10 * Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is
11 * FFT and 1 is inverse FFT. Applies the Discrete Fourier Transform (DFT) to
12 * the data supplied in the buffer, which MUST BE power of two.
14 template<typename Real
>
15 std::enable_if_t
<std::is_floating_point
<Real
>::value
>
16 complex_fft(const al::span
<std::complex<Real
>> buffer
, const al::type_identity_t
<Real
> sign
);
19 * Calculate the frequency-domain response of the time-domain signal in the
20 * provided buffer, which MUST BE power of two.
22 template<typename Real
, size_t N
>
23 std::enable_if_t
<std::is_floating_point
<Real
>::value
>
24 forward_fft(const al::span
<std::complex<Real
>,N
> buffer
)
25 { complex_fft(buffer
.subspan(0), -1); }
28 * Calculate the time-domain signal of the frequency-domain response in the
29 * provided buffer, which MUST BE power of two.
31 template<typename Real
, size_t N
>
32 std::enable_if_t
<std::is_floating_point
<Real
>::value
>
33 inverse_fft(const al::span
<std::complex<Real
>,N
> buffer
)
34 { complex_fft(buffer
.subspan(0), 1); }
37 * Calculate the complex helical sequence (discrete-time analytical signal) of
38 * the given input using the discrete Hilbert transform (In-place algorithm).
39 * Fills the buffer with the discrete-time analytical signal stored in the
40 * buffer. The buffer is an array of complex numbers and MUST BE power of two,
41 * and the imaginary components should be cleared to 0.
43 void complex_hilbert(const al::span
<std::complex<double>> buffer
);
45 #endif /* ALCOMPLEX_H */