from the effect's diffusion parameter,
1130 * Where a, b, and c are the coefficient y with differing signs, and d is the
1131 * coefficient x. The final matrix is thus:
1133 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1134 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1135 * [ y, -y, x, y ] x = cos(t)
1136 * [ -y, -y, -y, x ] y = sin(t) / n
1138 * Any square orthogonal matrix with an order that is a power of two will
1139 * work (where ^T is transpose, ^-1 is inverse):
1143 * Using that knowledge, finding an appropriate matrix can be accomplished
1144 * naively by searching all combinations of:
1148 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1149 * whose combination of signs are being iterated.
1151 inline auto VectorPartialScatter(const std::array
<float,NUM_LINES
> &RESTRICT in
,
1152 const float xCoeff
, const float yCoeff
) -> std::array
<float,NUM_LINES
>
1154 return std::array
<float,NUM_LINES
>{{
1155 xCoeff
*in
[0] + yCoeff
*( in
[1] + -in
[2] + in
[3]),
1156 xCoeff
*in
[1] + yCoeff
*(-in
[0] + in
[2] + in
[3]),
1157 xCoeff
*in
[2] + yCoeff
*( in
[0] + -in
[1] + in
[3]),
1158 xCoeff
*in
[3] + yCoeff
*(-in
[0] + -in
[1] + -in
[2] )
1162 /* Utilizes the above, but reverses the input channels. */
1163 void VectorScatterRevDelayIn(const DelayLineI delay
, size_t offset
, const float xCoeff
,
1164 const float yCoeff
, const al::span
<const ReverbUpdateLine
,NUM_LINES
> in
, const size_t count
)
1168 for(size_t i
{0u};i
< count
;)
1170 offset
&= delay
.Mask
;
1171 size_t td
{minz(delay
.Mask
+1 - offset
, count
-i
)};
1173 std::array
<float,NUM_LINES
> f
;
1174 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1175 f
[NUM_LINES
-1-j
] = in
[j
][i
];
1178 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1183 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1184 * filter to the 4-line input.
1186 * It works by vectorizing a regular all-pass filter and replacing the delay
1187 * element with a scattering matrix (like the one above) and a diagonal
1188 * matrix of delay elements.
1190 * Two static specializations are used for transitional (cross-faded) delay
1191 * line processing and non-transitional processing.
1193 void VecAllpass::processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1194 const float xCoeff
, const float yCoeff
, const size_t todo
)
1196 const DelayLineI delay
{Delay
};
1197 const float feedCoeff
{Coeff
};
1201 size_t vap_offset
[NUM_LINES
];
1202 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1203 vap_offset
[j
] = offset
- Offset
[j
][0];
1204 for(size_t i
{0u};i
< todo
;)
1206 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1207 vap_offset
[j
] &= delay
.Mask
;
1208 offset
&= delay
.Mask
;
1210 size_t maxoff
{offset
};
1211 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1212 maxoff
= maxz(maxoff
, vap_offset
[j
]);
1213 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1216 std::array
<float,NUM_LINES
> f
;
1217 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1219 const float input
{samples
[j
][i
]};
1220 const float out
{delay
.Line
[vap_offset
[j
]++][j
] - feedCoeff
*input
};
1221 f
[j
] = input
+ feedCoeff
*out
;
1223 samples
[j
][i
] = out
;
1227 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1231 void VecAllpass::processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1232 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
1235 const DelayLineI delay
{Delay
};
1236 const float feedCoeff
{Coeff
};
1240 size_t vap_offset
[NUM_LINES
][2];
1241 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1243 vap_offset
[j
][0] = offset
- Offset
[j
][0];
1244 vap_offset
[j
][1] = offset
- Offset
[j
][1];
1246 for(size_t i
{0u};i
< todo
;)
1248 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1250 vap_offset
[j
][0] &= delay
.Mask
;
1251 vap_offset
[j
][1] &= delay
.Mask
;
1253 offset
&= delay
.Mask
;
1255 size_t maxoff
{offset
};
1256 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1257 maxoff
= maxz(maxoff
, maxz(vap_offset
[j
][0], vap_offset
[j
][1]));
1258 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1262 const float fade
{fadeCount
* fadeStep
};
1264 std::array
<float,NUM_LINES
> f
;
1265 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1266 f
[j
] = delay
.Line
[vap_offset
[j
][0]++][j
]*(1.0f
-fade
) +
1267 delay
.Line
[vap_offset
[j
][1]++][j
]*fade
;
1269 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1271 const float input
{samples
[j
][i
]};
1272 const float out
{f
[j
] - feedCoeff
*input
};
1273 f
[j
] = input
+ feedCoeff
*out
;
1275 samples
[j
][i
] = out
;
1279 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1284 /* This generates early reflections.
