Fully protect disconnection with the mixer counter
[openal-soft.git] / alc / alu.cpp
blob0ba83739fec4a16bf410bb1f9919085533477b80
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include "alu.h"
25 #include <algorithm>
26 #include <array>
27 #include <atomic>
28 #include <cassert>
29 #include <chrono>
30 #include <climits>
31 #include <cstdarg>
32 #include <cstdio>
33 #include <cstdlib>
34 #include <functional>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <new>
39 #include <stdint.h>
40 #include <utility>
42 #include "almalloc.h"
43 #include "alnumbers.h"
44 #include "alnumeric.h"
45 #include "alspan.h"
46 #include "alstring.h"
47 #include "atomic.h"
48 #include "core/ambidefs.h"
49 #include "core/async_event.h"
50 #include "core/bformatdec.h"
51 #include "core/bs2b.h"
52 #include "core/bsinc_defs.h"
53 #include "core/bsinc_tables.h"
54 #include "core/bufferline.h"
55 #include "core/buffer_storage.h"
56 #include "core/context.h"
57 #include "core/cpu_caps.h"
58 #include "core/devformat.h"
59 #include "core/device.h"
60 #include "core/effects/base.h"
61 #include "core/effectslot.h"
62 #include "core/filters/biquad.h"
63 #include "core/filters/nfc.h"
64 #include "core/fpu_ctrl.h"
65 #include "core/hrtf.h"
66 #include "core/mastering.h"
67 #include "core/mixer.h"
68 #include "core/mixer/defs.h"
69 #include "core/mixer/hrtfdefs.h"
70 #include "core/resampler_limits.h"
71 #include "core/uhjfilter.h"
72 #include "core/voice.h"
73 #include "core/voice_change.h"
74 #include "intrusive_ptr.h"
75 #include "opthelpers.h"
76 #include "ringbuffer.h"
77 #include "strutils.h"
78 #include "threads.h"
79 #include "vecmat.h"
80 #include "vector.h"
82 struct CTag;
83 #ifdef HAVE_SSE
84 struct SSETag;
85 #endif
86 #ifdef HAVE_SSE2
87 struct SSE2Tag;
88 #endif
89 #ifdef HAVE_SSE4_1
90 struct SSE4Tag;
91 #endif
92 #ifdef HAVE_NEON
93 struct NEONTag;
94 #endif
95 struct PointTag;
96 struct LerpTag;
97 struct CubicTag;
98 struct BSincTag;
99 struct FastBSincTag;
102 static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two");
105 namespace {
107 using uint = unsigned int;
109 constexpr uint MaxPitch{10};
111 static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
112 static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
113 "MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
115 using namespace std::placeholders;
117 float InitConeScale()
119 float ret{1.0f};
120 if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
122 if(al::strcasecmp(optval->c_str(), "true") == 0
123 || strtol(optval->c_str(), nullptr, 0) == 1)
124 ret *= 0.5f;
126 return ret;
128 /* Cone scalar */
129 const float ConeScale{InitConeScale()};
131 /* Localized scalars for mono sources (initialized in aluInit, after
132 * configuration is loaded).
134 float XScale{1.0f};
135 float YScale{1.0f};
136 float ZScale{1.0f};
139 struct ChanMap {
140 Channel channel;
141 float angle;
142 float elevation;
145 using HrtfDirectMixerFunc = void(*)(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
146 const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, float *TempBuf,
147 HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
149 HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_<CTag>};
151 inline HrtfDirectMixerFunc SelectHrtfMixer(void)
153 #ifdef HAVE_NEON
154 if((CPUCapFlags&CPU_CAP_NEON))
155 return MixDirectHrtf_<NEONTag>;
156 #endif
157 #ifdef HAVE_SSE
158 if((CPUCapFlags&CPU_CAP_SSE))
159 return MixDirectHrtf_<SSETag>;
160 #endif
162 return MixDirectHrtf_<CTag>;
166 inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table)
168 size_t si{BSincScaleCount - 1};
169 float sf{0.0f};
171 if(increment > MixerFracOne)
173 sf = MixerFracOne/static_cast<float>(increment) - table->scaleBase;
174 sf = maxf(0.0f, BSincScaleCount*sf*table->scaleRange - 1.0f);
175 si = float2uint(sf);
176 /* The interpolation factor is fit to this diagonally-symmetric curve
177 * to reduce the transition ripple caused by interpolating different
178 * scales of the sinc function.
180 sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
183 state->sf = sf;
184 state->m = table->m[si];
185 state->l = (state->m/2) - 1;
186 state->filter = table->Tab + table->filterOffset[si];
189 inline ResamplerFunc SelectResampler(Resampler resampler, uint increment)
191 switch(resampler)
193 case Resampler::Point:
194 return Resample_<PointTag,CTag>;
195 case Resampler::Linear:
196 #ifdef HAVE_NEON
197 if((CPUCapFlags&CPU_CAP_NEON))
198 return Resample_<LerpTag,NEONTag>;
199 #endif
200 #ifdef HAVE_SSE4_1
201 if((CPUCapFlags&CPU_CAP_SSE4_1))
202 return Resample_<LerpTag,SSE4Tag>;
203 #endif
204 #ifdef HAVE_SSE2
205 if((CPUCapFlags&CPU_CAP_SSE2))
206 return Resample_<LerpTag,SSE2Tag>;
207 #endif
208 return Resample_<LerpTag,CTag>;
209 case Resampler::Cubic:
210 return Resample_<CubicTag,CTag>;
211 case Resampler::BSinc12:
212 case Resampler::BSinc24:
213 if(increment > MixerFracOne)
215 #ifdef HAVE_NEON
216 if((CPUCapFlags&CPU_CAP_NEON))
217 return Resample_<BSincTag,NEONTag>;
218 #endif
219 #ifdef HAVE_SSE
220 if((CPUCapFlags&CPU_CAP_SSE))
221 return Resample_<BSincTag,SSETag>;
222 #endif
223 return Resample_<BSincTag,CTag>;
225 /* fall-through */
226 case Resampler::FastBSinc12:
227 case Resampler::FastBSinc24:
228 #ifdef HAVE_NEON
229 if((CPUCapFlags&CPU_CAP_NEON))
230 return Resample_<FastBSincTag,NEONTag>;
231 #endif
232 #ifdef HAVE_SSE
233 if((CPUCapFlags&CPU_CAP_SSE))
234 return Resample_<FastBSincTag,SSETag>;
235 #endif
236 return Resample_<FastBSincTag,CTag>;
239 return Resample_<PointTag,CTag>;
242 } // namespace
244 void aluInit(CompatFlagBitset flags)
246 MixDirectHrtf = SelectHrtfMixer();
247 XScale = flags.test(CompatFlags::ReverseX) ? -1.0f : 1.0f;
248 YScale = flags.test(CompatFlags::ReverseY) ? -1.0f : 1.0f;
249 ZScale = flags.test(CompatFlags::ReverseZ) ? -1.0f : 1.0f;
253 ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state)
255 switch(resampler)
257 case Resampler::Point:
258 case Resampler::Linear:
259 case Resampler::Cubic:
260 break;
261 case Resampler::FastBSinc12:
262 case Resampler::BSinc12:
263 BsincPrepare(increment, &state->bsinc, &bsinc12);
264 break;
265 case Resampler::FastBSinc24:
266 case Resampler::BSinc24:
267 BsincPrepare(increment, &state->bsinc, &bsinc24);
268 break;
270 return SelectResampler(resampler, increment);
274 void DeviceBase::ProcessHrtf(const size_t SamplesToDo)
276 /* HRTF is stereo output only. */
277 const uint lidx{RealOut.ChannelIndex[FrontLeft]};
278 const uint ridx{RealOut.ChannelIndex[FrontRight]};
280 MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
281 mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo);
284 void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo)
286 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
289 void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo)
291 /* Decode with front image stablization. */
292 const uint lidx{RealOut.ChannelIndex[FrontLeft]};
293 const uint ridx{RealOut.ChannelIndex[FrontRight]};
294 const uint cidx{RealOut.ChannelIndex[FrontCenter]};
296 AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx,
297 SamplesToDo);
300 void DeviceBase::ProcessUhj(const size_t SamplesToDo)
302 /* UHJ is stereo output only. */
303 const uint lidx{RealOut.ChannelIndex[FrontLeft]};
304 const uint ridx{RealOut.ChannelIndex[FrontRight]};
306 /* Encode to stereo-compatible 2-channel UHJ output. */
307 mUhjEncoder->encode(RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
308 Dry.Buffer.data(), SamplesToDo);
311 void DeviceBase::ProcessBs2b(const size_t SamplesToDo)
313 /* First, decode the ambisonic mix to the "real" output. */
314 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
316 /* BS2B is stereo output only. */
317 const uint lidx{RealOut.ChannelIndex[FrontLeft]};
318 const uint ridx{RealOut.ChannelIndex[FrontRight]};
320 /* Now apply the BS2B binaural/crossfeed filter. */
321 bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
322 SamplesToDo);
326 namespace {
328 using AmbiRotateMatrix = std::array<std::array<float,MaxAmbiChannels>,MaxAmbiChannels>;
330 /* This RNG method was created based on the math found in opusdec. It's quick,
331 * and starting with a seed value of 22222, is suitable for generating
332 * whitenoise.
