23 #include <type_traits>
29 #include "alnumbers.h"
30 #include "alnumeric.h"
34 #include "filters/splitter.h"
37 #include "mixer/hrtfdefs.h"
38 #include "opthelpers.h"
39 #include "polyphase_resampler.h"
44 using namespace std::string_view_literals
;
47 std::string mDispName
;
48 std::string mFilename
;
50 template<typename T
, typename U
>
51 HrtfEntry(T
&& dispname
, U
&& fname
)
52 : mDispName
{std::forward
<T
>(dispname
)}, mFilename
{std::forward
<U
>(fname
)}
54 /* GCC warns when it tries to inline this. */
57 HrtfEntry::~HrtfEntry() = default;
60 std::string mFilename
;
62 std::unique_ptr
<HrtfStore
> mEntry
;
64 template<typename T
, typename U
>
65 LoadedHrtf(T
&& name
, uint srate
, U
&& entry
)
66 : mFilename
{std::forward
<T
>(name
)}, mSampleRate
{srate
}, mEntry
{std::forward
<U
>(entry
)}
68 LoadedHrtf(LoadedHrtf
&&) = default;
69 /* GCC warns when it tries to inline this. */
72 LoadedHrtf
& operator=(LoadedHrtf
&&) = default;
74 LoadedHrtf::~LoadedHrtf() = default;
77 /* Data set limits must be the same as or more flexible than those defined in
78 * the makemhr utility.
80 constexpr uint MinFdCount
{1};
81 constexpr uint MaxFdCount
{16};
83 constexpr uint MinFdDistance
{50};
84 constexpr uint MaxFdDistance
{2500};
86 constexpr uint MinEvCount
{5};
87 constexpr uint MaxEvCount
{181};
89 constexpr uint MinAzCount
{1};
90 constexpr uint MaxAzCount
{255};
92 constexpr uint MaxHrirDelay
{HrtfHistoryLength
- 1};
94 constexpr uint HrirDelayFracBits
{2};
95 constexpr uint HrirDelayFracOne
{1 << HrirDelayFracBits
};
96 constexpr uint HrirDelayFracHalf
{HrirDelayFracOne
>> 1};
98 /* The sample rate is stored as a 24-bit integer, so 16MHz is the largest
101 constexpr uint MaxSampleRate
{0xff'ff'ff};
103 static_assert(MaxHrirDelay
*HrirDelayFracOne
< 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
106 [[nodiscard
]] constexpr auto GetMarker00Name() noexcept
{ return "MinPHR00"sv
; }
107 [[nodiscard
]] constexpr auto GetMarker01Name() noexcept
{ return "MinPHR01"sv
; }
108 [[nodiscard
]] constexpr auto GetMarker02Name() noexcept
{ return "MinPHR02"sv
; }
109 [[nodiscard
]] constexpr auto GetMarker03Name() noexcept
{ return "MinPHR03"sv
; }
112 /* First value for pass-through coefficients (remaining are 0), used for omni-
113 * directional sounds. */
114 constexpr auto PassthruCoeff
= static_cast<float>(1.0/al::numbers::sqrt2
);
116 std::mutex LoadedHrtfLock
;
117 std::vector
<LoadedHrtf
> LoadedHrtfs
;
119 std::mutex EnumeratedHrtfLock
;
120 std::vector
<HrtfEntry
> EnumeratedHrtfs
;
123 /* NOLINTBEGIN(cppcoreguidelines-pro-bounds-pointer-arithmetic)
124 * To access a memory buffer through the std::istream interface, a custom
125 * std::streambuf implementation is needed that has to do pointer manipulation
126 * for seeking. With C++23, we may be able to use std::spanstream instead.
128 class databuf final
: public std::streambuf
{
129 int_type
underflow() override
130 { return traits_type::eof(); }
132 pos_type
seekoff(off_type offset
, std::ios_base::seekdir whence
, std::ios_base::openmode mode
) override
134 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
135 return traits_type::eof();
139 case std::ios_base::beg
:
140 if(offset
< 0 || offset
> egptr()-eback())
141 return traits_type::eof();
142 setg(eback(), eback()+offset
, egptr());
145 case std::ios_base::cur
:
146 if((offset
>= 0 && offset
> egptr()-gptr()) ||
147 (offset
< 0 && -offset
> gptr()-eback()))
148 return traits_type::eof();
149 setg(eback(), gptr()+offset
, egptr());
152 case std::ios_base::end
:
153 if(offset
> 0 || -offset
> egptr()-eback())
154 return traits_type::eof();
155 setg(eback(), egptr()+offset
, egptr());
159 return traits_type::eof();
162 return gptr() - eback();
165 pos_type
seekpos(pos_type pos
, std::ios_base::openmode mode
) override
167 // Simplified version of seekoff
168 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
169 return traits_type::eof();
171 if(pos
< 0 || pos
> egptr()-eback())
172 return traits_type::eof();
174 setg(eback(), eback()+static_cast<size_t>(pos
), egptr());
179 databuf(const al::span
<char_type
> data
) noexcept
181 setg(data
.data(), data
.data(), al::to_address(data
.end()));
184 /* NOLINTEND(cppcoreguidelines-pro-bounds-pointer-arithmetic) */
186 class idstream final
: public std::istream
{
190 idstream(const al::span
<char_type
> data
) : std::istream
{nullptr}, mStreamBuf
{data
}
191 { init(&mStreamBuf
); }
195 struct IdxBlend
{ uint idx
; float blend
; };
196 /* Calculate the elevation index given the polar elevation in radians. This
197 * will return an index between 0 and (evcount - 1).