1286 * This is done by obtaining the primary reflections (those arriving from the
1287 * same direction as the source) from the main delay line. These are
1288 * attenuated and all-pass filtered (based on the diffusion parameter).
1290 * The early lines are then fed in reverse (according to the approximately
1291 * opposite spatial location of the A-Format lines) to create the secondary
1292 * reflections (those arriving from the opposite direction as the source).
1294 * The early response is then completed by combining the primary reflections
1295 * with the delayed and attenuated output from the early lines.
1297 * Finally, the early response is reversed, scattered (based on diffusion),
1298 * and fed into the late reverb section of the main delay line.
1300 * Two static specializations are used for transitional (cross-faded) delay
1301 * line processing and non-transitional processing.
1303 void ReverbState::earlyUnfaded(const size_t offset
, const size_t todo
)
1305 const DelayLineI early_delay
{mEarly
.Delay
};
1306 const DelayLineI main_delay
{mDelay
};
1307 const float mixX
{mMixX
};
1308 const float mixY
{mMixY
};
1312 /* First, load decorrelated samples from the main delay line as the primary
1315 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1317 size_t early_delay_tap
{offset
- mEarlyDelayTap
[j
][0]};
1318 const float coeff
{mEarlyDelayCoeff
[j
][0]};
1319 for(size_t i
{0u};i
< todo
;)
1321 early_delay_tap
&= main_delay
.Mask
;
1322 size_t td
{minz(main_delay
.Mask
+1 - early_delay_tap
, todo
- i
)};
1324 mTempSamples
[j
][i
++] = main_delay
.Line
[early_delay_tap
++][j
] * coeff
;
1329 /* Apply a vector all-pass, to help color the initial reflections based on
1330 * the diffusion strength.
1332 mEarly
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1334 /* Apply a delay and bounce to generate secondary reflections, combine with
1335 * the primary reflections and write out the result for mixing.
1337 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1339 size_t feedb_tap
{offset
- mEarly
.Offset
[j
][0]};
1340 const float feedb_coeff
{mEarly
.Coeff
[j
][0]};
1341 float *out
{mEarlySamples
[j
].data()};
1343 for(size_t i
{0u};i
< todo
;)
1345 feedb_tap
&= early_delay
.Mask
;
1346 size_t td
{minz(early_delay
.Mask
+1 - feedb_tap
, todo
- i
)};
1348 out
[i
] = mTempSamples
[j
][i
] + early_delay
.Line
[feedb_tap
++][j
]*feedb_coeff
;
1353 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1354 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1356 /* Also write the result back to the main delay line for the late reverb
1357 * stage to pick up at the appropriate time, appplying a scatter and
1358 * bounce to improve the initial diffusion in the late reverb.