334 inline uint dither_rng(uint *seed) noexcept
336 *seed = (*seed * 96314165) + 907633515;
337 return *seed;
341 inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
343 switch(scaletype)
345 case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
346 case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
347 case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
348 case AmbiScaling::N3D: break;
350 return AmbiScale::FromN3D();
353 inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
355 if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
356 return AmbiIndex::FromACN();
359 inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
361 if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
362 return AmbiIndex::FromACN2D();
366 bool CalcContextParams(ContextBase *ctx)
368 ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)};
369 if(!props) return false;
371 const alu::Vector pos{props->Position[0], props->Position[1], props->Position[2], 1.0f};
372 ctx->mParams.Position = pos;
374 /* AT then UP */
375 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
376 N.normalize();
377 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
378 V.normalize();
379 /* Build and normalize right-vector */
380 alu::Vector U{N.cross_product(V)};
381 U.normalize();
383 const alu::Matrix rot{
384 U[0], V[0], -N[0], 0.0,
385 U[1], V[1], -N[1], 0.0,
386 U[2], V[2], -N[2], 0.0,
387 0.0, 0.0, 0.0, 1.0};
388 const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0};
390 ctx->mParams.Matrix = rot;
391 ctx->mParams.Velocity = rot * vel;
393 ctx->mParams.Gain = props->Gain * ctx->mGainBoost;
394 ctx->mParams.MetersPerUnit = props->MetersPerUnit;
395 ctx->mParams.AirAbsorptionGainHF = props->AirAbsorptionGainHF;
397 ctx->mParams.DopplerFactor = props->DopplerFactor;
398 ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
400 ctx->mParams.SourceDistanceModel = props->SourceDistanceModel;
401 ctx->mParams.mDistanceModel = props->mDistanceModel;
403 AtomicReplaceHead(ctx->mFreeContextProps, props);
404 return true;
407 bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ContextBase *context)
409 EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
410 if(!props) return false;
412 /* If the effect slot target changed, clear the first sorted entry to force
413 * a re-sort.
415 if(slot->Target != props->Target)
416 *sorted_slots = nullptr;
417 slot->Gain = props->Gain;
418 slot->AuxSendAuto = props->AuxSendAuto;
419 slot->Target = props->Target;
420 slot->EffectType = props->Type;
421 slot->mEffectProps = props->Props;
422 if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb)
424 slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
425 slot->DecayTime = props->Props.Reverb.DecayTime;
426 slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio;
427 slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio;
428 slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit;
429 slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
431 else
433 slot->RoomRolloff = 0.0f;
434 slot->DecayTime = 0.0f;
435 slot->DecayLFRatio = 0.0f;
436 slot->DecayHFRatio = 0.0f;
437 slot->DecayHFLimit = false;
438 slot->AirAbsorptionGainHF = 1.0f;
441 EffectState *state{props->State.release()};
442 EffectState *oldstate{slot->mEffectState};
443 slot->mEffectState = state;
445 /* Only release the old state if it won't get deleted, since we can't be
446 * deleting/freeing anything in the mixer.
448 if(!oldstate->releaseIfNoDelete())
450 /* Otherwise, if it would be deleted send it off with a release event. */
451 RingBuffer *ring{context->mAsyncEvents.get()};
452 auto evt_vec = ring->getWriteVector();
453 if LIKELY(evt_vec.first.len > 0)
455 AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
456 AsyncEvent::ReleaseEffectState)};
457 evt->u.mEffectState = oldstate;
458 ring->writeAdvance(1);
460 else
462 /* If writing the event failed, the queue was probably full. Store
463 * the old state in the property object where it can eventually be
464 * cleaned up sometime later (not ideal, but better than blocking
465 * or leaking).
467 props->State.reset(oldstate);
471 AtomicReplaceHead(context->mFreeEffectslotProps, props);
473 EffectTarget output;
474 if(EffectSlot *target{slot->Target})
475 output = EffectTarget{&target->Wet, nullptr};
476 else
478 DeviceBase *device{context->mDevice};
479 output = EffectTarget{&device->Dry, &device->RealOut};
481 state->update(context, slot, &slot->mEffectProps, output);
482 return true;
486 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
487 * front.
489 inline float ScaleAzimuthFront(float azimuth, float scale)
491 const float abs_azi{std::fabs(azimuth)};
492 if(!(abs_azi >= al::numbers::pi_v<float>*0.5f))
493 return std::copysign(minf(abs_azi*scale, al::numbers::pi_v<float>*0.5f), azimuth);
494 return azimuth;
497 /* Wraps the given value in radians to stay between [-pi,+pi] */
498 inline float WrapRadians(float r)
500 static constexpr float Pi{al::numbers::pi_v<float>};
501 static constexpr float Pi2{Pi*2.0f};
502 if(r > Pi) return std::fmod(Pi+r, Pi2) - Pi;
503 if(r < -Pi) return Pi - std::fmod(Pi-r, Pi2);
504 return r;
507 /* Begin ambisonic rotation helpers.
509 * Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
510 * matrix. Higher orders, however, are more complicated. The method implemented
511 * here is a recursive algorithm (the rotation for first-order is used to help
512 * generate the second-order rotation, which helps generate the third-order
513 * rotation, etc).
515 * Adapted from
516 * <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
517 * provided under the BSD 3-Clause license.
519 * Copyright (c) 2015, Archontis Politis
520 * Copyright (c) 2019, Christopher Robinson
522 * The u, v, and w coefficients used for generating higher-order rotations are
523 * precomputed since they're constant. The second-order coefficients are
524 * followed by the third-order coefficients, etc.
526 struct RotatorCoeffs {
527 float u, v, w;
529 template<size_t N0, size_t N1>
530 static std::array<RotatorCoeffs,N0+N1> ConcatArrays(const std::array<RotatorCoeffs,N0> &lhs,
531 const std::array<RotatorCoeffs,N1> &rhs)
533 std::array<RotatorCoeffs,N0+N1> ret;
534 auto iter = std::copy(lhs.cbegin(), lhs.cend(), ret.begin());
535 std::copy(rhs.cbegin(), rhs.cend(), iter);
536 return ret;
539 template<int l, int num_elems=l*2+1>
540 static std::array<RotatorCoeffs,num_elems*num_elems> GenCoeffs()
542 std::array<RotatorCoeffs,num_elems*num_elems> ret{};
543 auto coeffs = ret.begin();
545 for(int m{-l};m <= l;++m)
547 for(int n{-l};n <= l;++n)
549 // compute u,v,w terms of Eq.8.1 (Table I)
550 const bool d{m == 0}; // the delta function d_m0
551 const float denom{static_cast<float>((std::abs(n) == l) ?
