2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2010 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
40 #include "al/auxeffectslot.h"
43 #include "alc/context.h"
45 #include "alnumbers.h"
46 #include "alnumeric.h"
47 #include "aloptional.h"
51 #include "core/ambdec.h"
52 #include "core/ambidefs.h"
53 #include "core/bformatdec.h"
54 #include "core/bs2b.h"
55 #include "core/devformat.h"
56 #include "core/front_stablizer.h"
57 #include "core/hrtf.h"
58 #include "core/logging.h"
59 #include "core/uhjfilter.h"
61 #include "opthelpers.h"
66 using namespace std::placeholders
;
67 using std::chrono::seconds
;
68 using std::chrono::nanoseconds
;
70 inline const char *GetLabelFromChannel(Channel channel
)
74 case FrontLeft
: return "front-left";
75 case FrontRight
: return "front-right";
76 case FrontCenter
: return "front-center";
77 case LFE
: return "lfe";
78 case BackLeft
: return "back-left";
79 case BackRight
: return "back-right";
80 case BackCenter
: return "back-center";
81 case SideLeft
: return "side-left";
82 case SideRight
: return "side-right";
84 case TopFrontLeft
: return "top-front-left";
85 case TopFrontCenter
: return "top-front-center";
86 case TopFrontRight
: return "top-front-right";
87 case TopCenter
: return "top-center";
88 case TopBackLeft
: return "top-back-left";
89 case TopBackCenter
: return "top-back-center";
90 case TopBackRight
: return "top-back-right";
92 case Aux0
: return "Aux0";
93 case Aux1
: return "Aux1";
94 case Aux2
: return "Aux2";
95 case Aux3
: return "Aux3";
96 case Aux4
: return "Aux4";
97 case Aux5
: return "Aux5";
98 case Aux6
: return "Aux6";
99 case Aux7
: return "Aux7";
100 case Aux8
: return "Aux8";
101 case Aux9
: return "Aux9";
102 case Aux10
: return "Aux10";
103 case Aux11
: return "Aux11";
104 case Aux12
: return "Aux12";
105 case Aux13
: return "Aux13";
106 case Aux14
: return "Aux14";
107 case Aux15
: return "Aux15";
109 case MaxChannels
: break;
115 std::unique_ptr
<FrontStablizer
> CreateStablizer(const size_t outchans
, const uint srate
)
117 auto stablizer
= FrontStablizer::Create(outchans
);
118 for(auto &buf
: stablizer
->DelayBuf
)
119 std::fill(buf
.begin(), buf
.end(), 0.0f
);
121 /* Initialize band-splitting filter for the mid signal, with a crossover at
122 * 5khz (could be higher).
124 stablizer
->MidFilter
.init(5000.0f
/ static_cast<float>(srate
));
129 void AllocChannels(ALCdevice
*device
, const size_t main_chans
, const size_t real_chans
)
131 TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans
, real_chans
);
133 /* Allocate extra channels for any post-filter output. */
134 const size_t num_chans
{main_chans
+ real_chans
};
136 TRACE("Allocating %zu channels, %zu bytes\n", num_chans
,
137 num_chans
*sizeof(device
->MixBuffer
[0]));
138 device
->MixBuffer
.resize(num_chans
);
139 al::span
<FloatBufferLine
> buffer
{device
->MixBuffer
};
141 device
->Dry
.Buffer
= buffer
.first(main_chans
);
142 buffer
= buffer
.subspan(main_chans
);
145 device
->RealOut
.Buffer
= buffer
.first(real_chans
);
146 buffer
= buffer
.subspan(real_chans
);
149 device
->RealOut
.Buffer
= device
->Dry
.Buffer
;
153 using ChannelCoeffs
= std::array
<float,MaxAmbiChannels
>;
154 enum DecoderMode
: bool {
159 template<DecoderMode Mode
, size_t N
>
160 struct DecoderConfig
;
163 struct DecoderConfig
<SingleBand
, N
> {
166 std::array
<Channel
,N
> mChannels
{};
167 DevAmbiScaling mScaling
{};
168 std::array
<float,MaxAmbiOrder
+1> mOrderGain
{};
169 std::array
<ChannelCoeffs
,N
> mCoeffs
{};
173 struct DecoderConfig
<DualBand
, N
> {
176 std::array
<Channel
,N
> mChannels
{};
177 DevAmbiScaling mScaling
{};
178 std::array
<float,MaxAmbiOrder
+1> mOrderGain
{};
179 std::array
<ChannelCoeffs
,N
> mCoeffs
{};
180 std::array
<float,MaxAmbiOrder
+1> mOrderGainLF
{};
181 std::array
<ChannelCoeffs
,N
> mCoeffsLF
{};
185 struct DecoderConfig
<DualBand
, 0> {
188 al::span
<const Channel
> mChannels
;
189 DevAmbiScaling mScaling
{};
190 al::span
<const float> mOrderGain
;
191 al::span
<const ChannelCoeffs
> mCoeffs
;
192 al::span
<const float> mOrderGainLF
;
193 al::span
<const ChannelCoeffs
> mCoeffsLF
;
196 DecoderConfig
& operator=(const DecoderConfig
<SingleBand
,N
> &rhs
) noexcept
200 mChannels
= rhs
.mChannels
;
201 mScaling
= rhs
.mScaling
;
202 mOrderGain
= rhs
.mOrderGain
;
203 mCoeffs
= rhs
.mCoeffs
;
210 DecoderConfig
& operator=(const DecoderConfig
<DualBand
,N
> &rhs
) noexcept
214 mChannels
= rhs
.mChannels
;
215 mScaling
= rhs
.mScaling
;
216 mOrderGain
= rhs
.mOrderGain
;
217 mCoeffs
= rhs
.mCoeffs
;
218 mOrderGainLF
= rhs
.mOrderGainLF
;
219 mCoeffsLF
= rhs
.mCoeffsLF
;
223 explicit operator bool() const noexcept
{ return mOrder
!= 0; }
225 using DecoderView
= DecoderConfig
<DualBand
, 0>;
228 void InitNearFieldCtrl(ALCdevice
*device
, float ctrl_dist
, uint order
, bool is3d
)
230 static const uint chans_per_order2d
[MaxAmbiOrder
+1]{ 1, 2, 2, 2 };
231 static const uint chans_per_order3d
[MaxAmbiOrder
+1]{ 1, 3, 5, 7 };
233 /* NFC is only used when AvgSpeakerDist is greater than 0. */
234 if(!device
->getConfigValueBool("decoder", "nfc", 0) || !(ctrl_dist
> 0.0f
))
237 device
->AvgSpeakerDist
= clampf(ctrl_dist
, 0.1f
, 10.0f
);
238 TRACE("Using near-field reference distance: %.2f meters\n", device
->AvgSpeakerDist
);
240 const float w1
{SpeedOfSoundMetersPerSec
/
241 (device
->AvgSpeakerDist
* static_cast<float>(device
->Frequency
))};
242 device
->mNFCtrlFilter
.init(w1
);
244 auto iter
= std::copy_n(is3d
? chans_per_order3d
: chans_per_order2d
, order
+1u,
245 std::begin(device
->NumChannelsPerOrder
));
246 std::fill(iter
, std::end(device
->NumChannelsPerOrder
), 0u);
249 void InitDistanceComp(ALCdevice
*device
, const al::span
<const Channel
> channels
,
250 const al::span
<const float,MAX_OUTPUT_CHANNELS
> dists
)
252 const float maxdist
{std::accumulate(std::begin(dists
), std::end(dists
), 0.0f
, maxf
)};
254 if(!device
->getConfigValueBool("decoder", "distance-comp", 1) || !(maxdist
> 0.0f
))
257 const auto distSampleScale
= static_cast<float>(device
->Frequency
) / SpeedOfSoundMetersPerSec
;
258 std::vector
<DistanceComp::ChanData
> ChanDelay
;
259 ChanDelay
.reserve(device
->RealOut
.Buffer
.size());
261 for(size_t chidx
{0};chidx
< channels
.size();++chidx
)
263 const Channel ch
{channels
[chidx
]};
264 const uint idx
{device
->RealOut
.ChannelIndex
[ch
]};
265 if(idx
== INVALID_CHANNEL_INDEX
)
268 const float distance
{dists
[chidx
]};
270 /* Distance compensation only delays in steps of the sample rate. This
271 * is a bit less accurate since the delay time falls to the nearest
272 * sample time, but it's far simpler as it doesn't have to deal with
273 * phase offsets. This means at 48khz, for instance, the distance delay
274 * will be in steps of about 7 millimeters.