1360 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1361 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1363 void ReverbState::earlyFaded(const size_t offset
, const size_t todo
, const float fade
,
1364 const float fadeStep
)
1366 const DelayLineI early_delay
{mEarly
.Delay
};
1367 const DelayLineI main_delay
{mDelay
};
1368 const float mixX
{mMixX
};
1369 const float mixY
{mMixY
};
1373 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1375 size_t early_delay_tap0
{offset
- mEarlyDelayTap
[j
][0]};
1376 size_t early_delay_tap1
{offset
- mEarlyDelayTap
[j
][1]};
1377 const float oldCoeff
{mEarlyDelayCoeff
[j
][0]};
1378 const float oldCoeffStep
{-oldCoeff
* fadeStep
};
1379 const float newCoeffStep
{mEarlyDelayCoeff
[j
][1] * fadeStep
};
1380 float fadeCount
{fade
};
1382 for(size_t i
{0u};i
< todo
;)
1384 early_delay_tap0
&= main_delay
.Mask
;
1385 early_delay_tap1
&= main_delay
.Mask
;
1386 size_t td
{minz(main_delay
.Mask
+1 - maxz(early_delay_tap0
, early_delay_tap1
), todo
-i
)};
1389 const float fade0
{oldCoeff
+ oldCoeffStep
*fadeCount
};
1390 const float fade1
{newCoeffStep
*fadeCount
};
1391 mTempSamples
[j
][i
++] =
1392 main_delay
.Line
[early_delay_tap0
++][j
]*fade0
+
1393 main_delay
.Line
[early_delay_tap1
++][j
]*fade1
;
1398 mEarly
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1400 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1402 size_t feedb_tap0
{offset
- mEarly
.Offset
[j
][0]};
1403 size_t feedb_tap1
{offset
- mEarly
.Offset
[j
][1]};
1404 const float feedb_oldCoeff
{mEarly
.Coeff
[j
][0]};
1405 const float feedb_oldCoeffStep
{-feedb_oldCoeff
* fadeStep
};
1406 const float feedb_newCoeffStep
{mEarly
.Coeff
[j
][1] * fadeStep
};
1407 float *out
{mEarlySamples
[j
].data()};
1408 float fadeCount
{fade
};
1410 for(size_t i
{0u};i
< todo
;)
1412 feedb_tap0
&= early_delay
.Mask
;
1413 feedb_tap1
&= early_delay
.Mask
;
1414 size_t td
{minz(early_delay
.Mask
+1 - maxz(feedb_tap0
, feedb_tap1
), todo
- i
)};
1418 const float fade0
{feedb_oldCoeff
+ feedb_oldCoeffStep
*fadeCount
};
1419 const float fade1
{feedb_newCoeffStep
*fadeCount
};
1420 out
[i
] = mTempSamples
[j
][i
] +
1421 early_delay
.Line
[feedb_tap0
++][j
]*fade0
+
1422 early_delay
.Line
[feedb_tap1
++][j
]*fade1
;
1427 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1428 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1430 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1431 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1435 void Modulation::calcDelays(size_t todo
)
1437 constexpr float mod_scale
{al::numbers::pi_v
<float> * 2.0f
/ MOD_FRACONE
};
1439 const uint step
{Step
};
1440 const float depth
{Depth
[0]};
1441 for(size_t i
{0};i
< todo
;++i
)
1444 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) * mod_scale
)};
1445 ModDelays
[i
] = (lfo
+1.0f
) * depth
;
1450 void Modulation::calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
)
1452 constexpr float mod_scale
{al::numbers::pi_v
<float> * 2.0f
/ MOD_FRACONE
};
1454 const uint step
{Step
};
1455 const float depth
{Depth
[0]};
1456 const float depthStep
{(Depth
[1]-depth
) * fadeStep
};
1457 for(size_t i
{0};i
< todo
;++i
)
1461 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) * mod_scale
)};
1462 ModDelays
[i
] = (lfo
+1.0f
) * (depth
+ depthStep
*fadeCount
);
1468 /* This generates the reverb tail using a modified feed-back delay network
1471 * Results from the early reflections are mixed with the output from the
1472 * modulated late delay lines.
1474 * The late response is then completed by T60 and all-pass filtering the mix.
1476 * Finally, the lines are reversed (so they feed their opposite directions)
1477 * and scattered with the FDN matrix before re-feeding the delay lines.
1479 * Two variations are made, one for for transitional (cross-faded) delay line
1480 * processing and one for non-transitional processing.
1482 void ReverbState::lateUnfaded(const size_t offset
, const size_t todo
)
1484 const DelayLineI late_delay
{mLate
.Delay
};
1485 const DelayLineI main_delay
{mDelay
};
1486 const float mixX
{mMixX
};
1487 const float mixY
{mMixY
};
1491 /* First, calculate the modulated delays for the late feedback. */
1492 mLate
.Mod
.calcDelays(todo
);
1494 /* Next, load decorrelated samples from the main and feedback delay lines.
1495 * Filter the signal to apply its frequency-dependent decay.
1497 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1499 size_t late_delay_tap
{offset
- mLateDelayTap
[j
][0]};
1500 size_t late_feedb_tap
{offset
- mLate
.Offset
[j
][0]};
1501 const float midGain
{mLate
.T60
[j
].MidGain
[0]};
1502 const float densityGain
{mLate
.DensityGain
[0] * midGain
};
1504 for(size_t i
{0u};i
< todo
;)
1506 late_delay_tap
&= main_delay
.Mask
;
1507 size_t td
{minz(todo
- i
, main_delay
.Mask
+1 - late_delay_tap
)};
1509 /* Calculate the read offset and fraction between it and the
1512 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1513 const size_t delay
{float2uint(fdelay
)};
1514 const float frac
{fdelay
- static_cast<float>(delay
)};
1516 /* Feed the delay line with the late feedback sample, and get
1517 * the two samples crossed by the delayed offset.