552 (2*l) * (2*l - 1) : (l*l - n*n))};
554 const int abs_m{std::abs(m)};
555 coeffs->u = std::sqrt(static_cast<float>(l*l - m*m)/denom);
556 coeffs->v = std::sqrt(static_cast<float>(l+abs_m-1) * static_cast<float>(l+abs_m) /
557 denom) * (1.0f+d) * (1.0f - 2.0f*d) * 0.5f;
558 coeffs->w = std::sqrt(static_cast<float>(l-abs_m-1) * static_cast<float>(l-abs_m) /
559 denom) * (1.0f-d) * -0.5f;
560 ++coeffs;
564 return ret;
567 const auto RotatorCoeffArray = RotatorCoeffs::ConcatArrays(RotatorCoeffs::GenCoeffs<2>(),
568 RotatorCoeffs::GenCoeffs<3>());
571 * Given the matrix, pre-filled with the (zeroth- and) first-order rotation
572 * coefficients, this fills in the coefficients for the higher orders up to and
573 * including the given order. The matrix is in ACN layout.
575 void AmbiRotator(AmbiRotateMatrix &matrix, const int order)
577 /* Don't do anything for < 2nd order. */
578 if(order < 2) return;
580 auto P = [](const int i, const int l, const int a, const int n, const size_t last_band,
581 const AmbiRotateMatrix &R)
583 const float ri1{ R[static_cast<uint>(i+2)][ 1+2]};
584 const float rim1{R[static_cast<uint>(i+2)][-1+2]};
585 const float ri0{ R[static_cast<uint>(i+2)][ 0+2]};
587 auto vec = R[static_cast<uint>(a+l-1) + last_band].cbegin() + last_band;
588 if(n == -l)
589 return ri1*vec[0] + rim1*vec[static_cast<uint>(l-1)*size_t{2}];
590 if(n == l)
591 return ri1*vec[static_cast<uint>(l-1)*size_t{2}] - rim1*vec[0];
592 return ri0*vec[static_cast<uint>(n+l-1)];
595 auto U = [P](const int l, const int m, const int n, const size_t last_band,
596 const AmbiRotateMatrix &R)
598 return P(0, l, m, n, last_band, R);
600 auto V = [P](const int l, const int m, const int n, const size_t last_band,
601 const AmbiRotateMatrix &R)
603 using namespace al::numbers;
604 if(m > 0)
606 const bool d{m == 1};
607 const float p0{P( 1, l, m-1, n, last_band, R)};
608 const float p1{P(-1, l, -m+1, n, last_band, R)};
609 return d ? p0*sqrt2_v<float> : (p0 - p1);
611 const bool d{m == -1};
612 const float p0{P( 1, l, m+1, n, last_band, R)};
613 const float p1{P(-1, l, -m-1, n, last_band, R)};
614 return d ? p1*sqrt2_v<float> : (p0 + p1);
616 auto W = [P](const int l, const int m, const int n, const size_t last_band,
617 const AmbiRotateMatrix &R)
619 assert(m != 0);
620 if(m > 0)
622 const float p0{P( 1, l, m+1, n, last_band, R)};
623 const float p1{P(-1, l, -m-1, n, last_band, R)};
624 return p0 + p1;
626 const float p0{P( 1, l, m-1, n, last_band, R)};
627 const float p1{P(-1, l, -m+1, n, last_band, R)};
628 return p0 - p1;
631 // compute rotation matrix of each subsequent band recursively
632 auto coeffs = RotatorCoeffArray.cbegin();
633 size_t band_idx{4}, last_band{1};
634 for(int l{2};l <= order;++l)
636 size_t y{band_idx};
637 for(int m{-l};m <= l;++m,++y)
639 size_t x{band_idx};
640 for(int n{-l};n <= l;++n,++x)
642 float r{0.0f};
644 // computes Eq.8.1
645 const float u{coeffs->u};
646 if(u != 0.0f) r += u * U(l, m, n, last_band, matrix);
647 const float v{coeffs->v};
648 if(v != 0.0f) r += v * V(l, m, n, last_band, matrix);
649 const float w{coeffs->w};
650 if(w != 0.0f) r += w * W(l, m, n, last_band, matrix);
652 matrix[y][x] = r;
653 ++coeffs;
656 last_band = band_idx;
657 band_idx += static_cast<uint>(l)*size_t{2} + 1;
660 /* End ambisonic rotation helpers. */
663 constexpr float Deg2Rad(float x) noexcept
664 { return static_cast<float>(al::numbers::pi / 180.0 * x); }
666 struct GainTriplet { float Base, HF, LF; };
668 void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos,
669 const float Distance, const float Spread, const GainTriplet &DryGain,
670 const al::span<const GainTriplet,MAX_SENDS> WetGain, EffectSlot *(&SendSlots)[MAX_SENDS],
671 const VoiceProps *props, const ContextParams &Context, const DeviceBase *Device)
673 static constexpr ChanMap MonoMap[1]{
674 { FrontCenter, 0.0f, 0.0f }
675 }, RearMap[2]{
676 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
677 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
678 }, QuadMap[4]{
679 { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
680 { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
681 { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
682 { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
683 }, X51Map[6]{
684 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
685 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
686 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
687 { LFE, 0.0f, 0.0f },
688 { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
689 { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
690 }, X61Map[7]{
691 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
692 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
693 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
694 { LFE, 0.0f, 0.0f },
695 { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
696 { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
697 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
698 }, X71Map[8]{
699 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
700 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
701 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
702 { LFE, 0.0f, 0.0f },
703 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
704 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
705 { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
706 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
709 ChanMap StereoMap[2]{
710 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
711 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
714 const auto Frequency = static_cast<float>(Device->Frequency);
715 const uint NumSends{Device->NumAuxSends};
717 const size_t num_channels{voice->mChans.size()};
718 ASSUME(num_channels > 0);
720 for(auto &chandata : voice->mChans)
722 chandata.mDryParams.Hrtf.Target = HrtfFilter{};
723 chandata.mDryParams.Gains.Target.fill(0.0f);
724 std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
725 [](SendParams &params) -> void { params.Gains.Target.fill(0.0f); });
728 DirectMode DirectChannels{props->DirectChannels};
729 const ChanMap *chans{nullptr};
730 switch(voice->mFmtChannels)
732 case FmtMono:
733 chans = MonoMap;
734 /* Mono buffers are never played direct. */
735 DirectChannels = DirectMode::Off;
736 break;
738 case FmtStereo:
739 if(DirectChannels == DirectMode::Off)
741 /* Convert counter-clockwise to clock-wise, and wrap between
742 * [-pi,+pi].
744 StereoMap[0].angle = WrapRadians(-props->StereoPan[0]);
745 StereoMap[1].angle = WrapRadians(-props->StereoPan[1]);
747 chans = StereoMap;
748 break;
750 case FmtRear: chans = RearMap; break;
751 case FmtQuad: chans = QuadMap; break;
752 case FmtX51: chans = X51Map; break;
753 case FmtX61: chans = X61Map; break;
754 case FmtX71: chans = X71Map; break;
756 case FmtBFormat2D:
757 case FmtBFormat3D:
758 case FmtUHJ2:
759 case FmtUHJ3:
760 case FmtUHJ4:
761 case FmtSuperStereo:
762 DirectChannels = DirectMode::Off;
763 break;
766 voice->mFlags.reset(VoiceHasHrtf).reset(VoiceHasNfc);
767 if(auto *decoder{voice->mDecoder.get()})
768 decoder->mWidthControl = minf(props->EnhWidth, 0.7f);
770 if(IsAmbisonic(voice->mFmtChannels))
772 /* Special handling for B-Format and UHJ sources. */
774 if(Device->AvgSpeakerDist > 0.0f && voice->mFmtChannels != FmtUHJ2
775 && voice->mFmtChannels != FmtSuperStereo)
777 if(!(Distance > std::numeric_limits<float>::epsilon()))
779 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
780 * is what we want for FOA input. The first channel may have
781 * been previously re-adjusted if panned, so reset it.
783 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
785 else
787 /* Clamp the distance for really close sources, to prevent
788 * excessive bass.
790 const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
791 const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
793 /* Only need to adjust the first channel of a B-Format source. */
794 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
797 voice->mFlags.set(VoiceHasNfc);
800 /* Panning a B-Format sound toward some direction is easy. Just pan the
801 * first (W) channel as a normal mono sound. The angular spread is used
802 * as a directional scalar to blend between full coverage and full
803 * panning.
805 const float coverage{!(Distance > std::numeric_limits<float>::epsilon()) ? 1.0f :
806 (al::numbers::inv_pi_v<float>/2.0f * Spread)};
808 auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode)
810 if(mode != RenderMode::Pairwise)
811 return CalcDirectionCoeffs({xpos, ypos, zpos}, 0.0f);
813 /* Clamp Y, in case rounding errors caused it to end up outside
814 * of -1...+1.