276 float delay
{std::floor((maxdist
- distance
)*distSampleScale
+ 0.5f
)};
277 if(delay
> float{MAX_DELAY_LENGTH
-1})
279 ERR("Delay for channel %u (%s) exceeds buffer length (%f > %d)\n", idx
,
280 GetLabelFromChannel(ch
), delay
, MAX_DELAY_LENGTH
-1);
281 delay
= float{MAX_DELAY_LENGTH
-1};
284 ChanDelay
.resize(maxz(ChanDelay
.size(), idx
+1));
285 ChanDelay
[idx
].Length
= static_cast<uint
>(delay
);
286 ChanDelay
[idx
].Gain
= distance
/ maxdist
;
287 TRACE("Channel %s distance comp: %u samples, %f gain\n", GetLabelFromChannel(ch
),
288 ChanDelay
[idx
].Length
, ChanDelay
[idx
].Gain
);
290 /* Round up to the next 4th sample, so each channel buffer starts
293 total
+= RoundUp(ChanDelay
[idx
].Length
, 4);
298 auto chandelays
= DistanceComp::Create(total
);
300 ChanDelay
[0].Buffer
= chandelays
->mSamples
.data();
301 auto set_bufptr
= [](const DistanceComp::ChanData
&last
, const DistanceComp::ChanData
&cur
)
302 -> DistanceComp::ChanData
304 DistanceComp::ChanData ret
{cur
};
305 ret
.Buffer
= last
.Buffer
+ RoundUp(last
.Length
, 4);
308 std::partial_sum(ChanDelay
.begin(), ChanDelay
.end(), chandelays
->mChannels
.begin(),
310 device
->ChannelDelays
= std::move(chandelays
);
315 inline auto& GetAmbiScales(DevAmbiScaling scaletype
) noexcept
317 if(scaletype
== DevAmbiScaling::FuMa
) return AmbiScale::FromFuMa();
318 if(scaletype
== DevAmbiScaling::SN3D
) return AmbiScale::FromSN3D();
319 return AmbiScale::FromN3D();
322 inline auto& GetAmbiLayout(DevAmbiLayout layouttype
) noexcept
324 if(layouttype
== DevAmbiLayout::FuMa
) return AmbiIndex::FromFuMa();
325 return AmbiIndex::FromACN();
329 DecoderView
MakeDecoderView(ALCdevice
*device
, const AmbDecConf
*conf
,
330 DecoderConfig
<DualBand
, MAX_OUTPUT_CHANNELS
> &decoder
)
334 decoder
.mOrder
= (conf
->ChanMask
> Ambi2OrderMask
) ? uint8_t{3} :
335 (conf
->ChanMask
> Ambi1OrderMask
) ? uint8_t{2} : uint8_t{1};
336 decoder
.mIs3D
= (conf
->ChanMask
&AmbiPeriphonicMask
) != 0;
338 switch(conf
->CoeffScale
)
340 case AmbDecScale::N3D
: decoder
.mScaling
= DevAmbiScaling::N3D
; break;
341 case AmbDecScale::SN3D
: decoder
.mScaling
= DevAmbiScaling::SN3D
; break;
342 case AmbDecScale::FuMa
: decoder
.mScaling
= DevAmbiScaling::FuMa
; break;
345 std::copy_n(std::begin(conf
->HFOrderGain
),
346 std::min(al::size(conf
->HFOrderGain
), al::size(decoder
.mOrderGain
)),
347 std::begin(decoder
.mOrderGain
));
348 std::copy_n(std::begin(conf
->LFOrderGain
),
349 std::min(al::size(conf
->LFOrderGain
), al::size(decoder
.mOrderGainLF
)),
350 std::begin(decoder
.mOrderGainLF
));
352 std::array
<uint8_t,MaxAmbiChannels
> idx_map
{};
355 uint flags
{conf
->ChanMask
};
356 auto elem
= idx_map
.begin();
359 int acn
{al::countr_zero(flags
)};
362 *elem
= static_cast<uint8_t>(acn
);
368 uint flags
{conf
->ChanMask
};
369 auto elem
= idx_map
.begin();
372 int acn
{al::countr_zero(flags
)};
377 case 0: *elem
= 0; break;
378 case 1: *elem
= 1; break;
379 case 3: *elem
= 2; break;
380 case 4: *elem
= 3; break;
381 case 8: *elem
= 4; break;
382 case 9: *elem
= 5; break;
383 case 15: *elem
= 6; break;
389 const auto num_coeffs
= static_cast<uint
>(al::popcount(conf
->ChanMask
));
390 const auto hfmatrix
= conf
->HFMatrix
;
391 const auto lfmatrix
= conf
->LFMatrix
;
394 using const_speaker_span
= al::span
<const AmbDecConf::SpeakerConf
>;
395 for(auto &speaker
: const_speaker_span
{conf
->Speakers
.get(), conf
->NumSpeakers
})
397 /* NOTE: AmbDec does not define any standard speaker names, however
398 * for this to work we have to by able to find the output channel
399 * the speaker definition corresponds to. Therefore, OpenAL Soft
400 * requires these channel labels to be recognized:
411 * Additionally, surround51 will acknowledge back speakers for side
412 * channels, to avoid issues with an ambdec expecting 5.1 to use the
416 if(speaker
.Name
== "LF")
418 else if(speaker
.Name
== "RF")
420 else if(speaker
.Name
== "CE")
422 else if(speaker
.Name
== "LS")
424 else if(speaker
.Name
== "RS")
426 else if(speaker
.Name
== "LB")
427 ch
= (device
->FmtChans
== DevFmtX51
) ? SideLeft
: BackLeft
;
428 else if(speaker
.Name
== "RB")
429 ch
= (device
->FmtChans
== DevFmtX51
) ? SideRight
: BackRight
;
430 else if(speaker
.Name
== "CB")
436 if(sscanf(speaker
.Name
.c_str(), "AUX%d%c", &idx
, &c
) != 1 || idx
< 0
437 || idx
>= MaxChannels
-Aux0
)
439 ERR("AmbDec speaker label \"%s\" not recognized\n", speaker
.Name
.c_str());
442 ch
= static_cast<Channel
>(Aux0
+idx
);
445 decoder
.mChannels
[chan_count
] = ch
;
446 for(size_t src
{0};src
< num_coeffs
;++src
)
448 const size_t dst
{idx_map
[src
]};
449 decoder
.mCoeffs
[chan_count
][dst
] = hfmatrix
[chan_count
][src
];
451 if(conf
->FreqBands
> 1)
453 for(size_t src
{0};src
< num_coeffs
;++src
)
455 const size_t dst
{idx_map
[src
]};
456 decoder
.mCoeffsLF
[chan_count
][dst
] = lfmatrix
[chan_count
][src
];
464 ret
.mOrder
= decoder
.mOrder
;
465 ret
.mIs3D
= decoder
.mIs3D
;
466 ret
.mScaling