199 IdxBlend
CalcEvIndex(uint evcount
, float ev
)
201 ev
= (al::numbers::pi_v
<float>*0.5f
+ ev
) * static_cast<float>(evcount
-1) *
202 al::numbers::inv_pi_v
<float>;
203 uint idx
{float2uint(ev
)};
205 return IdxBlend
{std::min(idx
, evcount
-1u), ev
-static_cast<float>(idx
)};
208 /* Calculate the azimuth index given the polar azimuth in radians. This will
209 * return an index between 0 and (azcount - 1).
211 IdxBlend
CalcAzIndex(uint azcount
, float az
)
213 az
= (al::numbers::pi_v
<float>*2.0f
+ az
) * static_cast<float>(azcount
) *
214 (al::numbers::inv_pi_v
<float>*0.5f
);
215 uint idx
{float2uint(az
)};
217 return IdxBlend
{idx
%azcount
, az
-static_cast<float>(idx
)};
223 /* Calculates static HRIR coefficients and delays for the given polar elevation
224 * and azimuth in radians. The coefficients are normalized.
226 void HrtfStore::getCoeffs(float elevation
, float azimuth
, float distance
, float spread
,
227 const HrirSpan coeffs
, const al::span
<uint
,2> delays
) const
229 const float dirfact
{1.0f
- (al::numbers::inv_pi_v
<float>/2.0f
* spread
)};
232 auto match_field
= [&ebase
,distance
](const Field
&field
) noexcept
-> bool
234 if(distance
>= field
.distance
)
236 ebase
+= field
.evCount
;
239 auto field
= std::find_if(mFields
.begin(), mFields
.end()-1, match_field
);
241 /* Calculate the elevation indices. */
242 const auto elev0
= CalcEvIndex(field
->evCount
, elevation
);
243 const size_t elev1_idx
{std::min(elev0
.idx
+1u, field
->evCount
-1u)};
244 const size_t ir0offset
{mElev
[ebase
+ elev0
.idx
].irOffset
};
245 const size_t ir1offset
{mElev
[ebase
+ elev1_idx
].irOffset
};
247 /* Calculate azimuth indices. */
248 const auto az0
= CalcAzIndex(mElev
[ebase
+ elev0
.idx
].azCount
, azimuth
);
249 const auto az1
= CalcAzIndex(mElev
[ebase
+ elev1_idx
].azCount
, azimuth
);
251 /* Calculate the HRIR indices to blend. */
252 const std::array
<size_t,4> idx
{{
254 ir0offset
+ ((az0
.idx
+1) % mElev
[ebase
+ elev0
.idx
].azCount
),
256 ir1offset
+ ((az1
.idx
+1) % mElev
[ebase
+ elev1_idx
].azCount
)
259 /* Calculate bilinear blending weights, attenuated according to the
260 * directional panning factor.
262 const std::array
<float,4> blend
{{
263 (1.0f
-elev0
.blend
) * (1.0f
-az0
.blend
) * dirfact
,
264 (1.0f
-elev0
.blend
) * ( az0
.blend
) * dirfact
,
265 ( elev0
.blend
) * (1.0f
-az1
.blend
) * dirfact
,
266 ( elev0
.blend
) * ( az1
.blend
) * dirfact
269 /* Calculate the blended HRIR delays. */
270 float d
{float(mDelays
[idx
[0]][0])*blend
[0] + float(mDelays
[idx
[1]][0])*blend
[1]
271 + float(mDelays
[idx
[2]][0])*blend
[2] + float(mDelays
[idx
[3]][0])*blend
[3]};
272 delays
[0] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
273 d
= float(mDelays
[idx
[0]][1])*blend
[0] + float(mDelays
[idx
[1]][1])*blend
[1]
274 + float(mDelays
[idx
[2]][1])*blend
[2] + float(mDelays
[idx
[3]][1])*blend
[3];
275 delays
[1] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
277 /* Calculate the blended HRIR coefficients. */
278 auto coeffout
= coeffs
.begin();
279 coeffout
[0][0] = PassthruCoeff
* (1.0f
-dirfact
);
280 coeffout
[0][1] = PassthruCoeff
* (1.0f
-dirfact
);
281 std::fill_n(coeffout
+1, size_t{HrirLength
-1}, std::array
{0.0f
, 0.0f
});
282 for(size_t c
{0};c
< 4;c
++)
284 const float mult
{blend
[c
]};
285 auto blend_coeffs
= [mult
](const float2
&src
, const float2
&coeff
) noexcept
-> float2
286 { return float2
{{src
[0]*mult
+ coeff
[0], src
[1]*mult
+ coeff
[1]}}; };
287 std::transform(mCoeffs
[idx
[c
]].cbegin(), mCoeffs
[idx
[c
]].cend(), coeffout
, coeffout
,
293 std::unique_ptr
<DirectHrtfState
> DirectHrtfState::Create(size_t num_chans
)
294 { return std::unique_ptr
<DirectHrtfState
>{new(FamCount(num_chans
)) DirectHrtfState
{num_chans
}}; }
296 void DirectHrtfState::build(const HrtfStore
*Hrtf
, const uint irSize
, const bool perHrirMin
,
297 const al::span
<const AngularPoint
> AmbiPoints
,
298 const al::span
<const std::array
<float,MaxAmbiChannels
>> AmbiMatrix
,
299 const float XOverFreq
, const al::span
<const float,MaxAmbiOrder
+1> AmbiOrderHFGain
)
301 using double2
= std::array
<double,2>;
302 struct ImpulseResponse
{
303 const ConstHrirSpan hrir
;
307 const double xover_norm
{double{XOverFreq
} / Hrtf
->mSampleRate
};
308 mChannels
[0].mSplitter
.init(static_cast<float>(xover_norm
));
309 mChannels
[0].mHfScale
= AmbiOrderHFGain
[0];
310 for(size_t i
{1};i
< mChannels
.size();++i
)
312 const size_t order
{AmbiIndex::OrderFromChannel
[i
]};
313 mChannels
[i
].mSplitter
= mChannels
[0].mSplitter
;
314 mChannels
[i
].mHfScale
= AmbiOrderHFGain
[order
];
317 uint min_delay
{HrtfHistoryLength
*HrirDelayFracOne