816 const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
817 /* Negate Z for right-handed coords with -Z in front. */
818 const float az{std::atan2(xpos, -zpos)};
820 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
821 * being moved to +/-90 degrees for direct right and left
822 * speaker responses.
824 return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, 0.0f);
826 auto coeffs = calc_coeffs(Device->mRenderMode);
827 std::transform(coeffs.begin()+1, coeffs.end(), coeffs.begin()+1,
828 std::bind(std::multiplies<float>{}, _1, 1.0f-coverage));
830 /* NOTE: W needs to be scaled according to channel scaling. */
831 auto&& scales = GetAmbiScales(voice->mAmbiScaling);
832 ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base*scales[0],
833 voice->mChans[0].mDryParams.Gains.Target);
834 for(uint i{0};i < NumSends;i++)
836 if(const EffectSlot *Slot{SendSlots[i]})
837 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base*scales[0],
838 voice->mChans[0].mWetParams[i].Gains.Target);
841 if(coverage > 0.0f)
843 /* Local B-Format sources have their XYZ channels rotated according
844 * to the orientation.
846 /* AT then UP */
847 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
848 N.normalize();
849 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
850 V.normalize();
851 if(!props->HeadRelative)
853 N = Context.Matrix * N;
854 V = Context.Matrix * V;
856 /* Build and normalize right-vector */
857 alu::Vector U{N.cross_product(V)};
858 U.normalize();
860 /* Build a rotation matrix. Manually fill the zeroth- and first-
861 * order elements, then construct the rotation for the higher
862 * orders.
864 AmbiRotateMatrix shrot{};
865 shrot[0][0] = 1.0f;
866 shrot[1][1] = U[0]; shrot[1][2] = -V[0]; shrot[1][3] = -N[0];
867 shrot[2][1] = -U[1]; shrot[2][2] = V[1]; shrot[2][3] = N[1];
868 shrot[3][1] = U[2]; shrot[3][2] = -V[2]; shrot[3][3] = -N[2];
869 AmbiRotator(shrot, static_cast<int>(minu(voice->mAmbiOrder, Device->mAmbiOrder)));
871 /* Convert the rotation matrix for input ordering and scaling, and
872 * whether input is 2D or 3D.
874 const uint8_t *index_map{Is2DAmbisonic(voice->mFmtChannels) ?
875 GetAmbi2DLayout(voice->mAmbiLayout).data() :
876 GetAmbiLayout(voice->mAmbiLayout).data()};
878 static const uint8_t ChansPerOrder[MaxAmbiOrder+1]{1, 3, 5, 7,};
879 static const uint8_t OrderOffset[MaxAmbiOrder+1]{0, 1, 4, 9,};
880 for(size_t c{1};c < num_channels;c++)
882 const size_t acn{index_map[c]};
883 const size_t order{AmbiIndex::OrderFromChannel()[acn]};
884 const size_t tocopy{ChansPerOrder[order]};
885 const size_t offset{OrderOffset[order]};
886 const float scale{scales[acn] * coverage};
887 auto in = shrot.cbegin() + offset;
889 coeffs = std::array<float,MaxAmbiChannels>{};
890 for(size_t x{0};x < tocopy;++x)
891 coeffs[offset+x] = in[x][acn] * scale;
893 ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
894 voice->mChans[c].mDryParams.Gains.Target);
896 for(uint i{0};i < NumSends;i++)
898 if(const EffectSlot *Slot{SendSlots[i]})
899 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
900 voice->mChans[c].mWetParams[i].Gains.Target);
905 else if(DirectChannels != DirectMode::Off && !Device->RealOut.RemixMap.empty())
907 /* Direct source channels always play local. Skip the virtual channels
908 * and write inputs to the matching real outputs.
910 voice->mDirect.Buffer = Device->RealOut.Buffer;
912 for(size_t c{0};c < num_channels;c++)
914 uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
915 if(idx != INVALID_CHANNEL_INDEX)
916 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
917 else if(DirectChannels == DirectMode::RemixMismatch)
919 auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool
920 { return chans[c].channel == map.channel; };
921 auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(),
922 Device->RealOut.RemixMap.cend(), match_channel);
923 if(remap != Device->RealOut.RemixMap.cend())
925 for(const auto &target : remap->targets)
927 idx = GetChannelIdxByName(Device->RealOut, target.channel);
928 if(idx != INVALID_CHANNEL_INDEX)
929 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base *
930 target.mix;
936 /* Auxiliary sends still use normal channel panning since they mix to
937 * B-Format, which can't channel-match.
939 for(size_t c{0};c < num_channels;c++)
941 const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f);
943 for(uint i{0};i < NumSends;i++)
945 if(const EffectSlot *Slot{SendSlots[i]})
946 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
947 voice->mChans[c].mWetParams[i].Gains.Target);
951 else if(Device->mRenderMode == RenderMode::Hrtf)
953 /* Full HRTF rendering. Skip the virtual channels and render to the
954 * real outputs.
956 voice->mDirect.Buffer = Device->RealOut.Buffer;
958 if(Distance > std::numeric_limits<float>::epsilon())
960 const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
961 const float az{std::atan2(xpos, -zpos)};
963 /* Get the HRIR coefficients and delays just once, for the given
964 * source direction.
966 GetHrtfCoeffs(Device->mHrtf.get(), ev, az, Distance, Spread,
967 voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
968 voice->mChans[0].mDryParams.Hrtf.Target.Delay);
969 voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base;
971 /* Remaining channels use the same results as the first. */
972 for(size_t c{1};c < num_channels;c++)
974 /* Skip LFE */
975 if(chans[c].channel == LFE) continue;
976 voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target;
979 /* Calculate the directional coefficients once, which apply to all
980 * input channels of the source sends.
982 const auto coeffs = CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
984 for(size_t c{0};c < num_channels;c++)
986 /* Skip LFE */
987 if(chans[c].channel == LFE)
988 continue;
989 for(uint i{0};i < NumSends;i++)
991 if(const EffectSlot *Slot{SendSlots[i]})
992 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
993 voice->mChans[c].mWetParams[i].Gains.Target);
997 else
999 /* Local sources on HRTF play with each channel panned to its
1000 * relative location around the listener, providing "virtual
1001 * speaker" responses.
1003 for(size_t c{0};c < num_channels;c++)
1005 /* Skip LFE */
1006 if(chans[c].channel == LFE)
1007 continue;
1009 /* Get the HRIR coefficients and delays for this channel
1010 * position.
1012 GetHrtfCoeffs(Device->mHrtf.get(), chans[c].elevation, chans[c].angle,
1013 std::numeric_limits<float>::infinity(), Spread,
1014 voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
1015 voice->mChans[c].mDryParams.Hrtf.Target.Delay);
1016 voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
1018 /* Normal panning for auxiliary sends. */
1019 const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread);
1021 for(uint i{0};i < NumSends;i++)
1023 if(const EffectSlot *Slot{SendSlots[i]})
1024 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
1025 voice->mChans[c].mWetParams[i].Gains.Target);
1030 voice->mFlags.set(VoiceHasHrtf);
1032 else
1034 /* Non-HRTF rendering. Use normal panning to the output. */
1036 if(Distance > std::numeric_limits<float>::epsilon())
1038 /* Calculate NFC filter coefficient if needed. */
1039 if(Device->AvgSpeakerDist > 0.0f)
1041 /* Clamp the distance for really close sources, to prevent
1042 * excessive bass.
1044 const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
1045 const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
1047 /* Adjust NFC filters. */
1048 for(size_t c{0};c < num_channels;c++)
1049 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
1051 voice->mFlags.set(VoiceHasNfc);
1054 /* Calculate the directional coefficients once, which apply to all
1055 * input channels.