1519 const float out0
{late_delay
.Line
[(late_feedb_tap
-delay
) & late_delay
.Mask
][j
]};
1520 const float out1
{late_delay
.Line
[(late_feedb_tap
-delay
-1) & late_delay
.Mask
][j
]};
1523 /* The output is obtained by linearly interpolating the two
1524 * samples that were acquired above, and combined with the main
1527 mTempSamples
[j
][i
] = lerpf(out0
, out1
, frac
)*midGain
+
1528 main_delay
.Line
[late_delay_tap
++][j
]*densityGain
;
1532 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1535 /* Apply a vector all-pass to improve micro-surface diffusion, and write
1536 * out the results for mixing.
1538 mLate
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1539 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1540 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1542 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1543 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1545 void ReverbState::lateFaded(const size_t offset
, const size_t todo
, const float fade
,
1546 const float fadeStep
)
1548 const DelayLineI late_delay
{mLate
.Delay
};
1549 const DelayLineI main_delay
{mDelay
};
1550 const float mixX
{mMixX
};
1551 const float mixY
{mMixY
};
1555 mLate
.Mod
.calcFadedDelays(todo
, fade
, fadeStep
);
1557 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1559 const float oldMidGain
{mLate
.T60
[j
].MidGain
[0]};
1560 const float midGain
{mLate
.T60
[j
].MidGain
[1]};
1561 const float oldMidStep
{-oldMidGain
* fadeStep
};
1562 const float midStep
{midGain
* fadeStep
};
1563 const float oldDensityGain
{mLate
.DensityGain
[0] * oldMidGain
};
1564 const float densityGain
{mLate
.DensityGain
[1] * midGain
};
1565 const float oldDensityStep
{-oldDensityGain
* fadeStep
};
1566 const float densityStep
{densityGain
* fadeStep
};
1567 size_t late_delay_tap0
{offset
- mLateDelayTap
[j
][0]};
1568 size_t late_delay_tap1
{offset
- mLateDelayTap
[j
][1]};
1569 size_t late_feedb_tap0
{offset
- mLate
.Offset
[j
][0]};
1570 size_t late_feedb_tap1
{offset
- mLate
.Offset
[j
][1]};
1571 float fadeCount
{fade
};
1573 for(size_t i
{0u};i
< todo
;)
1575 late_delay_tap0
&= main_delay
.Mask
;
1576 late_delay_tap1
&= main_delay
.Mask
;
1577 size_t td
{minz(todo
- i
, main_delay
.Mask
+1 - maxz(late_delay_tap0
, late_delay_tap1
))};
1581 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1582 const size_t delay
{float2uint(fdelay
)};
1583 const float frac
{fdelay
- static_cast<float>(delay
)};
1585 const float out00
{late_delay
.Line
[(late_feedb_tap0
-delay
) & late_delay
.Mask
][j
]};
1586 const float out01
{late_delay
.Line
[(late_feedb_tap0
-delay
-1) & late_delay
.Mask
][j
]};
1588 const float out10
{late_delay
.Line
[(late_feedb_tap1
-delay
) & late_delay
.Mask
][j
]};
1589 const float out11
{late_delay
.Line
[(late_feedb_tap1
-delay
-1) & late_delay
.Mask
][j
]};
1592 const float fade0
{oldDensityGain
+ oldDensityStep
*fadeCount
};
1593 const float fade1
{densityStep
*fadeCount
};
1594 const float gfade0
{oldMidGain
+ oldMidStep
*fadeCount
};
1595 const float gfade1
{midStep
*fadeCount
};
1596 mTempSamples
[j
][i
] = lerpf(out00
, out01
, frac
)*gfade0
+
1597 lerpf(out10
, out11
, frac
)*gfade1
+
1598 main_delay
.Line
[late_delay_tap0
++][j
]*fade0
+
1599 main_delay
.Line
[late_delay_tap1
++][j
]*fade1
;
1603 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1606 mLate
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1607 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1608 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1610 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1613 void ReverbState::process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