= decoder
.mScaling
;
467 ret
.mChannels
= {decoder
.mChannels
.data(), chan_count
};
468 ret
.mOrderGain
= decoder
.mOrderGain
;
469 ret
.mCoeffs
= {decoder
.mCoeffs
.data(), chan_count
};
470 if(conf
->FreqBands
> 1)
472 ret
.mOrderGainLF
= decoder
.mOrderGainLF
;
473 ret
.mCoeffsLF
= {decoder
.mCoeffsLF
.data(), chan_count
};
479 constexpr DecoderConfig
<SingleBand
, 1> MonoConfig
{
480 0, false, {{FrontCenter
}},
485 constexpr DecoderConfig
<SingleBand
, 2> StereoConfig
{
486 1, false, {{FrontLeft
, FrontRight
}},
490 {{5.00000000e-1f
, 2.88675135e-1f
, 5.52305643e-2f
}},
491 {{5.00000000e-1f
, -2.88675135e-1f
, 5.52305643e-2f
}},
494 constexpr DecoderConfig
<DualBand
, 4> QuadConfig
{
495 2, false, {{BackLeft
, FrontLeft
, FrontRight
, BackRight
}},
497 /*HF*/{{1.15470054e+0f
, 1.00000000e+0f
, 5.77350269e-1f
}},
499 {{2.50000000e-1f
, 2.04124145e-1f
, -2.04124145e-1f
, -1.29099445e-1f
, 0.00000000e+0f
}},
500 {{2.50000000e-1f
, 2.04124145e-1f
, 2.04124145e-1f
, 1.29099445e-1f
, 0.00000000e+0f
}},
501 {{2.50000000e-1f
, -2.04124145e-1f
, 2.04124145e-1f
, -1.29099445e-1f
, 0.00000000e+0f
}},
502 {{2.50000000e-1f
, -2.04124145e-1f
, -2.04124145e-1f
, 1.29099445e-1f
, 0.00000000e+0f
}},
504 /*LF*/{{1.00000000e+0f
, 1.00000000e+0f
, 1.00000000e+0f
}},
506 {{2.50000000e-1f
, 2.04124145e-1f
, -2.04124145e-1f
, -1.29099445e-1f
, 0.00000000e+0f
}},
507 {{2.50000000e-1f
, 2.04124145e-1f
, 2.04124145e-1f
, 1.29099445e-1f
, 0.00000000e+0f
}},
508 {{2.50000000e-1f
, -2.04124145e-1f
, 2.04124145e-1f
, -1.29099445e-1f
, 0.00000000e+0f
}},
509 {{2.50000000e-1f
, -2.04124145e-1f
, -2.04124145e-1f
, 1.29099445e-1f
, 0.00000000e+0f
}},
512 constexpr DecoderConfig
<DualBand
, 5> X51Config
{
513 2, false, {{SideLeft
, FrontLeft
, FrontCenter
, FrontRight
, SideRight
}},
514 DevAmbiScaling::FuMa
,
515 /*HF*/{{1.00000000e+0f
, 1.00000000e+0f
, 1.00000000e+0f
}},
517 {{5.67316000e-1f
, 4.22920000e-1f
, -3.15495000e-1f
, -6.34490000e-2f
, -2.92380000e-2f
}},
518 {{3.68584000e-1f
, 2.72349000e-1f
, 3.21616000e-1f
, 1.92645000e-1f
, 4.82600000e-2f
}},
519 {{1.83579000e-1f
, 0.00000000e+0f
, 1.99588000e-1f
, 0.00000000e+0f
, 9.62820000e-2f
}},
520 {{3.68584000e-1f
, -2.72349000e-1f
, 3.21616000e-1f
, -1.92645000e-1f
, 4.82600000e-2f
}},
521 {{5.67316000e-1f
, -4.22920000e-1f
, -3.15495000e-1f
, 6.34490000e-2f
, -2.92380000e-2f
}},
523 /*LF*/{{1.00000000e+0f
, 1.00000000e+0f
, 1.00000000e+0f
}},
525 {{4.90109850e-1f
, 3.77305010e-1f
, -3.73106990e-1f
, -1.25914530e-1f
, 1.45133000e-2f
}},
526 {{1.49085730e-1f
, 3.03561680e-1f
, 1.53290060e-1f
, 2.45112480e-1f
, -1.50753130e-1f
}},
527 {{1.37654920e-1f
, 0.00000000e+0f
, 4.49417940e-1f
, 0.00000000e+0f
, 2.57844070e-1f
}},
528 {{1.49085730e-1f
, -3.03561680e-1f
, 1.53290060e-1f
, -2.45112480e-1f
, -1.50753130e-1f
}},
529 {{4.90109850e-1f
, -3.77305010e-1f
, -3.73106990e-1f
, 1.25914530e-1f
, 1.45133000e-2f
}},
532 constexpr DecoderConfig
<SingleBand
, 5> X61Config
{
533 2, false, {{SideLeft
, FrontLeft
, FrontRight
, SideRight
, BackCenter
}},
535 {{1.0f
, 1.0f
, 1.0f
}},
537 {{2.04460341e-1f
, 2.17177926e-1f
, -4.39996780e-2f
, -2.60790269e-2f
, -6.87239792e-2f
}},
538 {{1.58923161e-1f
, 9.21772680e-2f
, 1.59658796e-1f
, 6.66278083e-2f
, 3.84686854e-2f
}},
539 {{1.58923161e-1f
, -9.21772680e-2f
, 1.59658796e-1f
, -6.66278083e-2f
, 3.84686854e-2f
}},
540 {{2.04460341e-1f
, -2.17177926e-1f
, -4.39996780e-2f
, 2.60790269e-2f
, -6.87239792e-2f
}},
541 {{2.50001688e-1f
, 0.00000000e+0f
, -2.50000094e-1f
, 0.00000000e+0f
, 6.05133395e-2f
}},
544 constexpr DecoderConfig
<DualBand
, 6> X71Config
{
545 3, false, {{BackLeft
, SideLeft
, FrontLeft
, FrontRight
, SideRight
, BackRight
}},
547 /*HF*/{{1.22474487e+0f
, 1.13151672e+0f
, 8.66025404e-1f
, 4.68689571e-1f
}},
549 {{1.66666667e-1f
, 9.62250449e-2f
, -1.66666667e-1f
, -1.49071198e-1f
, 8.60662966e-2f
, 7.96819073e-2f
, 0.00000000e+0f
}},
550 {{1.66666667e-1f
, 1.92450090e-1f
, 0.00000000e+0f
, 0.00000000e+0f
, -1.72132593e-1f
, -7.96819073e-2f
, 0.00000000e+0f
}},
551 {{1.66666667e-1f
, 9.62250449e-2f
, 1.66666667e-1f
, 1.49071198e-1f
, 8.60662966e-2f
, 7.96819073e-2f
, 0.00000000e+0f
}},
552 {{1.66666667e-1f
, -9.62250449e-2f
, 1.66666667e-1f
, -1.49071198e-1f
, 8.60662966e-2f
, -7.96819073e-2f
, 0.00000000e+0f
}},
553 {{1.66666667e-1f
, -1.92450090e-1f
, 0.00000000e+0f
, 0.00000000e+0f
, -1.72132593e-1f
, 7.96819073e-2f
, 0.00000000e+0f
}},
554 {{1.66666667e-1f
, -9.62250449e-2f
, -1.66666667e-1f
, 1.49071198e-1f
, 8.60662966e-2f
, -7.96819073e-2f
, 0.00000000e+0f
}},
556 /*LF*/{{1.00000000e+0f
, 1.00000000e+0f
, 1.00000000e+0f
, 1.00000000e+0f
}},
558 {{1.66666667e-1f
, 9.62250449e-2f
, -1.66666667e-1f
, -1.49071198e-1f
, 8.60662966e-2f
, 7.96819073e-2f
, 0.00000000e+0f
}},
559 {{1.66666667e-1f
, 1.92450090e-1f
, 0.00000000e+0f
, 0.00000000e+0f
, -1.72132593e-1f
, -7.96819073e-2f
, 0.00000000e+0f
}},
560 {{1.66666667e-1f
, 9.62250449e-2f
, 1.66666667e-1f
, 1.49071198e-1f
, 8.60662966e-2f
, 7.96819073e-2f