1057 auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode)
1059 if(mode != RenderMode::Pairwise)
1060 return CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
1061 const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
1062 const float az{std::atan2(xpos, -zpos)};
1063 return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread);
1065 const auto coeffs = calc_coeffs(Device->mRenderMode);
1067 for(size_t c{0};c < num_channels;c++)
1069 /* Special-case LFE */
1070 if(chans[c].channel == LFE)
1072 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
1074 const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
1075 if(idx != INVALID_CHANNEL_INDEX)
1076 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
1078 continue;
1081 ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
1082 voice->mChans[c].mDryParams.Gains.Target);
1083 for(uint i{0};i < NumSends;i++)
1085 if(const EffectSlot *Slot{SendSlots[i]})
1086 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
1087 voice->mChans[c].mWetParams[i].Gains.Target);
1091 else
1093 if(Device->AvgSpeakerDist > 0.0f)
1095 /* If the source distance is 0, simulate a plane-wave by using
1096 * infinite distance, which results in a w0 of 0.
1098 static constexpr float w0{0.0f};
1099 for(size_t c{0};c < num_channels;c++)
1100 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
1102 voice->mFlags.set(VoiceHasNfc);
1105 for(size_t c{0};c < num_channels;c++)
1107 /* Special-case LFE */
1108 if(chans[c].channel == LFE)
1110 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
1112 const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
1113 if(idx != INVALID_CHANNEL_INDEX)
1114 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
1116 continue;
1119 const auto coeffs = CalcAngleCoeffs((Device->mRenderMode == RenderMode::Pairwise)
1120 ? ScaleAzimuthFront(chans[c].angle, 3.0f) : chans[c].angle,
1121 chans[c].elevation, Spread);
1123 ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
1124 voice->mChans[c].mDryParams.Gains.Target);
1125 for(uint i{0};i < NumSends;i++)
1127 if(const EffectSlot *Slot{SendSlots[i]})
1128 ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
1129 voice->mChans[c].mWetParams[i].Gains.Target);
1136 const float hfNorm{props->Direct.HFReference / Frequency};
1137 const float lfNorm{props->Direct.LFReference / Frequency};
1139 voice->mDirect.FilterType = AF_None;
1140 if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
1141 if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
1143 auto &lowpass = voice->mChans[0].mDryParams.LowPass;
1144 auto &highpass = voice->mChans[0].mDryParams.HighPass;
1145 lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f);
1146 highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f);
1147 for(size_t c{1};c < num_channels;c++)
1149 voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
1150 voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
1153 for(uint i{0};i < NumSends;i++)
1155 const float hfNorm{props->Send[i].HFReference / Frequency};
1156 const float lfNorm{props->Send[i].LFReference / Frequency};
1158 voice->mSend[i].FilterType = AF_None;
1159 if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
1160 if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
1162 auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
1163 auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
1164 lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f);
1165 highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f);
1166 for(size_t c{1};c < num_channels;c++)
1168 voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
1169 voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
1174 void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
1176 const DeviceBase *Device{context->mDevice};
1177 EffectSlot *SendSlots[MAX_SENDS];
1179 voice->mDirect.Buffer = Device->Dry.Buffer;
1180 for(uint i{0};i < Device->NumAuxSends;i++)
1182 SendSlots[i] = props->Send[i].Slot;
1183 if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
1185 SendSlots[i] = nullptr;
1186 voice->mSend[i].Buffer = {};
1188 else
1189 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1192 /* Calculate the stepping value */
1193 const auto Pitch = static_cast<float>(voice->mFrequency) /
1194 static_cast<float>(Device->Frequency) * props->Pitch;
1195 if(Pitch > float{MaxPitch})
1196 voice->mStep = MaxPitch<<MixerFracBits;
1197 else
1198 voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
1199 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1201 /* Calculate gains */
1202 GainTriplet DryGain;
1203 DryGain.Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain *
1204 context->mParams.Gain, GainMixMax);
1205 DryGain.HF = props->Direct.GainHF;
1206 DryGain.LF = props->Direct.GainLF;
1207 GainTriplet WetGain[MAX_SENDS];
1208 for(uint i{0};i < Device->NumAuxSends;i++)
1210 WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) *
1211 props->Send[i].Gain * context->mParams.Gain, GainMixMax);
1212 WetGain[i].HF = props->Send[i].GainHF;
1213 WetGain[i].LF = props->Send[i].GainLF;
1216 CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props,
1217 context->mParams, Device);
1220 void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
1222 const DeviceBase *Device{context->mDevice};
1223 const uint NumSends{Device->NumAuxSends};
1225 /* Set mixing buffers and get send parameters. */
1226 voice->mDirect.Buffer = Device->Dry.Buffer;
1227 EffectSlot *SendSlots[MAX_SENDS];
1228 uint UseDryAttnForRoom{0};
1229 for(uint i{0};i < NumSends;i++)
1231 SendSlots[i] = props->Send[i].Slot;
1232 if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
1233 SendSlots[i] = nullptr;
1234 else if(!SendSlots[i]->AuxSendAuto)
1236 /* If the slot's auxiliary send auto is off, the data sent to the
1237 * effect slot is the same as the dry path, sans filter effects.
1239 UseDryAttnForRoom |= 1u<<i;
1242 if(!SendSlots[i])
1243 voice->mSend[i].Buffer = {};
1244 else
1245 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1248 /* Transform source to listener space (convert to head relative) */
1249 alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
1250 alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
1251 alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
1252 if(!props->HeadRelative)
1254 /* Transform source vectors */
1255 Position = context->mParams.Matrix * (Position - context->mParams.Position);
1256 Velocity = context->mParams.Matrix * Velocity;
1257 Direction = context->mParams.Matrix * Direction;
1259 else
1261 /* Offset the source velocity to be relative of the listener velocity */
1262 Velocity += context->mParams.Velocity;
1265 const bool directional{Direction.normalize() > 0.0f};
1266 alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
1267 const float Distance{ToSource.normalize()};
1269 /* Calculate distance attenuation */
1270 float ClampedDist{Distance};
1271 float DryGainBase{props->Gain};
1272 float WetGainBase{props->Gain};
1274 switch(context->mParams.SourceDistanceModel ? props->mDistanceModel
1275 : context->mParams.mDistanceModel)
1277 case DistanceModel::InverseClamped:
1278 if(props->MaxDistance < props->RefDistance) break;
1279 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1280 /*fall-through*/
1281 case DistanceModel::Inverse:
1282 if(props->RefDistance > 0.0f)
1284 float dist{lerpf(props->RefDistance, ClampedDist, props->RolloffFactor)};
1285 if(dist > 0.0f) DryGainBase *= props->RefDistance / dist;
1287 dist = lerpf(props->RefDistance, ClampedDist, props->RoomRolloffFactor);
1288 if(dist > 0.0f) WetGainBase *= props->RefDistance / dist;
1290 break;
1292 case DistanceModel::LinearClamped:
1293 if(props->MaxDistance < props->RefDistance) break;
1294 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1295 /*fall-through*/
1296 case DistanceModel::Linear:
1297 if(props->MaxDistance != props->RefDistance)
1299 float attn{(ClampedDist-props->RefDistance) /
1300 (props->MaxDistance-props->RefDistance) * props->RolloffFactor};
1301 DryGainBase *= maxf(1.0f - attn, 0.0f);
1303 attn = (ClampedDist-props->RefDistance) /
1304 (props->MaxDistance-props->RefDistance) * props->RoomRolloffFactor;
1305 WetGainBase *= maxf(1.0f - attn, 0.0f);
1307 break;
1309 case DistanceModel::ExponentClamped:
1310 if(props->MaxDistance < props->RefDistance) break;
1311 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1312 /*fall-through*/
1313 case DistanceModel::Exponent:
1314 if(ClampedDist > 0.0f && props->RefDistance > 0.0f)
1316 const float dist_ratio{ClampedDist/props->RefDistance};
1317 DryGainBase *= std::pow(dist_ratio, -props->RolloffFactor);
1318 WetGainBase *= std::pow(dist_ratio, -props->RoomRolloffFactor);
1320 break;
1322 case DistanceModel::Disable:
1323 break;
1326 /* Calculate directional soundcones */
1327 float ConeHF{1.0f}, WetConeHF{1.0f};
1328 if(directional && props->InnerAngle < 360.0f)
1330 static constexpr float Rad2Deg{static_cast<float>(180.0 / al::numbers::pi)};
1331 const float Angle{Rad2Deg*2.0f * std::acos(-Direction.dot_product(ToSource)) * ConeScale};
1333 float ConeGain{1.0f};
1334 if(Angle >= props->OuterAngle)
1336 ConeGain = props->OuterGain;
1337 ConeHF = lerpf(1.0f, props->OuterGainHF, props->DryGainHFAuto);
1339 else if(Angle >= props->InnerAngle)
1341 const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)};
1342 ConeGain = lerpf(1.0f, props->OuterGain, scale);
1343 ConeHF = lerpf(1.0f, props->OuterGainHF, scale * props->DryGainHFAuto);
1346 DryGainBase *= ConeGain;
1347 WetGainBase *= lerpf(1.0f, ConeGain, props->WetGainAuto);
1349 WetConeHF = lerpf(1.0f, ConeHF, props->WetGainHFAuto);
1352 /* Apply gain and frequency filters */
1353 DryGainBase = clampf(DryGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
1354 WetGainBase = clampf(WetGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
1356 GainTriplet DryGain{};
1357 DryGain.Base = minf(DryGainBase * props->Direct.Gain, GainMixMax);
1358 DryGain.HF = ConeHF * props->Direct.GainHF;
1359 DryGain.LF = props->Direct.GainLF;
1360 GainTriplet WetGain[MAX_SENDS]{};
1361 for(uint i{0};i < NumSends;i++)
1363 /* If this effect slot's Auxiliary Send Auto is off, then use the dry
1364 * path distance and cone attenuation, otherwise use the wet (room)
1365 * path distance and cone attenuation. The send filter is used instead
1366 * of the direct filter, regardless.
