Separate ALCdevice from the implementation
[openal-soft.git] / core / bsinc_tables.cpp
blob9d6b5d8b77e66b894c76c7b016a13678a8c4e659
2 #include "bsinc_tables.h"
4 #include <algorithm>
5 #include <array>
6 #include <cassert>
7 #include <cmath>
8 #include <cstddef>
9 #include <limits>
10 #include <stdexcept>
11 #include <vector>
13 #include "alnumbers.h"
14 #include "alnumeric.h"
15 #include "alspan.h"
16 #include "bsinc_defs.h"
17 #include "opthelpers.h"
18 #include "resampler_limits.h"
21 namespace {
23 using uint = unsigned int;
26 /* The zero-order modified Bessel function of the first kind, used for the
27 * Kaiser window.
29 * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
30 * = sum_{k=0}^inf ((x / 2)^k / k!)^2
32 * This implementation only handles nu = 0, and isn't the most precise (it
33 * starts with the largest value and accumulates successively smaller values,
34 * compounding the rounding and precision error), but it's good enough.
36 template<typename T, typename U>
37 constexpr auto cyl_bessel_i(T nu, U x) -> U
39 if(nu != T{0})
40 throw std::runtime_error{"cyl_bessel_i: nu != 0"};
42 /* Start at k=1 since k=0 is trivial. */
43 const double x2{x/2.0};
44 double term{1.0};
45 double sum{1.0};
46 int k{1};
48 /* Let the integration converge until the term of the sum is no longer
49 * significant.
51 double last_sum{};
52 do {
53 const double y{x2 / k};
54 ++k;
55 last_sum = sum;
56 term *= y * y;
57 sum += term;
58 } while(sum != last_sum);
59 return static_cast<U>(sum);
62 /* This is the normalized cardinal sine (sinc) function.
64 * sinc(x) = { 1, x = 0
65 * { sin(pi x) / (pi x), otherwise.
67 constexpr double Sinc(const double x)
69 constexpr double epsilon{std::numeric_limits<double>::epsilon()};
70 if(!(x > epsilon || x < -epsilon))
71 return 1.0;
72 return std::sin(al::numbers::pi*x) / (al::numbers::pi*x);
75 /* Calculate a Kaiser window from the given beta value and a normalized k
76 * [-1, 1].
78 * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
79 * { 0, elsewhere.
81 * Where k can be calculated as:
83 * k = i / l, where -l <= i <= l.
85 * or:
87 * k = 2 i / M - 1, where 0 <= i <= M.
89 constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta)
91 if(!(k >= -1.0 && k <= 1.0))
92 return 0.0;
93 return ::cyl_bessel_i(0, beta * std::sqrt(1.0 - k*k)) / besseli_0_beta;
96 /* Calculates the (normalized frequency) transition width of the Kaiser window.
97 * Rejection is in dB.
99 constexpr double CalcKaiserWidth(const double rejection, const uint order) noexcept
101 if(rejection > 21.19)
102 return (rejection - 7.95) / (2.285 * al::numbers::pi*2.0 * order);
103 /* This enforces a minimum rejection of just above 21.18dB */
104 return 5.79 / (al::numbers::pi*2.0 * order);
107 /* Calculates the beta value of the Kaiser window. Rejection is in dB. */
108 constexpr double CalcKaiserBeta(const double rejection)
110 if(rejection > 50.0)
111 return 0.1102 * (rejection-8.7);
112 if(rejection >= 21.0)
113 return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0));
114 return 0.0;
118 struct BSincHeader {
119 double width{};
120 double beta{};
121 double scaleBase{};
123 std::array<uint,BSincScaleCount> a{};
124 uint total_size{};
126 constexpr BSincHeader(uint Rejection, uint Order) noexcept
127 : width{CalcKaiserWidth(Rejection, Order)}, beta{CalcKaiserBeta(Rejection)}
128 , scaleBase{width / 2.0}
130 uint num_points{Order+1};
131 for(uint si{0};si < BSincScaleCount;++si)
133 const double scale{lerpd(scaleBase, 1.0, (si+1) / double{BSincScaleCount})};
134 const uint a_{std::min(static_cast<uint>(num_points / 2.0 / scale), num_points)};
135 const uint m{2 * a_};
137 a[si] = a_;
138 total_size += 4 * BSincPhaseCount * ((m+3) & ~3u);
143 /* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop
144 * at nyquist. Each filter will scale up the order when downsampling, to 23rd
145 * and 47th order respectively.
147 constexpr BSincHeader bsinc12_hdr{60, 11};
148 constexpr BSincHeader bsinc24_hdr{60, 23};
151 template<const BSincHeader &hdr>
152 struct SIMDALIGN BSincFilterArray {
153 alignas(16) std::array<float, hdr.total_size> mTable{};
155 BSincFilterArray()
157 static constexpr uint BSincPointsMax{(hdr.a[0]*2u + 3u) & ~3u};
158 static_assert(BSincPointsMax <= MaxResamplerPadding, "MaxResamplerPadding is too small");
160 using filter_type = std::array<std::array<double,BSincPointsMax>,BSincPhaseCount>;
161 auto filter = std::vector<filter_type>(BSincScaleCount);
163 const double besseli_0_beta{::cyl_bessel_i(0, hdr.beta)};
165 /* Calculate the Kaiser-windowed Sinc filter coefficients for each
166 * scale and phase index.