, 0.00000000e+0f
}},
561 {{1.66666667e-1f
, -9.62250449e-2f
, 1.66666667e-1f
, -1.49071198e-1f
, 8.60662966e-2f
, -7.96819073e-2f
, 0.00000000e+0f
}},
562 {{1.66666667e-1f
, -1.92450090e-1f
, 0.00000000e+0f
, 0.00000000e+0f
, -1.72132593e-1f
, 7.96819073e-2f
, 0.00000000e+0f
}},
563 {{1.66666667e-1f
, -9.62250449e-2f
, -1.66666667e-1f
, 1.49071198e-1f
, 8.60662966e-2f
, -7.96819073e-2f
, 0.00000000e+0f
}},
566 constexpr DecoderConfig
<DualBand
, 6> X3D71Config
{
567 1, true, {{Aux0
, SideLeft
, FrontLeft
, FrontRight
, SideRight
, Aux1
}},
569 /*HF*/{{1.73205081e+0f
, 1.00000000e+0f
}},
571 {{1.66669447e-1f
, 0.00000000e+0f
, 2.36070520e-1f
, -1.66153012e-1f
}},
572 {{1.66669447e-1f
, 2.04127551e-1f
, -1.17487922e-1f
, -1.66927066e-1f
}},
573 {{1.66669447e-1f
, 2.04127551e-1f
, 1.17487922e-1f
, 1.66927066e-1f
}},
574 {{1.66669447e-1f
, -2.04127551e-1f
, 1.17487922e-1f
, 1.66927066e-1f
}},
575 {{1.66669447e-1f
, -2.04127551e-1f
, -1.17487922e-1f
, -1.66927066e-1f
}},
576 {{1.66669447e-1f
, 0.00000000e+0f
, -2.36070520e-1f
, 1.66153012e-1f
}},
578 /*LF*/{{1.00000000e+0f
, 1.00000000e+0f
}},
580 {{1.66669447e-1f
, 0.00000000e+0f
, 2.36070520e-1f
, -1.66153012e-1f
}},
581 {{1.66669447e-1f
, 2.04127551e-1f
, -1.17487922e-1f
, -1.66927066e-1f
}},
582 {{1.66669447e-1f
, 2.04127551e-1f
, 1.17487922e-1f
, 1.66927066e-1f
}},
583 {{1.66669447e-1f
, -2.04127551e-1f
, 1.17487922e-1f
, 1.66927066e-1f
}},
584 {{1.66669447e-1f
, -2.04127551e-1f
, -1.17487922e-1f
, -1.66927066e-1f
}},
585 {{1.66669447e-1f
, 0.00000000e+0f
, -2.36070520e-1f
, 1.66153012e-1f
}},
589 void InitPanning(ALCdevice
*device
, const bool hqdec
=false, const bool stablize
=false,
590 DecoderView decoder
={})
594 switch(device
->FmtChans
)
596 case DevFmtMono
: decoder
= MonoConfig
; break;
597 case DevFmtStereo
: decoder
= StereoConfig
; break;
598 case DevFmtQuad
: decoder
= QuadConfig
; break;
599 case DevFmtX51
: decoder
= X51Config
; break;
600 case DevFmtX61
: decoder
= X61Config
; break;
601 case DevFmtX71
: decoder
= X71Config
; break;
602 case DevFmtX3D71
: decoder
= X3D71Config
; break;
604 auto&& acnmap
= GetAmbiLayout(device
->mAmbiLayout
);
605 auto&& n3dscale
= GetAmbiScales(device
->mAmbiScale
);
607 /* For DevFmtAmbi3D, the ambisonic order is already set. */
608 const size_t count
{AmbiChannelsFromOrder(device
->mAmbiOrder
)};
609 std::transform(acnmap
.begin(), acnmap
.begin()+count
, std::begin(device
->Dry
.AmbiMap
),
610 [&n3dscale
](const uint8_t &acn
) noexcept
-> BFChannelConfig
611 { return BFChannelConfig
{1.0f
/n3dscale
[acn
], acn
}; });
612 AllocChannels(device
, count
, 0);
614 float nfc_delay
{device
->configValue
<float>("decoder", "nfc-ref-delay").value_or(0.0f
)};
616 InitNearFieldCtrl(device
, nfc_delay
* SpeedOfSoundMetersPerSec
, device
->mAmbiOrder
,
622 const bool dual_band
{hqdec
&& !decoder
.mCoeffsLF
.empty()};
623 al::vector
<ChannelDec
> chancoeffs
, chancoeffslf
;
624 for(size_t i
{0u};i
< decoder
.mChannels
.size();++i
)
626 const uint idx
{GetChannelIdxByName(device
->RealOut
, decoder
.mChannels
[i
])};
627 if(idx
== INVALID_CHANNEL_INDEX
)
629 ERR("Failed to find %s channel in device\n",
630 GetLabelFromChannel(decoder
.mChannels
[i
]));
634 chancoeffs
.resize(maxz(chancoeffs
.size(), idx
+1u), ChannelDec
{});
635 al::span
<float,MaxAmbiChannels
> coeffs
{chancoeffs
[idx
]};
637 for(uint o
{0};o
< decoder
.mOrder
+1u;++o
)
639 const float order_gain
{decoder
.mOrderGain
[o
]};
640 const size_t order_max
{decoder
.mIs3D
? AmbiChannelsFromOrder(o
) :
641 Ambi2DChannelsFromOrder(o
)};
642 for(;ambichan
< order_max
;++ambichan
)
643 coeffs
[ambichan
] = decoder
.mCoeffs
[i
][ambichan
] * order_gain
;
648 chancoeffslf
.resize(maxz(chancoeffslf
.size(), idx
+1u), ChannelDec
{});
649 coeffs
= chancoeffslf
[idx
];
651 for(uint o
{0};o
< decoder
.mOrder
+1u;++o
)
653 const float order_gain
{decoder
.mOrderGainLF
[o
]};
654 const size_t order_max
{decoder
.mIs3D
? AmbiChannelsFromOrder(o
) :
655 Ambi2DChannelsFromOrder(o
)};
656 for(;ambichan
< order_max
;++ambichan
)
657 coeffs
[ambichan
] = decoder
.mCoeffsLF
[i
][ambichan
] * order_gain
;
661 /* For non-DevFmtAmbi3D, set the ambisonic order. */
662 device
->mAmbiOrder
= decoder
.mOrder
;
664 const size_t ambicount
{decoder
.mIs3D
? AmbiChannelsFromOrder(decoder
.mOrder
) :
665 Ambi2DChannelsFromOrder(decoder
.mOrder
)};
666 const al::span
<const uint8_t> acnmap
{decoder
.mIs3D
? AmbiIndex::FromACN().data() :
667 AmbiIndex::FromACN2D().data(), ambicount
};
668 auto&& coeffscale
= GetAmbiScales(decoder
.mScaling
);
669 std::transform(acnmap
.begin(), acnmap
.end(), std::begin(device
->Dry
.AmbiMap
),
670 [&coeffscale
](const uint8_t &acn
) noexcept
671 { return BFChannelConfig
{1.0f
/coeffscale
[acn
], acn
}; });
672 AllocChannels(device
, ambicount
, device
->channelsFromFmt());
674 std::unique_ptr
<FrontStablizer
> stablizer
;
677 /* Only enable the stablizer if the decoder does not output to the
678 * front-center channel.