}, max_delay
{0};
318 std::vector
<ImpulseResponse
> impres
; impres
.reserve(AmbiPoints
.size());
319 auto calc_res
= [Hrtf
,&max_delay
,&min_delay
](const AngularPoint
&pt
) -> ImpulseResponse
321 auto &field
= Hrtf
->mFields
[0];
322 const auto elev0
= CalcEvIndex(field
.evCount
, pt
.Elev
.value
);
323 const size_t elev1_idx
{std::min(elev0
.idx
+1u, field
.evCount
-1u)};
324 const size_t ir0offset
{Hrtf
->mElev
[elev0
.idx
].irOffset
};
325 const size_t ir1offset
{Hrtf
->mElev
[elev1_idx
].irOffset
};
327 const auto az0
= CalcAzIndex(Hrtf
->mElev
[elev0
.idx
].azCount
, pt
.Azim
.value
);
328 const auto az1
= CalcAzIndex(Hrtf
->mElev
[elev1_idx
].azCount
, pt
.Azim
.value
);
330 const std::array
<size_t,4> idx
{
332 ir0offset
+ ((az0
.idx
+1) % Hrtf
->mElev
[elev0
.idx
].azCount
),
334 ir1offset
+ ((az1
.idx
+1) % Hrtf
->mElev
[elev1_idx
].azCount
)
337 /* The largest blend factor serves as the closest HRIR. */
338 const size_t irOffset
{idx
[(elev0
.blend
>= 0.5f
)*2 + (az1
.blend
>= 0.5f
)]};
339 ImpulseResponse res
{Hrtf
->mCoeffs
[irOffset
],
340 Hrtf
->mDelays
[irOffset
][0], Hrtf
->mDelays
[irOffset
][1]};
342 min_delay
= std::min(min_delay
, std::min(res
.ldelay
, res
.rdelay
));
343 max_delay
= std::max(max_delay
, std::max(res
.ldelay
, res
.rdelay
));
347 std::transform(AmbiPoints
.begin(), AmbiPoints
.end(), std::back_inserter(impres
), calc_res
);
348 auto hrir_delay_round
= [](const uint d
) noexcept
-> uint
349 { return (d
+HrirDelayFracHalf
) >> HrirDelayFracBits
; };
351 TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
352 min_delay
/double{HrirDelayFracOne
}, max_delay
/double{HrirDelayFracOne
}, irSize
);
354 auto tmpres
= std::vector
<std::array
<double2
,HrirLength
>>(mChannels
.size());
356 auto matrixline
= AmbiMatrix
.cbegin();
357 for(auto &impulse
: impres
)
359 const ConstHrirSpan hrir
{impulse
.hrir
};
360 const uint base_delay
{perHrirMin
? std::min(impulse
.ldelay
, impulse
.rdelay
) : min_delay
};
361 const uint ldelay
{hrir_delay_round(impulse
.ldelay
- base_delay
)};
362 const uint rdelay
{hrir_delay_round(impulse
.rdelay
- base_delay
)};
363 max_delay
= std::max(max_delay
, std::max(impulse
.ldelay
, impulse
.rdelay
) - base_delay
);
365 auto gains
= matrixline
->cbegin();
367 for(auto &result
: tmpres
)
369 const double mult
{*(gains
++)};
370 const size_t numirs
{HrirLength
- std::max(ldelay
, rdelay
)};
371 size_t lidx
{ldelay
}, ridx
{rdelay
};
372 for(size_t j
{0};j
< numirs
;++j
)
374 result
[lidx
++][0] += hrir
[j
][0] * mult
;
375 result
[ridx
++][1] += hrir
[j
][1] * mult
;
381 auto output
= mChannels
.begin();
382 for(auto &result
: tmpres
)
384 auto cast_array2
= [](const double2
&in
) noexcept
-> float2
385 { return float2
{{static_cast<float>(in
[0]), static_cast<float>(in
[1])}}; };
386 std::transform(result
.cbegin(), result
.cend(), output
->mCoeffs
.begin(), cast_array2
);
391 const uint max_length
{std::min(hrir_delay_round(max_delay
) + irSize
, HrirLength
)};
392 TRACE("New max delay: %.2f, FIR length: %u\n", max_delay
/double{HrirDelayFracOne
},
394 mIrSize
= max_length
;
400 std::unique_ptr
<HrtfStore
> CreateHrtfStore(uint rate
, uint8_t irSize
,
401 const al::span
<const HrtfStore::Field
> fields
,
402 const al::span
<const HrtfStore::Elevation
> elevs
, const HrirArray
*coeffs
,
403 const ubyte2
*delays
)
405 static_assert(alignof(HrtfStore::Field
) <= alignof(HrtfStore
));
406 static_assert(alignof(HrtfStore::Elevation
) <= alignof(HrtfStore
));
407 static_assert(16 <= alignof(HrtfStore
));
409 if(rate
> MaxSampleRate
)
410 throw std::runtime_error
{"Sample rate is too large (max: "+std::to_string(MaxSampleRate
)+"hz)"};
412 const size_t irCount
{size_t{elevs
.back().azCount
} + elevs
.back().irOffset
};
413 size_t total
{sizeof(HrtfStore
)};
414 total
= RoundUp(total
, alignof(HrtfStore::Field
)); /* Align for field infos */
415 total
+= sizeof(std::declval
<HrtfStore
&>().mFields
[0])*fields
.size();
416 total
= RoundUp(total
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
417 total
+= sizeof(std::declval
<HrtfStore
&>().mElev
[0])*elevs
.size();
418 total
= RoundUp(total
, 16); /* Align for coefficients using SIMD */
419 total
+= sizeof(std::declval
<HrtfStore
&>().mCoeffs
[0])*irCount
;
420 total
+= sizeof(std::declval
<HrtfStore
&>().mDelays
[0])*irCount
;
422 static constexpr auto AlignVal
= std::align_val_t
{alignof(HrtfStore
)};
423 std::unique_ptr
<HrtfStore
> Hrtf
{::new(::operator new[](total
, AlignVal
)) HrtfStore
{}};
424 Hrtf
->mRef
.store(1u, std::memory_order_relaxed
);
425 Hrtf
->mSampleRate
= rate
& 0xff'ff'ff;
426 Hrtf
->mIrSize
= irSize
;