)
1615 size_t offset
{mOffset
};
1617 ASSUME(samplesToDo
> 0);
1619 /* Convert B-Format to A-Format for processing. */
1620 const size_t numInput
{minz(samplesIn
.size(), NUM_LINES
)};
1621 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), samplesToDo
};
1622 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1624 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
1625 for(size_t i
{0};i
< numInput
;++i
)
1627 const float gain
{B2A
[c
][i
]};
1628 const float *RESTRICT input
{al::assume_aligned
<16>(samplesIn
[i
].data())};
1630 for(float &sample
: tmpspan
)
1632 sample
+= *input
* gain
;
1637 /* Band-pass the incoming samples and feed the initial delay line. */
1638 DualBiquad
{mFilter
[c
].Lp
, mFilter
[c
].Hp
}.process(tmpspan
, tmpspan
.data());
1639 mDelay
.write(offset
, c
, tmpspan
.cbegin(), samplesToDo
);
1642 /* Process reverb for these samples. */
1643 if LIKELY(!mDoFading
)
1645 for(size_t base
{0};base
< samplesToDo
;)
1647 /* Calculate the number of samples we can do this iteration. */
1648 size_t todo
{minz(samplesToDo
- base
, mMaxUpdate
[0])};
1649 /* Some mixers require maintaining a 4-sample alignment, so ensure
1650 * that if it's not the last iteration.
1652 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1655 /* Generate non-faded early reflections and late reverb. */
1656 earlyUnfaded(offset
, todo
);
1657 lateUnfaded(offset
, todo
);
1659 /* Finally, mix early reflections and late reverb. */
1660 mixOut(samplesOut
, samplesToDo
-base
, base
, todo
);
1668 const float fadeStep
{1.0f
/ static_cast<float>(samplesToDo
)};
1669 for(size_t base
{0};base
< samplesToDo
;)
1671 size_t todo
{minz(samplesToDo
- base
, minz(mMaxUpdate
[0], mMaxUpdate
[1]))};
1672 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1675 /* Generate cross-faded early reflections and late reverb. */
1676 auto fadeCount
= static_cast<float>(base
);
1677 earlyFaded(offset
, todo
, fadeCount
, fadeStep
);
1678 lateFaded(offset
, todo
, fadeCount
, fadeStep
);
1680 mixOut(samplesOut
, samplesToDo
-base
, base
, todo
);
1686 /* Update the cross-fading delay line taps. */
1687 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1689 mEarlyDelayTap
[c
][0] = mEarlyDelayTap
[c
][1];
1690 mEarlyDelayCoeff
[c
][0] = mEarlyDelayCoeff
[c
][1];
1691 mLateDelayTap
[c
][0] = mLateDelayTap
[c
][1];
1692 mEarly
.VecAp
.Offset
[c
][0] = mEarly
.VecAp
.Offset
[c
][1];
1693 mEarly
.Offset
[c
][0] = mEarly
.Offset
[c
][1];
1694 mEarly
.Coeff
[c
][0] = mEarly
.Coeff
[c
][1];
1695 mLate
.Offset
[c
][0] = mLate
.Offset
[c
][1];
1696 mLate
.T60
[c
].MidGain
[0] = mLate
.T60
[c
].MidGain
[1];
1697 mLate
.VecAp
.Offset
[c
][0] = mLate
.VecAp
.Offset
[c
][1];
1699 mLate
.DensityGain
[0] = mLate
.DensityGain
[1];
1700 mLate
.Mod
.Depth
[0] = mLate
.Mod
.Depth
[1];
1701 mMaxUpdate
[0] = mMaxUpdate
[1];
1708 struct ReverbStateFactory final
: public EffectStateFactory
{
1709 al::intrusive_ptr
<EffectState
> create() override
1710 { return al::intrusive_ptr
<EffectState
>{new ReverbState
{}}; }
1713 struct StdReverbStateFactory final
: public EffectStateFactory
{
1714 al::intrusive_ptr
<EffectState
> create() override
1715 { return al::intrusive_ptr
<EffectState
>{new ReverbState
{}}; }
1720 EffectStateFactory
*ReverbStateFactory_getFactory()
1722 static ReverbStateFactory ReverbFactory
{};
1723 return &ReverbFactory
;
1726 EffectStateFactory
*StdReverbStateFactory_getFactory()
1728 static StdReverbStateFactory ReverbFactory
{};
1729 return &ReverbFactory
;