680 const auto cidx
= device
->RealOut
.ChannelIndex
[FrontCenter
];
682 if(cidx
< chancoeffs
.size())
684 for(const auto &coeff
: chancoeffs
[cidx
])
685 hasfc
|= coeff
!= 0.0f
;
687 if(!hasfc
&& cidx
< chancoeffslf
.size())
689 for(const auto &coeff
: chancoeffslf
[cidx
])
690 hasfc
|= coeff
!= 0.0f
;
694 stablizer
= CreateStablizer(device
->channelsFromFmt(), device
->Frequency
);
695 TRACE("Front stablizer enabled\n");
699 TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
700 !dual_band
? "single" : "dual",
701 (decoder
.mOrder
> 2) ? "third" :
702 (decoder
.mOrder
> 1) ? "second" : "first",
703 decoder
.mIs3D
? " periphonic" : "");
704 device
->AmbiDecoder
= BFormatDec::Create(ambicount
, chancoeffs
, chancoeffslf
,
705 device
->mXOverFreq
/static_cast<float>(device
->Frequency
), std::move(stablizer
));
708 void InitHrtfPanning(ALCdevice
*device
)
710 constexpr float Deg180
{al::numbers::pi_v
<float>};
711 constexpr float Deg_90
{Deg180
/ 2.0f
/* 90 degrees*/};
712 constexpr float Deg_45
{Deg_90
/ 2.0f
/* 45 degrees*/};
713 constexpr float Deg135
{Deg_45
* 3.0f
/*135 degrees*/};
714 constexpr float Deg_35
{6.154797087e-01f
/* 35~ 36 degrees*/};
715 constexpr float Deg_69
{1.205932499e+00f
/* 69~ 70 degrees*/};
716 constexpr float Deg111
{1.935660155e+00f
/*110~111 degrees*/};
717 constexpr float Deg_21
{3.648638281e-01f
/* 20~ 21 degrees*/};
718 static const AngularPoint AmbiPoints1O
[]{
719 { EvRadians
{ Deg_35
}, AzRadians
{-Deg_45
} },
720 { EvRadians
{ Deg_35
}, AzRadians
{-Deg135
} },
721 { EvRadians
{ Deg_35
}, AzRadians
{ Deg_45
} },
722 { EvRadians
{ Deg_35
}, AzRadians
{ Deg135
} },
723 { EvRadians
{-Deg_35
}, AzRadians
{-Deg_45
} },
724 { EvRadians
{-Deg_35
}, AzRadians
{-Deg135
} },
725 { EvRadians
{-Deg_35
}, AzRadians
{ Deg_45
} },
726 { EvRadians
{-Deg_35
}, AzRadians
{ Deg135
} },
728 { EvRadians
{ 0.0f
}, AzRadians
{ 0.0f
} },
729 { EvRadians
{ 0.0f
}, AzRadians
{ Deg180
} },
730 { EvRadians
{ 0.0f
}, AzRadians
{-Deg_90
} },
731 { EvRadians
{ 0.0f
}, AzRadians
{ Deg_90
} },
732 { EvRadians
{ Deg_90
}, AzRadians
{ 0.0f
} },
733 { EvRadians
{-Deg_90
}, AzRadians
{ 0.0f
} },
734 { EvRadians
{ Deg_35
}, AzRadians
{-Deg_45
} },
735 { EvRadians
{ Deg_35
}, AzRadians
{-Deg135
} },
736 { EvRadians
{ Deg_35
}, AzRadians
{ Deg_45
} },
737 { EvRadians
{ Deg_35
}, AzRadians
{ Deg135
} },
738 { EvRadians
{-Deg_35
}, AzRadians
{-Deg_45
} },
739 { EvRadians
{-Deg_35
}, AzRadians
{-Deg135
} },
740 { EvRadians
{-Deg_35
}, AzRadians
{ Deg_45
} },
741 { EvRadians
{-Deg_35
}, AzRadians
{ Deg135
} },
743 { EvRadians
{ Deg_69
}, AzRadians
{-Deg_90
} },
744 { EvRadians
{ Deg_69
}, AzRadians
{ Deg_90
} },
745 { EvRadians
{-Deg_69
}, AzRadians
{-Deg_90
} },
746 { EvRadians
{-Deg_69
}, AzRadians
{ Deg_90
} },
747 { EvRadians
{ 0.0f
}, AzRadians
{-Deg_69
} },
748 { EvRadians
{ 0.0f
}, AzRadians
{-Deg111
} },
749 { EvRadians
{ 0.0f
}, AzRadians
{ Deg_69
} },
750 { EvRadians
{ 0.0f
}, AzRadians
{ Deg111
} },
751 { EvRadians
{ Deg_21
}, AzRadians
{ 0.0f
} },
752 { EvRadians
{ Deg_21
}, AzRadians
{ Deg180
} },
753 { EvRadians
{-Deg_21
}, AzRadians
{ 0.0f
} },
754 { EvRadians
{-Deg_21
}, AzRadians
{ Deg180
} },
755 { EvRadians
{ Deg_35
}, AzRadians
{-Deg_45
} },
756 { EvRadians
{ Deg_35
}, AzRadians
{-Deg135
} },
757 { EvRadians
{ Deg_35
}, AzRadians
{ Deg_45
} },
758 { EvRadians
{ Deg_35
}, AzRadians
{ Deg135
} },
759 { EvRadians
{-Deg_35
}, AzRadians
{-Deg_45
} },
760 { EvRadians
{-Deg_35
}, AzRadians
{-Deg135
} },
761 { EvRadians
{-Deg_35
}, AzRadians
{ Deg_45
} },
762 { EvRadians
{-Deg_35
}, AzRadians
{ Deg135
} },
764 static const float AmbiMatrix1O
[][MaxAmbiChannels
]{
765 { 1.250000000e-01f
, 1.250000000e-01f
, 1.250000000e-01f
, 1.250000000e-01f
},
766 { 1.250000000e-01f
, 1.250000000e-01f
, 1.250000000e-01f
, -1.250000000e-01f
},
767 { 1.250000000e-01f
, -1.250000000e-01f
, 1.250000000e-01f
, 1.250000000e-01f
},
768 { 1.250000000e-01f
, -1.250000000e-01f
, 1.250000000e-01f
, -1.250000000e-01f
},
769 { 1.250000000e-01f
, 1.250000000e-01f
, -1.250000000e-01f
, 1.250000000e-01f
},
770 { 1.250000000e-01f
, 1.250000000e-01f
, -1.250000000e-01f
, -1.250000000e-01f
},
771 { 1.250000000e-01f
, -1.250000000e-01f
, -1.250000000e-01f
, 1.250000000e-01f
},
772 { 1.250000000e-01f
, -1.250000000e-01f
, -1.250000000e-01f
, -1.250000000e-01f
},
773 }, AmbiMatrix2O
[][MaxAmbiChannels
]{
774 { 7.142857143e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, -7.453559925e-02f
, 0.000000000e+00f
, 1.290994449e-01f
, },
775 { 7.142857143e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, -7.453559925e-02f
, 0.000000000e+00f
, 1.290994449e-01f
, },
776 { 7.142857143e-02f
, 1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, -7.453559925e-02f
, 0.000000000e+00f
, -1.290994449e-01f
, },
777 { 7.142857143e-02f
, -1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, -7.453559925e-02f
, 0.000000000e+00f
, -1.290994449e-01f
, },
778 { 7.142857143e-02f
, 0.000000000e+00f
, 1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 1.490711985e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, },
779 { 7.142857143e-02f
, 0.000000000e+00f
, -1.237179148e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 1.490711985e-01f
, 0.000000000e+00f
, 0.000000000e+00f
, },
780 { 7.142857143e-02f
, 7.142857143e-02f
, 7.142857143e-02f
, 7.142857143e-02f
, 9.682458366e-02f
, 9.682458366e-02f
, 0.000000000e+00f
, 9.682458366e-02f
, 0.000000000e+00f
, },
781 { 7.142857143e-02f
, 7.142857143e-02f
, 7.142857143e-02f
, -7.142857143e-02f
, -9.682458366e-02f
, 9.682458366e-02f
, 0.000000000e+00f
, -9.682458366e-02f
, 0.000000000e+00f
, },
782 { 7.142857143e-02f
, -7.142857143e-02f
, 7.142857143e-02f
, 7.142857143e-02f
, -9.682458366e-02f
, -9.682458366e-02f
, 0.000000000e+00f
, 9.682458366e-02f
, 0.000000000e+00f
, },
783 { 7.142857143e-02f
, -7.142857143e-02f
, 7.142857143e-02f
, -7.142857143e-02f
, 9.682458366e-02f
, -9.682458366e-02f
, 0.000000000e+00f
, -9.682458366e-02f
, 0.000000000e+00f
, },
784 { 7.142857143e-02f
, 7.142857143e-02f
, -7.142857143e-02f
, 7.142857143e-02f
, 9.682458366e-02f
, -9.682458366e-02f
, 0.000000000e+00f
, -9.682458366e-02f
, 0.000000000e+00f
, },
785 { 7.142857143e-02f
, 7.142857143e-02f
, -7.142857143e-02f
, -7.142857143e-02f
, -9.682458366e-02f
, -9.682458366e-02f
, 0.000000000e+00f
, 9.682458366e-02f
, 0.000000000e+00f
, },
786 { 7.142857143e-02f
, -7.142857143e-02f
, -7.142857143e-02f
, 7.142857143e-02f
, -9.682458366e-02f
, 9.682458366e-02f
, 0.000000000e+00f
, -9.682458366e-02f
, 0.000000000e+00f
, },
787 { 7.142857143e-02f
, -7.142857143e-02f
, -7.142857143e-02f
, -7.142857143e-02f
, 9.682458366e-02f
, 9.682458366e-02f
, 0.000000000e+00f
, 9.682458366e-02f
, 0.000000000e+00f
, },
788 }, AmbiMatrix3O
[][MaxAmbiChannels
]{
789 { 5.000000000e-02f
, 3.090169944e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 6.454972244e-02f
, 9.045084972e-02f
, 0.000000000e+00f
, -1.232790000e-02f
, -1.256118221e-01f
, 0.000000000e+00f
, 1.126112056e-01f
, 7.944389175e-02f
, 0.000000000e+00f
, 2.421151497e-02f
, 0.000000000e+00f
, },
790 { 5.000000000e-02f
, -3.090169944e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -6.454972244e-02f
, 9.045084972e-02f
, 0.000000000e+00f
, -1.232790000e-02f
, 1.256118221e-01f
, 0.000000000e+00f
, -1.126112056e-01f
, 7.944389175e-02f
, 0.000000000e+00f