1368 const bool use_room{!(UseDryAttnForRoom&(1u<<i))};
1369 const float gain{use_room ? WetGainBase : DryGainBase};
1370 WetGain[i].Base = minf(gain * props->Send[i].Gain, GainMixMax);
1371 WetGain[i].HF = (use_room ? WetConeHF : ConeHF) * props->Send[i].GainHF;
1372 WetGain[i].LF = props->Send[i].GainLF;
1375 /* Distance-based air absorption and initial send decay. */
1376 if(likely(Distance > props->RefDistance))
1378 const float distance_base{(Distance-props->RefDistance) * props->RolloffFactor};
1379 const float absorption{distance_base * context->mParams.MetersPerUnit *
1380 props->AirAbsorptionFactor};
1381 if(absorption > std::numeric_limits<float>::epsilon())
1383 const float hfattn{std::pow(context->mParams.AirAbsorptionGainHF, absorption)};
1384 DryGain.HF *= hfattn;
1385 for(uint i{0u};i < NumSends;++i)
1386 WetGain[i].HF *= hfattn;
1389 /* If the source's Auxiliary Send Filter Gain Auto is off, no extra
1390 * adjustment is applied to the send gains.
1392 for(uint i{props->WetGainAuto ? 0u : NumSends};i < NumSends;++i)
1394 if(!SendSlots[i])
1395 continue;
1397 auto calc_attenuation = [](float distance, float refdist, float rolloff) noexcept
1399 const float dist{lerpf(refdist, distance, rolloff)};
1400 if(dist > refdist) return refdist / dist;
1401 return 1.0f;
1404 /* The reverb effect's room rolloff factor always applies to an
1405 * inverse distance rolloff model.
1407 WetGain[i].Base *= calc_attenuation(Distance, props->RefDistance,
1408 SendSlots[i]->RoomRolloff);
1410 /* If this effect slot's Auxiliary Send Auto is off, don't apply
1411 * the automatic initial reverb decay (should the reverb's room
1412 * rolloff still apply?).
1414 if(!SendSlots[i]->AuxSendAuto)
1415 continue;
1417 GainTriplet DecayDistance;
1418 /* Calculate the distances to where this effect's decay reaches
1419 * -60dB.
1421 DecayDistance.Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec;
1422 DecayDistance.LF = DecayDistance.Base * SendSlots[i]->DecayLFRatio;
1423 DecayDistance.HF = DecayDistance.Base * SendSlots[i]->DecayHFRatio;
1424 if(SendSlots[i]->DecayHFLimit)
1426 const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF};
1427 if(airAbsorption < 1.0f)
1429 /* Calculate the distance to where this effect's air
1430 * absorption reaches -60dB, and limit the effect's HF
1431 * decay distance (so it doesn't take any longer to decay
1432 * than the air would allow).
1434 static constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
1435 const float absorb_dist{log10_decaygain / std::log10(airAbsorption)};
1436 DecayDistance.HF = minf(absorb_dist, DecayDistance.HF);
1440 const float baseAttn = calc_attenuation(Distance, props->RefDistance,
1441 props->RolloffFactor);
1443 /* Apply a decay-time transformation to the wet path, based on the
1444 * source distance. The initial decay of the reverb effect is
1445 * calculated and applied to the wet path.
1447 const float fact{distance_base / DecayDistance.Base};
1448 const float gain{std::pow(ReverbDecayGain, fact)*(1.0f-baseAttn) + baseAttn};
1449 WetGain[i].Base *= gain;
1451 if(gain > 0.0f)
1453 const float hffact{distance_base / DecayDistance.HF};
1454 const float gainhf{std::pow(ReverbDecayGain, hffact)*(1.0f-baseAttn) + baseAttn};
1455 WetGain[i].HF *= minf(gainhf/gain, 1.0f);
1456 const float lffact{distance_base / DecayDistance.LF};
1457 const float gainlf{std::pow(ReverbDecayGain, lffact)*(1.0f-baseAttn) + baseAttn};
1458 WetGain[i].LF *= minf(gainlf/gain, 1.0f);
1464 /* Initial source pitch */
1465 float Pitch{props->Pitch};
1467 /* Calculate velocity-based doppler effect */
1468 float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor};
1469 if(DopplerFactor > 0.0f)
1471 const alu::Vector &lvelocity = context->mParams.Velocity;
1472 float vss{Velocity.dot_product(ToSource) * -DopplerFactor};
1473 float vls{lvelocity.dot_product(ToSource) * -DopplerFactor};
1475 const float SpeedOfSound{context->mParams.SpeedOfSound};
1476 if(!(vls < SpeedOfSound))
1478 /* Listener moving away from the source at the speed of sound.
1479 * Sound waves can't catch it.
1481 Pitch = 0.0f;
1483 else if(!(vss < SpeedOfSound))
1485 /* Source moving toward the listener at the speed of sound. Sound
1486 * waves bunch up to extreme frequencies.
1488 Pitch = std::numeric_limits<float>::infinity();
1490 else
1492 /* Source and listener movement is nominal. Calculate the proper
1493 * doppler shift.
1495 Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
1499 /* Adjust pitch based on the buffer and output frequencies, and calculate
1500 * fixed-point stepping value.
1502 Pitch *= static_cast<float>(voice->mFrequency) / static_cast<float>(Device->Frequency);
1503 if(Pitch > float{MaxPitch})
1504 voice->mStep = MaxPitch<<MixerFracBits;
1505 else
1506 voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
1507 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1509 float spread{0.0f};
1510 if(props->Radius > Distance)
1511 spread = al::numbers::pi_v<float>*2.0f - Distance/props->Radius*al::numbers::pi_v<float>;
1512 else if(Distance > 0.0f)
1513 spread = std::asin(props->Radius/Distance) * 2.0f;
1515 CalcPanningAndFilters(voice, ToSource[0]*XScale, ToSource[1]*YScale, ToSource[2]*ZScale,
1516 Distance*context->mParams.MetersPerUnit, spread, DryGain, WetGain, SendSlots, props,
1517 context->mParams, Device);
1520 void CalcSourceParams(Voice *voice, ContextBase *context, bool force)
1522 VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
1523 if(!props && !force) return;
1525 if(props)
1527 voice->mProps = *props;
1529 AtomicReplaceHead(context->mFreeVoiceProps, props);
1532 if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono
1533 && !IsAmbisonic(voice->mFmtChannels))
1534 || voice->mProps.mSpatializeMode == SpatializeMode::Off
1535 || (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono))
1536 CalcNonAttnSourceParams(voice, &voice->mProps, context);
1537 else
1538 CalcAttnSourceParams(voice, &voice->mProps, context);
1542 void SendSourceStateEvent(ContextBase *context, uint id, VChangeState state)
1544 RingBuffer *ring{context->mAsyncEvents.get()};
1545 auto evt_vec = ring->getWriteVector();
1546 if(evt_vec.first.len < 1) return;
1548 AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
1549 AsyncEvent::SourceStateChange)};
1550 evt->u.srcstate.id = id;
1551 switch(state)
1553 case VChangeState::Reset:
1554 evt->u.srcstate.state = AsyncEvent::SrcState::Reset;
1555 break;
1556 case VChangeState::Stop:
1557 evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
1558 break;
1559 case VChangeState::Play:
1560 evt->u.srcstate.state = AsyncEvent::SrcState::Play;
1561 break;
1562 case VChangeState::Pause:
1563 evt->u.srcstate.state = AsyncEvent::SrcState::Pause;
1564 break;
1565 /* Shouldn't happen. */
1566 case VChangeState::Restart:
1567 ASSUME(0);
1570 ring->writeAdvance(1);
1573 void ProcessVoiceChanges(ContextBase *ctx)
1575 VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)};
1576 VoiceChange *next{cur->mNext.load(std::memory_order_acquire)};
1577 if(!next) return;
1579 const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
1580 do {
1581 cur = next;
1583 bool sendevt{false};
1584 if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop)
1586 if(Voice *voice{cur->mVoice})
1588 voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
1589 voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
1590 /* A source ID indicates the voice was playing or paused, which
1591 * gets a reset/stop event.