428 /* Set up pointers to storage following the main HRTF struct. */
429 auto storage
= al::span
{reinterpret_cast<char*>(Hrtf
.get()), total
};
430 auto base
= storage
.begin();
431 ptrdiff_t offset
{sizeof(HrtfStore
)};
433 offset
= RoundUp(offset
, alignof(HrtfStore::Field
)); /* Align for field infos */
434 auto field_
= al::span
{reinterpret_cast<HrtfStore::Field
*>(al::to_address(base
+ offset
)),
436 offset
+= ptrdiff_t(sizeof(field_
[0])*fields
.size());
438 offset
= RoundUp(offset
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
439 auto elev_
= al::span
{reinterpret_cast<HrtfStore::Elevation
*>(al::to_address(base
+ offset
)),
441 offset
+= ptrdiff_t(sizeof(elev_
[0])*elevs
.size());
443 offset
= RoundUp(offset
, 16); /* Align for coefficients using SIMD */
444 auto coeffs_
= al::span
{reinterpret_cast<HrirArray
*>(al::to_address(base
+ offset
)), irCount
};
445 offset
+= ptrdiff_t(sizeof(coeffs_
[0])*irCount
);
447 auto delays_
= al::span
{reinterpret_cast<ubyte2
*>(al::to_address(base
+ offset
)), irCount
};
448 offset
+= ptrdiff_t(sizeof(delays_
[0])*irCount
);
450 if(size_t(offset
) != total
)
451 throw std::runtime_error
{"HrtfStore allocation size mismatch"};
453 /* Copy input data to storage. */
454 std::uninitialized_copy(fields
.cbegin(), fields
.cend(), field_
.begin());
455 std::uninitialized_copy(elevs
.cbegin(), elevs
.cend(), elev_
.begin());
456 std::uninitialized_copy_n(coeffs
, irCount
, coeffs_
.begin());
457 std::uninitialized_copy_n(delays
, irCount
, delays_
.begin());
459 /* Finally, assign the storage pointers. */
460 Hrtf
->mFields
= field_
;
462 Hrtf
->mCoeffs
= coeffs_
;
463 Hrtf
->mDelays
= delays_
;
468 void MirrorLeftHrirs(const al::span
<const HrtfStore::Elevation
> elevs
, al::span
<HrirArray
> coeffs
,
469 al::span
<ubyte2
> delays
)
471 for(const auto &elev
: elevs
)
473 const ushort evoffset
{elev
.irOffset
};
474 const ushort azcount
{elev
.azCount
};
475 for(size_t j
{0};j
< azcount
;j
++)
477 const size_t lidx
{evoffset
+ j
};
478 const size_t ridx
{evoffset
+ ((azcount
-j
) % azcount
)};
480 const size_t irSize
{coeffs
[ridx
].size()};
481 for(size_t k
{0};k
< irSize
;k
++)
482 coeffs
[ridx
][k
][1] = coeffs
[lidx
][k
][0];
483 delays
[ridx
][1] = delays
[lidx
][0];
489 template<size_t num_bits
, typename T
>
490 constexpr std::enable_if_t
<std::is_signed
<T
>::value
&& num_bits
< sizeof(T
)*8,
491 T
> fixsign(T value
) noexcept
493 constexpr auto signbit
= static_cast<T
>(1u << (num_bits
-1));
494 return static_cast<T
>((value
^signbit
) - signbit
);
497 template<size_t num_bits
, typename T
>
498 constexpr std::enable_if_t
<!std::is_signed
<T
>::value
|| num_bits
== sizeof(T
)*8,
499 T
> fixsign(T value
) noexcept
502 template<typename T
, size_t num_bits
=sizeof(T
)*8>
503 inline std::enable_if_t
<al::endian::native
== al::endian::little
,
504 T
> readle(std::istream
&data
)
506 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
507 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
509 alignas(T
) std::array
<char,sizeof(T
)> ret
{};
510 if(!data
.read(ret
.data(), num_bits
/8))
511 return static_cast<T
>(EOF
);
513 return fixsign
<num_bits
>(al::bit_cast
<T
>(ret
));
516 template<typename T
, size_t num_bits
=sizeof(T
)*8>
517 inline std::enable_if_t
<al::endian::native
== al::endian::big
,
518 T
> readle(std::istream
&data
)
520 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
521 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
523 alignas(T
) std::array
<char,sizeof(T
)> ret
{};
524 if(!data
.read(ret
.data(), num_bits
/8))
525 return static_cast<T
>(EOF
);
526 std::reverse(ret
.begin(), ret
.end());
528 return fixsign
<num_bits
>(al::bit_cast
<T
>(ret
));
532 inline uint8_t readle
<uint8_t,8>(std::istream
&data
)
533 { return static_cast<uint8_t>(data
.get()); }
536 std::unique_ptr
<HrtfStore
> LoadHrtf00(std::istream
&data
)
538 uint rate
{readle
<uint32_t>(data
)};
539 ushort irCount
{readle
<uint16_t>(data
)};
540 ushort irSize
{readle
<uint16_t>(data
)};
541 ubyte evCount
{readle
<uint8_t>(data
)};
542 if(!data
|| data
.eof())
543 throw std::runtime_error
{"Premature end of file"};
545 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
547 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
550 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
552 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
553 evCount
, MinEvCount
, MaxEvCount
);
557 auto elevs
= std::vector
<HrtfStore::Elevation
>(evCount
);
558 for(auto &elev
: elevs
)
559 elev
.irOffset
= readle
<uint16_t>(data
);
560 if(!data
|| data
.eof())
561 throw std::runtime_error
{"Premature end of file"};
563 for(size_t i