, 2.421151497e-02f
, 0.000000000e+00f
, },
791 { 5.000000000e-02f
, 3.090169944e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -6.454972244e-02f
, 9.045084972e-02f
, 0.000000000e+00f
, -1.232790000e-02f
, -1.256118221e-01f
, 0.000000000e+00f
, 1.126112056e-01f
, -7.944389175e-02f
, 0.000000000e+00f
, -2.421151497e-02f
, 0.000000000e+00f
, },
792 { 5.000000000e-02f
, -3.090169944e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 6.454972244e-02f
, 9.045084972e-02f
, 0.000000000e+00f
, -1.232790000e-02f
, 1.256118221e-01f
, 0.000000000e+00f
, -1.126112056e-01f
, -7.944389175e-02f
, 0.000000000e+00f
, -2.421151497e-02f
, 0.000000000e+00f
, },
793 { 5.000000000e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, 3.090169944e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, -5.590169944e-02f
, 0.000000000e+00f
, -7.216878365e-02f
, -7.763237543e-02f
, 0.000000000e+00f
, -2.950836627e-02f
, 0.000000000e+00f
, -1.497759251e-01f
, 0.000000000e+00f
, -7.763237543e-02f
, },
794 { 5.000000000e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, -3.090169944e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, -5.590169944e-02f
, 0.000000000e+00f
, -7.216878365e-02f
, -7.763237543e-02f
, 0.000000000e+00f
, -2.950836627e-02f
, 0.000000000e+00f
, 1.497759251e-01f
, 0.000000000e+00f
, 7.763237543e-02f
, },
795 { 5.000000000e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, 3.090169944e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, -5.590169944e-02f
, 0.000000000e+00f
, -7.216878365e-02f
, 7.763237543e-02f
, 0.000000000e+00f
, 2.950836627e-02f
, 0.000000000e+00f
, -1.497759251e-01f
, 0.000000000e+00f
, -7.763237543e-02f
, },
796 { 5.000000000e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, -3.090169944e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, -5.590169944e-02f
, 0.000000000e+00f
, -7.216878365e-02f
, 7.763237543e-02f
, 0.000000000e+00f
, 2.950836627e-02f
, 0.000000000e+00f
, 1.497759251e-01f
, 0.000000000e+00f
, 7.763237543e-02f
, },
797 { 5.000000000e-02f
, 0.000000000e+00f
, 3.090169944e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.454915028e-02f
, 6.454972244e-02f
, 8.449668365e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 3.034486645e-02f
, -6.779013272e-02f
, 1.659481923e-01f
, 4.797944664e-02f
, },
798 { 5.000000000e-02f
, 0.000000000e+00f
, 3.090169944e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.454915028e-02f
, -6.454972244e-02f
, 8.449668365e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, 3.034486645e-02f
, 6.779013272e-02f
, 1.659481923e-01f
, -4.797944664e-02f
, },
799 { 5.000000000e-02f
, 0.000000000e+00f
, -3.090169944e-02f
, 8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.454915028e-02f
, -6.454972244e-02f
, 8.449668365e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.034486645e-02f
, -6.779013272e-02f
, -1.659481923e-01f
, 4.797944664e-02f
, },
800 { 5.000000000e-02f
, 0.000000000e+00f
, -3.090169944e-02f
, -8.090169944e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.454915028e-02f
, 6.454972244e-02f
, 8.449668365e-02f
, 0.000000000e+00f
, 0.000000000e+00f
, 0.000000000e+00f
, -3.034486645e-02f
, 6.779013272e-02f
, -1.659481923e-01f
, -4.797944664e-02f
, },
801 { 5.000000000e-02f
, 5.000000000e-02f
, 5.000000000e-02f
, 5.000000000e-02f
, 6.454972244e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, 6.454972244e-02f
, 0.000000000e+00f
, 1.016220987e-01f
, 6.338656910e-02f
, -1.092600649e-02f
, -7.364853795e-02f
, 1.011266756e-01f
, -7.086833869e-02f
, -1.482646439e-02f
, },
802 { 5.000000000e-02f
, 5.000000000e-02f
, 5.000000000e-02f
, -5.000000000e-02f
, -6.454972244e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, -6.454972244e-02f
, 0.000000000e+00f
, 1.016220987e-01f
, -6.338656910e-02f
, -1.092600649e-02f
, -7.364853795e-02f
, -1.011266756e-01f
, -7.086833869e-02f
, 1.482646439e-02f
, },
803 { 5.000000000e-02f
, -5.000000000e-02f
, 5.000000000e-02f
, 5.000000000e-02f
, -6.454972244e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, 6.454972244e-02f
, 0.000000000e+00f
, -1.016220987e-01f
, -6.338656910e-02f
, 1.092600649e-02f
, -7.364853795e-02f
, 1.011266756e-01f
, -7.086833869e-02f
, -1.482646439e-02f
, },
804 { 5.000000000e-02f
, -5.000000000e-02f
, 5.000000000e-02f
, -5.000000000e-02f
, 6.454972244e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, -6.454972244e-02f
, 0.000000000e+00f
, -1.016220987e-01f
, 6.338656910e-02f
, 1.092600649e-02f
, -7.364853795e-02f
, -1.011266756e-01f
, -7.086833869e-02f
, 1.482646439e-02f
, },
805 { 5.000000000e-02f
, 5.000000000e-02f
, -5.000000000e-02f
, 5.000000000e-02f
, 6.454972244e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, -6.454972244e-02f
, 0.000000000e+00f
, 1.016220987e-01f
, -6.338656910e-02f
, -1.092600649e-02f
, 7.364853795e-02f
, 1.011266756e-01f
, 7.086833869e-02f
, -1.482646439e-02f
, },
806 { 5.000000000e-02f
, 5.000000000e-02f
, -5.000000000e-02f
, -5.000000000e-02f
, -6.454972244e-02f
, -6.454972244e-02f
, 0.000000000e+00f
, 6.454972244e-02f
, 0.000000000e+00f
, 1.016220987e-01f
, 6.338656910e-02f
, -1.092600649e-02f
, 7.364853795e-02f
, -1.011266756e-01f
, 7.086833869e-02f
, 1.482646439e-02f
, },
807 { 5.000000000e-02f
, -5.000000000e-02f
, -5.000000000e-02f
, 5.000000000e-02f
, -6.454972244e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, -6.454972244e-02f
, 0.000000000e+00f
, -1.016220987e-01f
, 6.338656910e-02f
, 1.092600649e-02f
, 7.364853795e-02f
, 1.011266756e-01f
, 7.086833869e-02f
, -1.482646439e-02f
, },
808 { 5.000000000e-02f
, -5.000000000e-02f
, -5.000000000e-02f
, -5.000000000e-02f
, 6.454972244e-02f
, 6.454972244e-02f
, 0.000000000e+00f
, 6.454972244e-02f
, 0.000000000e+00f
, -1.016220987e-01f
, -6.338656910e-02f
, 1.092600649e-02f
, 7.364853795e-02f
, -1.011266756e-01f
, 7.086833869e-02f
, 1.482646439e-02f
, },
810 static const float AmbiOrderHFGain1O
[MaxAmbiOrder
+1]{
811 /*ENRGY*/ 2.000000000e+00f
, 1.154700538e+00f
812 }, AmbiOrderHFGain2O
[MaxAmbiOrder
+1]{
813 /*ENRGY 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f*/
814 /*AMP 1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/
815 /*RMS*/ 9.128709292e-01f
, 7.071067812e-01f
, 3.651483717e-01f
816 }, AmbiOrderHFGain3O
[MaxAmbiOrder
+1]{
817 /*ENRGY 1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f*/
818 /*AMP 1.000000000e+00f, 8.611363116e-01f, 6.123336207e-01f, 3.047469850e-01f*/
819 /*RMS*/ 8.340921354e-01f
, 7.182670250e-01f
, 5.107426573e-01f
, 2.541870634e-01f
822 static_assert(al::size(AmbiPoints1O
) == al::size(AmbiMatrix1O
), "First-Order Ambisonic HRTF mismatch");
823 static_assert(al::size(AmbiPoints2O
) == al::size(AmbiMatrix2O
), "Second-Order Ambisonic HRTF mismatch");
824 static_assert(al::size(AmbiPoints3O
) == al::size(AmbiMatrix3O
), "Third-Order Ambisonic HRTF mismatch");
826 /* A 700hz crossover frequency provides tighter sound imaging at the sweet
827 * spot with ambisonic decoding, as the distance between the ears is closer
828 * to half this frequency wavelength, which is the optimal point where the
829 * response should change between optimizing phase vs volume. Normally this
830 * tighter imaging is at the cost of a smaller sweet spot, but since the
831 * listener is fixed in the center of the HRTF responses for the decoder,
832 * we don't have to worry about ever being out of the sweet spot.