168 for(uint si{0};si < BSincScaleCount;++si)
170 const uint m{hdr.a[si] * 2};
171 const size_t o{(BSincPointsMax-m) / 2};
172 const double scale{lerpd(hdr.scaleBase, 1.0, (si+1) / double{BSincScaleCount})};
173 const double cutoff{scale - (hdr.scaleBase * std::max(1.0, scale*2.0))};
174 const auto a = static_cast<double>(hdr.a[si]);
175 const double l{a - 1.0/BSincPhaseCount};
177 for(uint pi{0};pi < BSincPhaseCount;++pi)
179 const double phase{std::floor(l) + (pi/double{BSincPhaseCount})};
181 for(uint i{0};i < m;++i)
183 const double x{i - phase};
184 filter[si][pi][o+i] = Kaiser(hdr.beta, x/l, besseli_0_beta) * cutoff *
185 Sinc(cutoff*x);
190 size_t idx{0};
191 for(size_t si{0};si < BSincScaleCount;++si)
193 const size_t m{((hdr.a[si]*2) + 3) & ~3u};
194 const size_t o{(BSincPointsMax-m) / 2};
196 /* Write out each phase index's filter and phase delta for this
197 * quality scale.
199 for(size_t pi{0};pi < BSincPhaseCount;++pi)
201 for(size_t i{0};i < m;++i)
202 mTable[idx++] = static_cast<float>(filter[si][pi][o+i]);
204 /* Linear interpolation between phases is simplified by pre-
205 * calculating the delta (b - a) in: x = a + f (b - a)
207 if(pi < BSincPhaseCount-1)
209 for(size_t i{0};i < m;++i)
211 const double phDelta{filter[si][pi+1][o+i] - filter[si][pi][o+i]};
212 mTable[idx++] = static_cast<float>(phDelta);
215 else
217 /* The delta target for the last phase index is the first
218 * phase index with the coefficients offset by one. The
219 * first delta targets 0, as it represents a coefficient
220 * for a sample that won't be part of the filter.
222 mTable[idx++] = static_cast<float>(0.0 - filter[si][pi][o]);
223 for(size_t i{1};i < m;++i)
225 const double phDelta{filter[si][0][o+i-1] - filter[si][pi][o+i]};
226 mTable[idx++] = static_cast<float>(phDelta);
231 /* Now write out each phase index's scale and phase+scale deltas,
232 * to complete the bilinear equation for the combination of phase
233 * and scale.
235 if(si < BSincScaleCount-1)
237 for(size_t pi{0};pi < BSincPhaseCount;++pi)
239 for(size_t i{0};i < m;++i)
241 const double scDelta{filter[si+1][pi][o+i] - filter[si][pi][o+i]};
242 mTable[idx++] = static_cast<float>(scDelta);
245 if(pi < BSincPhaseCount-1)
247 for(size_t i{0};i < m;++i)
249 const double spDelta{(filter[si+1][pi+1][o+i]-filter[si+1][pi][o+i]) -
250 (filter[si][pi+1][o+i]-filter[si][pi][o+i])};
251 mTable[idx++] = static_cast<float>(spDelta);
254 else
256 mTable[idx++] = static_cast<float>((0.0 - filter[si+1][pi][o]) -
257 (0.0 - filter[si][pi][o]));
258 for(size_t i{1};i < m;++i)
260 const double spDelta{(filter[si+1][0][o+i-1] - filter[si+1][pi][o+i]) -
261 (filter[si][0][o+i-1] - filter[si][pi][o+i])};
262 mTable[idx++] = static_cast<float>(spDelta);
267 else
269 /* The last scale index doesn't have scale-related deltas. */
270 for(size_t i{0};i < BSincPhaseCount*m*2;++i)
271 mTable[idx++] = 0.0f;
274 assert(idx == hdr.total_size);
277 [[nodiscard]] constexpr auto getHeader() const noexcept -> const BSincHeader& { return hdr; }
278 [[nodiscard]] constexpr auto getTable() const noexcept { return al::span{mTable}; }
281 const BSincFilterArray<bsinc12_hdr> bsinc12_filter{};
282 const BSincFilterArray<bsinc24_hdr> bsinc24_filter{};
284 template<typename T>
285 constexpr BSincTable GenerateBSincTable(const T &filter)
287 BSincTable ret{};
288 const BSincHeader &hdr = filter.getHeader();
289 ret.scaleBase = static_cast<float>(hdr.scaleBase);
290 ret.scaleRange = static_cast<float>(1.0 / (1.0 - hdr.scaleBase));
291 for(size_t i{0};i < BSincScaleCount;++i)
292 ret.m[i] = ((hdr.a[i]*2) + 3) & ~3u;
293 ret.filterOffset[0] = 0;
294 for(size_t i{1};i < BSincScaleCount;++i)
295 ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1]*4*BSincPhaseCount;
296 ret.Tab = filter.getTable();
297 return ret;
300 } // namespace
302 const BSincTable gBSinc12{GenerateBSincTable(bsinc12_filter)};
303 const BSincTable gBSinc24{GenerateBSincTable(bsinc24_filter)};