{1};i
< evCount
;i
++)
565 if(elevs
[i
].irOffset
<= elevs
[i
-1].irOffset
)
567 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i
, elevs
[i
].irOffset
,
568 elevs
[i
-1].irOffset
);
572 if(irCount
<= elevs
.back().irOffset
)
574 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
575 elevs
.size()-1, elevs
.back().irOffset
, irCount
);
579 for(size_t i
{1};i
< evCount
;i
++)
581 elevs
[i
-1].azCount
= static_cast<ushort
>(elevs
[i
].irOffset
- elevs
[i
-1].irOffset
);
582 if(elevs
[i
-1].azCount
< MinAzCount
|| elevs
[i
-1].azCount
> MaxAzCount
)
584 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
585 i
-1, elevs
[i
-1].azCount
, MinAzCount
, MaxAzCount
);
589 elevs
.back().azCount
= static_cast<ushort
>(irCount
- elevs
.back().irOffset
);
590 if(elevs
.back().azCount
< MinAzCount
|| elevs
.back().azCount
> MaxAzCount
)
592 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
593 elevs
.size()-1, elevs
.back().azCount
, MinAzCount
, MaxAzCount
);
597 auto coeffs
= std::vector
<HrirArray
>(irCount
, HrirArray
{});
598 auto delays
= std::vector
<ubyte2
>(irCount
);
599 for(auto &hrir
: coeffs
)
601 for(auto &val
: al::span
{hrir
}.first(irSize
))
602 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
604 for(auto &val
: delays
)
605 val
[0] = readle
<uint8_t>(data
);
606 if(!data
|| data
.eof())
607 throw std::runtime_error
{"Premature end of file"};
609 for(size_t i
{0};i
< irCount
;i
++)
611 if(delays
[i
][0] > MaxHrirDelay
)
613 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
616 delays
[i
][0] <<= HrirDelayFracBits
;
619 /* Mirror the left ear responses to the right ear. */
620 MirrorLeftHrirs(elevs
, coeffs
, delays
);
622 const std::array field
{HrtfStore::Field
{0.0f
, evCount
}};
623 return CreateHrtfStore(rate
, static_cast<uint8_t>(irSize
), field
, elevs
, coeffs
.data(),
627 std::unique_ptr
<HrtfStore
> LoadHrtf01(std::istream
&data
)
629 uint rate
{readle
<uint32_t>(data
)};
630 uint8_t irSize
{readle
<uint8_t>(data
)};
631 ubyte evCount
{readle
<uint8_t>(data
)};
632 if(!data
|| data
.eof())
633 throw std::runtime_error
{"Premature end of file"};
635 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
637 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
640 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
642 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
643 evCount
, MinEvCount
, MaxEvCount
);
647 auto elevs
= std::vector
<HrtfStore::Elevation
>(evCount
);
648 for(auto &elev
: elevs
)
649 elev
.azCount
= readle
<uint8_t>(data
);
650 if(!data
|| data
.eof())
651 throw std::runtime_error
{"Premature end of file"};
653 for(size_t i
{0};i
< evCount
;++i
)
655 if(elevs
[i
].azCount
< MinAzCount
|| elevs
[i
].azCount
> MaxAzCount
)
657 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i
, elevs
[i
].azCount
,
658 MinAzCount
, MaxAzCount
);
663 elevs
[0].irOffset
= 0;
664 for(size_t i
{1};i
< evCount
;i
++)
665 elevs
[i
].irOffset
= static_cast<ushort
>(elevs
[i
-1].irOffset
+ elevs
[i
-1].azCount
);
666 const ushort irCount
{static_cast<ushort
>(elevs
.back().irOffset
+ elevs
.back().azCount
)};
668 auto coeffs
= std::vector
<HrirArray
>(irCount
, HrirArray
{});
669 auto delays
= std::vector
<ubyte2
>(irCount
);
670 for(auto &hrir
: coeffs
)
672 for(auto &val
: al::span
{hrir
}.first(irSize
))
673 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
675 for(auto &val
: delays
)
676 val
[0] = readle
<uint8_t>(data
);
677 if(!data
|| data
.eof())
678 throw std::runtime_error
{"Premature end of file"};
680 for(size_t i
{0};i
< irCount
;i
++)
682 if(delays
[i
][0] > MaxHrirDelay
)
684 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
687 delays
[i
][0] <<= HrirDelayFracBits
;
690 /* Mirror the left ear responses to the right ear. */
691 MirrorLeftHrirs(elevs
, coeffs
, delays
);
693 const std::array field
{HrtfStore::Field
{0.0f
, evCount
}};
694 return CreateHrtfStore(rate
, irSize
, field
, elevs
, coeffs
.data(), delays
.data());
697 std::unique_ptr
<HrtfStore
> LoadHrtf02(std::istream
&data
)
699 static constexpr ubyte SampleType_S16
{0};
700 static constexpr ubyte SampleType_S24
{1};
701 static constexpr ubyte ChanType_LeftOnly
{0};
702 static constexpr ubyte ChanType_LeftRight
{1};
704 uint rate
{readle
<uint32_t>(data
)};
705 ubyte sampleType
{readle
<uint8_t>(data
)};
706 ubyte channelType
{readle
<uint8_t>(data
)};
707 uint8_t irSize
{readle
<uint8_t>(data
)};
708 ubyte fdCount
{readle
<uint8_t>(data
)};
709 if(!data
|| data
.eof())
710 throw std::runtime_error
{"Premature end of file"};
712 if(sampleType
> SampleType_S24
)
714 ERR("Unsupported sample type: %d\n", sampleType
);
717 if(channelType