834 * A better option here may be to have the head radius as part of the HRTF
835 * data set and calculate the optimal crossover frequency from that.
837 device
->mXOverFreq
= 700.0f
;
839 /* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
840 * and it eases the CPU/memory load.
842 device
->mRenderMode
= RenderMode::Hrtf
;
844 if(auto modeopt
= device
->configValue
<std::string
>(nullptr, "hrtf-mode"))
846 struct HrtfModeEntry
{
851 static const HrtfModeEntry hrtf_modes
[]{
852 { "full", RenderMode::Hrtf
, 1 },
853 { "ambi1", RenderMode::Normal
, 1 },
854 { "ambi2", RenderMode::Normal
, 2 },
855 { "ambi3", RenderMode::Normal
, 3 },
858 const char *mode
{modeopt
->c_str()};
859 if(al::strcasecmp(mode
, "basic") == 0)
861 ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode
, "ambi2");
865 auto match_entry
= [mode
](const HrtfModeEntry
&entry
) -> bool
866 { return al::strcasecmp(mode
, entry
.name
) == 0; };
867 auto iter
= std::find_if(std::begin(hrtf_modes
), std::end(hrtf_modes
), match_entry
);
868 if(iter
== std::end(hrtf_modes
))
869 ERR("Unexpected hrtf-mode: %s\n", mode
);
872 device
->mRenderMode
= iter
->mode
;
873 ambi_order
= iter
->order
;
876 TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order
,
877 (((ambi_order
%100)/10) == 1) ? "th" :
878 ((ambi_order
%10) == 1) ? "st" :
879 ((ambi_order
%10) == 2) ? "nd" :
880 ((ambi_order
%10) == 3) ? "rd" : "th",
881 (device
->mRenderMode
== RenderMode::Hrtf
) ? "+ Full " : "",
882 device
->mHrtfName
.c_str());
884 al::span
<const AngularPoint
> AmbiPoints
{AmbiPoints1O
};
885 const float (*AmbiMatrix
)[MaxAmbiChannels
]{AmbiMatrix1O
};
886 al::span
<const float,MaxAmbiOrder
+1> AmbiOrderHFGain
{AmbiOrderHFGain1O
};
889 AmbiPoints
= AmbiPoints3O
;
890 AmbiMatrix
= AmbiMatrix3O
;
891 AmbiOrderHFGain
= AmbiOrderHFGain3O
;
893 else if(ambi_order
== 2)
895 AmbiPoints
= AmbiPoints2O
;
896 AmbiMatrix
= AmbiMatrix2O
;
897 AmbiOrderHFGain
= AmbiOrderHFGain2O
;
899 device
->mAmbiOrder
= ambi_order
;
901 const size_t count
{AmbiChannelsFromOrder(ambi_order
)};
902 std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count
,
903 std::begin(device
->Dry
.AmbiMap
),
904 [](const uint8_t &index
) noexcept
{ return BFChannelConfig
{1.0f
, index
}; }
906 AllocChannels(device
, count
, device
->channelsFromFmt());
908 HrtfStore
*Hrtf
{device
->mHrtf
.get()};
909 auto hrtfstate
= DirectHrtfState::Create(count
);
910 hrtfstate
->build(Hrtf
, device
->mIrSize
, AmbiPoints
, AmbiMatrix
, device
->mXOverFreq
,
912 device
->mHrtfState
= std::move(hrtfstate
);
914 InitNearFieldCtrl(device
, Hrtf
->field
[0].distance
, ambi_order
, true);
917 void InitUhjPanning(ALCdevice
*device
)
919 /* UHJ is always 2D first-order. */
920 constexpr size_t count
{Ambi2DChannelsFromOrder(1)};
922 device
->mAmbiOrder
= 1;
924 auto acnmap_begin
= AmbiIndex::FromFuMa().begin();
925 std::transform(acnmap_begin
, acnmap_begin
+ count
, std::begin(device
->Dry
.AmbiMap
),
926 [](const uint8_t &acn
) noexcept
-> BFChannelConfig
927 { return BFChannelConfig
{1.0f
/AmbiScale::FromUHJ()[acn
], acn
}; });
928 AllocChannels(device
, count
, device
->channelsFromFmt());
933 void aluInitRenderer(ALCdevice
*device
, int hrtf_id
, al::optional
<StereoEncoding
> stereomode
)
935 /* Hold the HRTF the device last used, in case it's used again. */
936 HrtfStorePtr old_hrtf
{std::move(device
->mHrtf
)};
938 device
->mHrtfState
= nullptr;
939 device
->mHrtf
= nullptr;
941 device
->mHrtfName
.clear();
942 device
->mXOverFreq
= 400.0f
;
943 device
->mRenderMode
= RenderMode::Normal
;
945 if(device
->FmtChans
!= DevFmtStereo
)
948 if(stereomode
&& *stereomode
== StereoEncoding::Hrtf
)
949 device
->mHrtfStatus
= ALC_HRTF_UNSUPPORTED_FORMAT_SOFT
;
951 const char *layout
{nullptr};
952 switch(device
->FmtChans
)
954 case DevFmtQuad
: layout
= "quad"; break;
955 case DevFmtX51
: layout
= "surround51"; break;
956 case DevFmtX61
: layout
= "surround61"; break;
957 case DevFmtX71
: layout
= "surround71"; break;
958 case DevFmtX3D71
: layout
= "surround3d71"; break;
959 /* Mono, Stereo, and Ambisonics output don't use custom decoders. */
966 std::unique_ptr
<DecoderConfig
<DualBand
,MAX_OUTPUT_CHANNELS
>> decoder_store
;
967 DecoderView decoder
{};
968 float speakerdists
[MAX_OUTPUT_CHANNELS
]{};
969 auto load_config
= [device
,&decoder_store
,&decoder
,&speakerdists
](const char *config
)
972 if(auto err
= conf
.load(config
))
974 ERR("Failed to load layout file %s\n", config
);
975 ERR(" %s\n", err
->c_str());
977 else if(conf
.NumSpeakers
> MAX_OUTPUT_CHANNELS
)
978 ERR("Unsupported decoder speaker count %zu (max %d)\n", conf
.NumSpeakers
,
979 MAX_OUTPUT_CHANNELS
);
980 else if(conf
.ChanMask
> Ambi3OrderMask
)
981 ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf
.ChanMask
,
985 device
->mXOverFreq
= clampf(conf
.XOverFreq
, 100.0f
, 1000.0f
);
987 decoder_store
= std::make_unique
<DecoderConfig
<DualBand
,MAX_OUTPUT_CHANNELS
>>();
988 decoder
= MakeDecoderView(device
, &conf
, *decoder_store
);
989 for(size_t i
{0};i
< decoder
.mChannels
.size();++i
)
990 speakerdists
[i
] = conf
.Speakers
[i
].Distance
;
995 if(auto decopt
= device
->configValue
<std::string
>("decoder", layout
))
996 load_config(decopt
->c_str());
999 /* Enable the stablizer only for formats that have front-left, front-
1000 * right, and front-center outputs.