1593 sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u;
1594 Voice::State oldvstate{Voice::Playing};
1595 voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
1596 std::memory_order_relaxed, std::memory_order_acquire);
1597 voice->mPendingChange.store(false, std::memory_order_release);
1599 /* Reset state change events are always sent, even if the voice is
1600 * already stopped or even if there is no voice.
1602 sendevt |= (cur->mState == VChangeState::Reset);
1604 else if(cur->mState == VChangeState::Pause)
1606 Voice *voice{cur->mVoice};
1607 Voice::State oldvstate{Voice::Playing};
1608 sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
1609 std::memory_order_release, std::memory_order_acquire);
1611 else if(cur->mState == VChangeState::Play)
1613 /* NOTE: When playing a voice, sending a source state change event
1614 * depends if there's an old voice to stop and if that stop is
1615 * successful. If there is no old voice, a playing event is always
1616 * sent. If there is an old voice, an event is sent only if the
1617 * voice is already stopped.
1619 if(Voice *oldvoice{cur->mOldVoice})
1621 oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
1622 oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
1623 oldvoice->mSourceID.store(0u, std::memory_order_relaxed);
1624 Voice::State oldvstate{Voice::Playing};
1625 sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
1626 std::memory_order_relaxed, std::memory_order_acquire);
1627 oldvoice->mPendingChange.store(false, std::memory_order_release);
1629 else
1630 sendevt = true;
1632 Voice *voice{cur->mVoice};
1633 voice->mPlayState.store(Voice::Playing, std::memory_order_release);
1635 else if(cur->mState == VChangeState::Restart)
1637 /* Restarting a voice never sends a source change event. */
1638 Voice *oldvoice{cur->mOldVoice};
1639 oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
1640 oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
1641 /* If there's no sourceID, the old voice finished so don't start
1642 * the new one at its new offset.
1644 if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u)
1646 /* Otherwise, set the voice to stopping if it's not already (it
1647 * might already be, if paused), and play the new voice as
1648 * appropriate.
1650 Voice::State oldvstate{Voice::Playing};
1651 oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
1652 std::memory_order_relaxed, std::memory_order_acquire);
1654 Voice *voice{cur->mVoice};
1655 voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing
1656 : Voice::Stopped, std::memory_order_release);
1658 oldvoice->mPendingChange.store(false, std::memory_order_release);
1660 if(sendevt && (enabledevt&AsyncEvent::SourceStateChange))
1661 SendSourceStateEvent(ctx, cur->mSourceID, cur->mState);
1663 next = cur->mNext.load(std::memory_order_acquire);
1664 } while(next);
1665 ctx->mCurrentVoiceChange.store(cur, std::memory_order_release);
1668 void ProcessParamUpdates(ContextBase *ctx, const EffectSlotArray &slots,
1669 const al::span<Voice*> voices)
1671 ProcessVoiceChanges(ctx);
1673 IncrementRef(ctx->mUpdateCount);
1674 if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire))
1676 bool force{CalcContextParams(ctx)};
1677 auto sorted_slots = const_cast<EffectSlot**>(slots.data() + slots.size());
1678 for(EffectSlot *slot : slots)
1679 force |= CalcEffectSlotParams(slot, sorted_slots, ctx);
1681 for(Voice *voice : voices)
1683 /* Only update voices that have a source. */
1684 if(voice->mSourceID.load(std::memory_order_relaxed) != 0)
1685 CalcSourceParams(voice, ctx, force);
1688 IncrementRef(ctx->mUpdateCount);
1691 void ProcessContexts(DeviceBase *device, const uint SamplesToDo)
1693 ASSUME(SamplesToDo > 0);
1695 for(ContextBase *ctx : *device->mContexts.load(std::memory_order_acquire))
1697 const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
1698 const al::span<Voice*> voices{ctx->getVoicesSpanAcquired()};
1700 /* Process pending propery updates for objects on the context. */
1701 ProcessParamUpdates(ctx, auxslots, voices);
1703 /* Clear auxiliary effect slot mixing buffers. */
1704 for(EffectSlot *slot : auxslots)
1706 for(auto &buffer : slot->Wet.Buffer)
1707 buffer.fill(0.0f);
1710 /* Process voices that have a playing source. */
1711 for(Voice *voice : voices)
1713 const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
1714 if(vstate != Voice::Stopped && vstate != Voice::Pending)
1715 voice->mix(vstate, ctx, SamplesToDo);
1718 /* Process effects. */
1719 if(const size_t num_slots{auxslots.size()})
1721 auto slots = auxslots.data();
1722 auto slots_end = slots + num_slots;
1724 /* Sort the slots into extra storage, so that effect slots come
1725 * before their effect slot target (or their targets' target).
1727 const al::span<EffectSlot*> sorted_slots{const_cast<EffectSlot**>(slots_end),
1728 num_slots};
1729 /* Skip sorting if it has already been done. */
1730 if(!sorted_slots[0])
1732 /* First, copy the slots to the sorted list, then partition the
1733 * sorted list so that all slots without a target slot go to
1734 * the end.
1736 std::copy(slots, slots_end, sorted_slots.begin());
1737 auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(),
1738 [](const EffectSlot *slot) noexcept -> bool
1739 { return slot->Target != nullptr; });
1740 /* There must be at least one slot without a slot target. */
1741 assert(split_point != sorted_slots.end());
1743 /* Simple case: no more than 1 slot has a target slot. Either
1744 * all slots go right to the output, or the remaining one must
1745 * target an already-partitioned slot.
1747 if(split_point - sorted_slots.begin() > 1)
1749 /* At least two slots target other slots. Starting from the
1750 * back of the sorted list, continue partitioning the front
1751 * of the list given each target until all targets are
1752 * accounted for. This ensures all slots without a target
1753 * go last, all slots directly targeting those last slots
1754 * go second-to-last, all slots directly targeting those
1755 * second-last slots go third-to-last, etc.
1757 auto next_target = sorted_slots.end();
1758 do {
1759 /* This shouldn't happen, but if there's unsorted slots
1760 * left that don't target any sorted slots, they can't
1761 * contribute to the output, so leave them.