> ChanType_LeftRight
)
719 ERR("Unsupported channel type: %d\n", channelType
);
723 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
725 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
728 if(fdCount
< 1 || fdCount
> MaxFdCount
)
730 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
735 auto fields
= std::vector
<HrtfStore::Field
>(fdCount
);
736 auto elevs
= std::vector
<HrtfStore::Elevation
>{};
737 for(size_t f
{0};f
< fdCount
;f
++)
739 const ushort distance
{readle
<uint16_t>(data
)};
740 const ubyte evCount
{readle
<uint8_t>(data
)};
741 if(!data
|| data
.eof())
742 throw std::runtime_error
{"Premature end of file"};
744 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
746 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
747 MinFdDistance
, MaxFdDistance
);
750 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
752 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
753 MinEvCount
, MaxEvCount
);
757 fields
[f
].distance
= float(distance
) / 1000.0f
;
758 fields
[f
].evCount
= evCount
;
759 if(f
> 0 && fields
[f
].distance
<= fields
[f
-1].distance
)
761 ERR("Field distance[%zu] is not after previous (%f > %f)\n", f
, fields
[f
].distance
,
762 fields
[f
-1].distance
);
766 const size_t ebase
{elevs
.size()};
767 elevs
.resize(ebase
+ evCount
);
768 for(auto &elev
: al::span
{elevs
}.subspan(ebase
, evCount
))
769 elev
.azCount
= readle
<uint8_t>(data
);
770 if(!data
|| data
.eof())
771 throw std::runtime_error
{"Premature end of file"};
773 for(size_t e
{0};e
< evCount
;e
++)
775 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
777 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
778 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
784 elevs
[0].irOffset
= 0;
785 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
786 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
787 -> HrtfStore::Elevation
789 return HrtfStore::Elevation
{cur
.azCount
,
790 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
792 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
794 auto coeffs
= std::vector
<HrirArray
>(irTotal
, HrirArray
{});
795 auto delays
= std::vector
<ubyte2
>(irTotal
);
796 if(channelType
== ChanType_LeftOnly
)
798 if(sampleType
== SampleType_S16
)
800 for(auto &hrir
: coeffs
)
802 for(auto &val
: al::span
{hrir
}.first(irSize
))
803 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
806 else if(sampleType
== SampleType_S24
)
808 for(auto &hrir
: coeffs
)
810 for(auto &val
: al::span
{hrir
}.first(irSize
))
811 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
814 for(auto &val
: delays
)
815 val
[0] = readle
<uint8_t>(data
);
816 if(!data
|| data
.eof())
817 throw std::runtime_error
{"Premature end of file"};
819 for(size_t i
{0};i
< irTotal
;++i
)
821 if(delays
[i
][0] > MaxHrirDelay
)
823 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
826 delays
[i
][0] <<= HrirDelayFracBits
;
829 /* Mirror the left ear responses to the right ear. */
830 MirrorLeftHrirs(elevs
, coeffs
, delays
);
832 else if(channelType
== ChanType_LeftRight
)
834 if(sampleType
== SampleType_S16
)
836 for(auto &hrir
: coeffs
)
838 for(auto &val
: al::span
{hrir
}.first(irSize
))
840 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
841 val
[1] = float(readle
<int16_t>(data
)) / 32768.0f
;
845 else if(sampleType
== SampleType_S24
)
847 for(auto &hrir
: coeffs
)
849 for(auto &val
: al::span
{hrir
}.first(irSize
))
851 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
852 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
856 for(auto &val
: delays
)
858 val
[0] = readle
<uint8_t>(data
);
859 val
[1] = readle
<uint8_t>(data
);
861 if(!data
|| data
.eof())
862 throw std::runtime_error
{"Premature end of file"};
864 for(size_t i
{0};i
< irTotal
;++i
)
866 if(delays
[i
][0] > MaxHrirDelay
)
868 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
871 if(delays
[i
][1] > MaxHrirDelay
)
873 ERR("Invalid delays[%zu][1]: %d (%d)\n", i
, delays
[i
][1], MaxHrirDelay
);
876 delays
[i
][0] <<= HrirDelayFracBits
;
877 delays
[i
][1] <<= HrirDelayFracBits
;
883 auto fields_
= std::vector
<HrtfStore::Field
>(fields
.size());
884 auto elevs_
= std::vector
<HrtfStore::Elevation
>(elevs
.size());
885 auto coeffs_
= std::vector
<HrirArray
>(coeffs
.size());
886 auto delays_
= std::vector
<ubyte2
>(delays
.size());
888 /* Simple reverse for the per-field elements. */
889 std::reverse_copy(fields
.cbegin(), fields
.cend(), fields_
.begin());
891 /* Each field has a group of elevations, which each have an azimuth
892 * count. Reverse the order of the groups, keeping the relative order
893 * of per-group azimuth counts.