1002 const bool stablize
{device
->RealOut
.ChannelIndex
[FrontCenter
] != INVALID_CHANNEL_INDEX
1003 && device
->RealOut
.ChannelIndex
[FrontLeft
] != INVALID_CHANNEL_INDEX
1004 && device
->RealOut
.ChannelIndex
[FrontRight
] != INVALID_CHANNEL_INDEX
1005 && device
->getConfigValueBool(nullptr, "front-stablizer", 0) != 0};
1006 const bool hqdec
{device
->getConfigValueBool("decoder", "hq-mode", 1) != 0};
1007 InitPanning(device
, hqdec
, stablize
, decoder
);
1008 if(decoder
.mOrder
> 0)
1010 float accum_dist
{0.0f
}, spkr_count
{0.0f
};
1011 for(auto dist
: speakerdists
)
1021 InitNearFieldCtrl(device
, accum_dist
/ spkr_count
, decoder
.mOrder
, decoder
.mIs3D
);
1022 InitDistanceComp(device
, decoder
.mChannels
, speakerdists
);
1025 if(auto *ambidec
{device
->AmbiDecoder
.get()})
1027 device
->PostProcess
= ambidec
->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
1028 : &ALCdevice::ProcessAmbiDec
;
1034 /* If HRTF is explicitly requested, or if there's no explicit request and
1035 * the device is headphones, try to enable it.
1037 if(stereomode
.value_or(StereoEncoding::Default
) == StereoEncoding::Hrtf
1038 || (!stereomode
&& device
->Flags
.test(DirectEar
)))
1040 if(device
->mHrtfList
.empty())
1041 device
->enumerateHrtfs();
1043 if(hrtf_id
>= 0 && static_cast<uint
>(hrtf_id
) < device
->mHrtfList
.size())
1045 const std::string
&hrtfname
= device
->mHrtfList
[static_cast<uint
>(hrtf_id
)];
1046 if(HrtfStorePtr hrtf
{GetLoadedHrtf(hrtfname
, device
->Frequency
)})
1048 device
->mHrtf
= std::move(hrtf
);
1049 device
->mHrtfName
= hrtfname
;
1055 for(const auto &hrtfname
: device
->mHrtfList
)
1057 if(HrtfStorePtr hrtf
{GetLoadedHrtf(hrtfname
, device
->Frequency
)})
1059 device
->mHrtf
= std::move(hrtf
);
1060 device
->mHrtfName
= hrtfname
;
1070 HrtfStore
*hrtf
{device
->mHrtf
.get()};
1071 device
->mIrSize
= hrtf
->irSize
;
1072 if(auto hrtfsizeopt
= device
->configValue
<uint
>(nullptr, "hrtf-size"))
1074 if(*hrtfsizeopt
> 0 && *hrtfsizeopt
< device
->mIrSize
)
1075 device
->mIrSize
= maxu(*hrtfsizeopt
, MinIrLength
);
1078 InitHrtfPanning(device
);
1079 device
->PostProcess
= &ALCdevice::ProcessHrtf
;
1080 device
->mHrtfStatus
= ALC_HRTF_ENABLED_SOFT
;
1086 if(stereomode
.value_or(StereoEncoding::Default
) == StereoEncoding::Uhj
)
1088 device
->mUhjEncoder
= std::make_unique
<UhjEncoder
>();
1089 TRACE("UHJ enabled\n");
1090 InitUhjPanning(device
);
1091 device
->PostProcess
= &ALCdevice::ProcessUhj
;
1095 device
->mRenderMode
= RenderMode::Pairwise
;
1096 if(device
->Type
!= DeviceType::Loopback
)
1098 if(auto cflevopt
= device
->configValue
<int>(nullptr, "cf_level"))
1100 if(*cflevopt
> 0 && *cflevopt
<= 6)
1102 device
->Bs2b
= std::make_unique
<bs2b
>();
1103 bs2b_set_params(device
->Bs2b
.get(), *cflevopt
,
1104 static_cast<int>(device
->Frequency
));
1105 TRACE("BS2B enabled\n");
1106 InitPanning(device
);
1107 device
->PostProcess
= &ALCdevice::ProcessBs2b
;
1113 TRACE("Stereo rendering\n");
1114 InitPanning(device
);
1115 device
->PostProcess
= &ALCdevice::ProcessAmbiDec
;
1119 void aluInitEffectPanning(EffectSlot
*slot
, ALCcontext
*context
)
1121 DeviceBase
*device
{context
->mDevice
};
1122 const size_t count
{AmbiChannelsFromOrder(device
->mAmbiOrder
)};
1124 auto wetbuffer_iter
= context
->mWetBuffers
.end();
1125 if(slot
->mWetBuffer
)
1127 /* If the effect slot already has a wet buffer attached, allocate a new
1130 wetbuffer_iter
= context
->mWetBuffers
.begin();
1131 for(;wetbuffer_iter
!= context
->mWetBuffers
.end();++wetbuffer_iter
)
1133 if(wetbuffer_iter
->get() == slot
->mWetBuffer
)
1135 slot
->mWetBuffer
= nullptr;
1136 slot
->Wet
.Buffer
= {};
1138 *wetbuffer_iter
= WetBufferPtr
{new(FamCount(count
)) WetBuffer
{count
}};
1144 if(wetbuffer_iter
== context
->mWetBuffers
.end())
1146 /* Otherwise, search for an unused wet buffer. */
1147 wetbuffer_iter
= context
->mWetBuffers
.begin();
1148 for(;wetbuffer_iter
!= context
->mWetBuffers
.end();++wetbuffer_iter
)
1150 if(!(*wetbuffer_iter
)->mInUse
)
1153 if(wetbuffer_iter
== context
->mWetBuffers
.end())
1155 /* Otherwise, allocate a new one to use. */
1156 context
->mWetBuffers
.emplace_back(WetBufferPtr
{new(FamCount(count
)) WetBuffer
{count
}});
1157 wetbuffer_iter
= context
->mWetBuffers
.end()-1;
1160 WetBuffer
*wetbuffer
{slot
->mWetBuffer
= wetbuffer_iter
->get()};
1161 wetbuffer
->mInUse
= true;
1163 auto acnmap_begin
= AmbiIndex::FromACN().begin();
1164 auto iter
= std::transform(acnmap_begin
, acnmap_begin
+ count
, slot
->Wet
.AmbiMap
.begin(),
1165 [](const uint8_t &acn
) noexcept
-> BFChannelConfig
1166 { return BFChannelConfig
{1.0f
, acn
}; });
1167 std::fill(iter
, slot
->Wet
.AmbiMap
.end(), BFChannelConfig
{});
1168 slot
->Wet
.Buffer
= wetbuffer
->mBuffer
;