1763 if UNLIKELY(next_target == split_point)
1764 break;
1766 --next_target;
1767 split_point = std::partition(sorted_slots.begin(), split_point,
1768 [next_target](const EffectSlot *slot) noexcept -> bool
1769 { return slot->Target != *next_target; });
1770 } while(split_point - sorted_slots.begin() > 1);
1774 for(const EffectSlot *slot : sorted_slots)
1776 EffectState *state{slot->mEffectState};
1777 state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
1781 /* Signal the event handler if there are any events to read. */
1782 RingBuffer *ring{ctx->mAsyncEvents.get()};
1783 if(ring->readSpace() > 0)
1784 ctx->mEventSem.post();
1789 void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const size_t SamplesToDo,
1790 const DistanceComp::ChanData *distcomp)
1792 ASSUME(SamplesToDo > 0);
1794 for(auto &chanbuffer : Samples)
1796 const float gain{distcomp->Gain};
1797 const size_t base{distcomp->Length};
1798 float *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
1799 ++distcomp;
1801 if(base < 1)
1802 continue;
1804 float *inout{al::assume_aligned<16>(chanbuffer.data())};
1805 auto inout_end = inout + SamplesToDo;
1806 if LIKELY(SamplesToDo >= base)
1808 auto delay_end = std::rotate(inout, inout_end - base, inout_end);
1809 std::swap_ranges(inout, delay_end, distbuf);
1811 else
1813 auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
1814 std::rotate(distbuf, delay_start, distbuf + base);
1816 std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
1820 void ApplyDither(const al::span<FloatBufferLine> Samples, uint *dither_seed,
1821 const float quant_scale, const size_t SamplesToDo)
1823 ASSUME(SamplesToDo > 0);
1825 /* Dithering. Generate whitenoise (uniform distribution of random values
1826 * between -1 and +1) and add it to the sample values, after scaling up to
1827 * the desired quantization depth amd before rounding.
1829 const float invscale{1.0f / quant_scale};
1830 uint seed{*dither_seed};
1831 auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float
1833 float val{sample * quant_scale};
1834 uint rng0{dither_rng(&seed)};
1835 uint rng1{dither_rng(&seed)};
1836 val += static_cast<float>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
1837 return fast_roundf(val) * invscale;
1839 for(FloatBufferLine &inout : Samples)
1840 std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample);
1841 *dither_seed = seed;
1845 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1846 * chokes on that given the inline specializations.
1848 template<typename T>
1849 inline T SampleConv(float) noexcept;
1851 template<> inline float SampleConv(float val) noexcept
1852 { return val; }
1853 template<> inline int32_t SampleConv(float val) noexcept
1855 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1856 * This means a normalized float has at most 25 bits of signed precision.
1857 * When scaling and clamping for a signed 32-bit integer, these following
1858 * values are the best a float can give.
1860 return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
1862 template<> inline int16_t SampleConv(float val) noexcept
1863 { return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
1864 template<> inline int8_t SampleConv(float val) noexcept
1865 { return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
1867 /* Define unsigned output variations. */
1868 template<> inline uint32_t SampleConv(float val) noexcept
1869 { return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
1870 template<> inline uint16_t SampleConv(float val) noexcept
1871 { return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
1872 template<> inline uint8_t SampleConv(float val) noexcept
1873 { return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
1875 template<DevFmtType T>
1876 void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
1877 const size_t SamplesToDo, const size_t FrameStep)
1879 ASSUME(FrameStep > 0);
1880 ASSUME(SamplesToDo > 0);
1882 DevFmtType_t<T> *outbase{static_cast<DevFmtType_t<T>*>(OutBuffer) + Offset*FrameStep};
1883 size_t c{0};
1884 for(const FloatBufferLine &inbuf : InBuffer)
1886 DevFmtType_t<T> *out{outbase++};
1887 auto conv_sample = [FrameStep,&out](const float s) noexcept -> void
1889 *out = SampleConv<DevFmtType_t<T>>(s);
1890 out += FrameStep;
1892 std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
1893 ++c;
1895 if(const size_t extra{FrameStep - c})
1897 const auto silence = SampleConv<DevFmtType_t<T>>(0.0f);
1898 for(size_t i{0};i < SamplesToDo;++i)
1900 std::fill_n(outbase, extra, silence);
1901 outbase += FrameStep;
1906 } // namespace
1908 uint DeviceBase::renderSamples(const uint numSamples)
1910 const uint samplesToDo{minu(numSamples, BufferLineSize)};
1912 /* Clear main mixing buffers. */
1913 for(FloatBufferLine &buffer : MixBuffer)
1914 buffer.fill(0.0f);
1916 /* Increment the mix count at the start (lsb should now be 1). */
1917 IncrementRef(MixCount);
1919 /* Process and mix each context's sources and effects. */
1920 ProcessContexts(this, samplesToDo);
1922 /* Increment the clock time. Every second's worth of samples is converted
1923 * and added to clock base so that large sample counts don't overflow
1924 * during conversion. This also guarantees a stable conversion.
1926 SamplesDone += samplesToDo;
1927 ClockBase += std::chrono::seconds{SamplesDone / Frequency};
1928 SamplesDone %= Frequency;
1930 /* Increment the mix count at the end (lsb should now be 0). */
1931 IncrementRef(MixCount);
1933 /* Apply any needed post-process for finalizing the Dry mix to the RealOut
1934 * (Ambisonic decode, UHJ encode, etc).
1936 postProcess(samplesToDo);
1938 /* Apply compression, limiting sample amplitude if needed or desired. */
1939 if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data());
1941 /* Apply delays and attenuation for mismatched speaker distances. */
1942 if(ChannelDelays)
1943 ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data());
1945 /* Apply dithering. The compressor should have left enough headroom for the
1946 * dither noise to not saturate.
1948 if(DitherDepth > 0.0f)
1949 ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo);
1951 return samplesToDo;
1954 void DeviceBase::renderSamples(const al::span<float*> outBuffers, const uint numSamples)
1956 FPUCtl mixer_mode{};
1957 uint total{0};
1958 while(const uint todo{numSamples - total})
1960 const uint samplesToDo{renderSamples(todo)};
1962 auto *srcbuf = RealOut.Buffer.data();
1963 for(auto *dstbuf : outBuffers)
1965 std::copy_n(srcbuf->data(), samplesToDo, dstbuf + total);
1966 ++srcbuf;
1969 total += samplesToDo;
1973 void DeviceBase::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep)
1975 FPUCtl mixer_mode{};
1976 uint total{0};
1977 while(const uint todo{numSamples - total})
1979 const uint samplesToDo{renderSamples(todo)};
1981 if LIKELY(outBuffer)
1983 /* Finally, interleave and convert samples, writing to the device's
1984 * output buffer.
1986 switch(FmtType)
1988 #define HANDLE_WRITE(T) case T: \
1989 Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
1990 HANDLE_WRITE(DevFmtByte)
1991 HANDLE_WRITE(DevFmtUByte)
1992 HANDLE_WRITE(DevFmtShort)
1993 HANDLE_WRITE(DevFmtUShort)
1994 HANDLE_WRITE(DevFmtInt)
1995 HANDLE_WRITE(DevFmtUInt)
1996 HANDLE_WRITE(DevFmtFloat)
1997 #undef HANDLE_WRITE
2001 total += samplesToDo;
2005 void DeviceBase::handleDisconnect(const char *msg, ...)
2007 IncrementRef(MixCount);
2008 if(Connected.exchange(false, std::memory_order_acq_rel))
2010 AsyncEvent evt{AsyncEvent::Disconnected};
2012 va_list args;
2013 va_start(args, msg);
2014 int msglen{vsnprintf(evt.u.disconnect.msg, sizeof(evt.u.disconnect.msg), msg, args)};
2015 va_end(args);
2017 if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.disconnect.msg))
2018 evt.u.disconnect.msg[sizeof(evt.u.disconnect.msg)-1] = 0;
2020 for(ContextBase *ctx : *mContexts.load())
2022 const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
2023 if((enabledevt&AsyncEvent::Disconnected))
2025 RingBuffer *ring{ctx->mAsyncEvents.get()};
2026 auto evt_data = ring->getWriteVector().first;
2027 if(evt_data.len > 0)
2029 al::construct_at(reinterpret_cast<AsyncEvent*>(evt_data.buf), evt);
2030 ring->writeAdvance(1);
2031 ctx->mEventSem.post();
2035 if(!ctx->mStopVoicesOnDisconnect)
2037 ProcessVoiceChanges(ctx);
2038 continue;
2041 auto voicelist = ctx->getVoicesSpanAcquired();
2042 auto stop_voice = [](Voice *voice) -> void
2044 voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
2045 voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
2046 voice->mSourceID.store(0u, std::memory_order_relaxed);
2047 voice->mPlayState.store(Voice::Stopped, std::memory_order_release);
2049 std::for_each(voicelist.begin(), voicelist.end(), stop_voice);
2052 IncrementRef(MixCount);