895 auto elevs_end
= elevs_
.end();
896 auto copy_azs
= [&elevs
,&elevs_end
](const ptrdiff_t ebase
, const HrtfStore::Field
&field
)
899 auto elevs_src
= elevs
.begin()+ebase
;
900 elevs_end
= std::copy_backward(elevs_src
, elevs_src
+field
.evCount
, elevs_end
);
901 return ebase
+ field
.evCount
;
903 std::ignore
= std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_azs
);
904 assert(elevs_
.begin() == elevs_end
);
906 /* Reestablish the IR offset for each elevation index, given the new
907 * ordering of elevations.
909 elevs_
[0].irOffset
= 0;
910 std::partial_sum(elevs_
.cbegin(), elevs_
.cend(), elevs_
.begin(),
911 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
912 -> HrtfStore::Elevation
914 return HrtfStore::Elevation
{cur
.azCount
,
915 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
918 /* Reverse the order of each field's group of IRs. */
919 auto coeffs_end
= coeffs_
.end();
920 auto delays_end
= delays_
.end();
921 auto copy_irs
= [&elevs
,&coeffs
,&delays
,&coeffs_end
,&delays_end
](
922 const ptrdiff_t ebase
, const HrtfStore::Field
&field
) -> ptrdiff_t
924 auto accum_az
= [](const ptrdiff_t count
, const HrtfStore::Elevation
&elev
) noexcept
926 { return count
+ elev
.azCount
; };
927 const auto elev_mid
= elevs
.cbegin() + ebase
;
928 const auto abase
= std::accumulate(elevs
.cbegin(), elev_mid
, ptrdiff_t{0}, accum_az
);
929 const auto num_azs
= std::accumulate(elev_mid
, elev_mid
+ field
.evCount
, ptrdiff_t{0},
932 coeffs_end
= std::copy_backward(coeffs
.cbegin() + abase
,
933 coeffs
.cbegin() + (abase
+num_azs
), coeffs_end
);
934 delays_end
= std::copy_backward(delays
.cbegin() + abase
,
935 delays
.cbegin() + (abase
+num_azs
), delays_end
);
937 return ebase
+ field
.evCount
;
939 std::ignore
= std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_irs
);
940 assert(coeffs_
.begin() == coeffs_end
);
941 assert(delays_
.begin() == delays_end
);
943 fields
= std::move(fields_
);
944 elevs
= std::move(elevs_
);
945 coeffs
= std::move(coeffs_
);
946 delays
= std::move(delays_
);
949 return CreateHrtfStore(rate
, irSize
, fields
, elevs
, coeffs
.data(), delays
.data());
952 std::unique_ptr
<HrtfStore
> LoadHrtf03(std::istream
&data
)
954 static constexpr ubyte ChanType_LeftOnly
{0};
955 static constexpr ubyte ChanType_LeftRight
{1};
957 uint rate
{readle
<uint32_t>(data
)};
958 ubyte channelType
{readle
<uint8_t>(data
)};
959 uint8_t irSize
{readle
<uint8_t>(data
)};
960 ubyte fdCount
{readle
<uint8_t>(data
)};
961 if(!data
|| data
.eof())
962 throw std::runtime_error
{"Premature end of file"};
964 if(channelType
> ChanType_LeftRight
)
966 ERR("Unsupported channel type: %d\n", channelType
);
970 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
972 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
975 if(fdCount
< 1 || fdCount
> MaxFdCount
)
977 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
982 auto fields
= std::vector
<HrtfStore::Field
>(fdCount
);
983 auto elevs
= std::vector
<HrtfStore::Elevation
>{};
984 for(size_t f
{0};f
< fdCount
;f
++)
986 const ushort distance
{readle
<uint16_t>(data
)};
987 const ubyte evCount
{readle
<uint8_t>(data
)};
988 if(!data
|| data
.eof())
989 throw std::runtime_error
{"Premature end of file"};
991 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
993 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
994 MinFdDistance
, MaxFdDistance
);
997 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
999 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
1000 MinEvCount
, MaxEvCount
);
1004 fields
[f
].distance
= float(distance
) / 1000.0f
;
1005 fields
[f
].evCount
= evCount
;
1006 if(f
> 0 && fields
[f
].distance
> fields
[f
-1].distance
)
1008 ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f
, fields
[f
].distance
,
1009 fields
[f
-1].distance
);
1013 const size_t ebase
{elevs
.size()};
1014 elevs
.resize(ebase
+ evCount
);
1015 for(auto &elev
: al::span
{elevs
}.subspan(ebase
, evCount
))
1016 elev
.azCount
= readle
<uint8_t>(data
);
1017 if(!data
|| data
.eof())
1018 throw std::runtime_error
{"Premature end of file"};
1020 for(size_t e
{0};e
< evCount
;e
++)
1022 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
1024 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
1025 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
1031 elevs
[0].irOffset
= 0;
1032 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
1033 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
1034 -> HrtfStore::Elevation
1036 return HrtfStore::Elevation
{cur
.azCount
,
1037 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
1039 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
1041 auto coeffs
= std::vector
<HrirArray
>(irTotal
, HrirArray
{});
1042 auto delays
= std::vector
<ubyte2
>(irTotal
);
1043 if(channelType
== ChanType_LeftOnly
)
1045 for(auto &hrir
: coeffs
)
1047 for(auto &val
: al::span
{hrir
}.first(irSize
))
1048 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1050 for(auto &val
: delays
)
1051 val
[0] = readle
<uint8_t>(data
);
1052 if(!data
|| data
.eof())
1053 throw std::runtime_error
{"Premature end of file"};
1055 for(size_t i
{0};i
< irTotal
;++i
)
1057 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1059 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1060 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1065 /* Mirror the left ear responses to the right ear. */
1066 MirrorLeftHrirs(elevs
, coeffs
, delays
);
1068 else if(channelType
== ChanType_LeftRight
)
1070 for(auto &hrir
: coeffs
)
1072 for(auto &val
: al::span
{hrir
}.first(irSize
))
1074 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1075 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1078 for(auto &val
: delays
)
1080 val
[0] = readle
<uint8_t>(data
);
1081 val
[1] = readle
<uint8_t>(data
);
1083 if(!data
|| data
.eof())
1084 throw std::runtime_error
{"Premature end of file"};
1086 for(size_t i
{0};i
< irTotal
;++i
)
1088 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1090 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1091 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1094 if(delays
[i
][1] > MaxHrirDelay
<<HrirDelayFracBits
)
1096 ERR("Invalid delays[%zu][1]: %f (%d)\n", i
,
1097 delays
[i
][1] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1103 return CreateHrtfStore(rate
, irSize
, fields
, elevs
, coeffs
.data(), delays
.data());
1107 bool checkName(const std::string_view name
)
1109 auto match_name
= [name
](const HrtfEntry
&entry
) -> bool { return name
== entry
.mDispName
; };
1110 auto &enum_names
= EnumeratedHrtfs
;
1111 return std::find_if(enum_names
.cbegin(), enum_names
.cend(), match_name
) != enum_names
.cend();
1114 void AddFileEntry(const std::string_view filename
)
1116 /* Check if this file has already been enumerated. */
1117 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1118 [filename
](const HrtfEntry
&entry
) -> bool
1119 { return entry
.mFilename
== filename
; });
1120 if(enum_iter
!= EnumeratedHrtfs
.cend())
1122 TRACE("Skipping duplicate file entry %.*s\n", al::sizei(filename
), filename
.data());
1126 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1127 * format update). */
1128 size_t namepos
{filename
.rfind('/')+1};
1129 if(!namepos
) namepos
= filename
.rfind('\\')+1;
1131 size_t extpos
{filename
.rfind('.')};
1132 if(extpos
<= namepos
) extpos
= std::string::npos
;
1134 const std::string_view basename
{(extpos
== std::string::npos
) ?
1135 filename
.substr(namepos
) : filename
.substr(namepos
, extpos
-namepos
)};
1136 std::string newname
{basename
};
1138 while(checkName(newname
))
1142 newname
+= std::to_string(++count
);
1144 const HrtfEntry
&entry
= EnumeratedHrtfs
.emplace_back(newname
, filename
);
1146 TRACE("Adding file entry \"%s\"\n", entry
.mFilename
.c_str());
1149 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1150 * for input instead of opening the given filename.
1152 void AddBuiltInEntry(const std::string_view dispname
, uint residx
)
1154 std::string filename
{'!'+std::to_string(residx
)+'_'};
1155 filename
+= dispname
;
1157 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1158 [&filename
](const HrtfEntry
&entry
) -> bool
1159 { return entry
.mFilename
== filename
; });
1160 if(enum_iter
!= EnumeratedHrtfs
.cend())
1162 TRACE("Skipping duplicate file entry %s\n", filename
.c_str());
1166 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1167 * format update). */
1169 std::string newname
{dispname
};
1171 while(checkName(newname
))
1175 newname
+= std::to_string(++count
);
1177 const HrtfEntry
&entry
= EnumeratedHrtfs
.emplace_back(std::move(newname
), std::move(filename
));
1179 TRACE("Adding built-in entry \"%s\"\n", entry
.mFilename
.c_str());
1183 #define IDR_DEFAULT_HRTF_MHR 1
1185 #ifndef ALSOFT_EMBED_HRTF_DATA
1187 al::span
<const char> GetResource(int /*name*/)
1192 /* NOLINTNEXTLINE(*-avoid-c-arrays) */
1193 constexpr unsigned char hrtf_default
[]{
1194 #include "default_hrtf.txt"
1197 al::span
<const char> GetResource(int name
)
1199 if(name
== IDR_DEFAULT_HRTF_MHR
)
1200 return {reinterpret_cast<const char*>(hrtf_default
), sizeof(hrtf_default
)};
1208 std::vector
<std::string
> EnumerateHrtf(std::optional
<std::string
> pathopt
)
1210 std::lock_guard
<std::mutex
> enumlock
{EnumeratedHrtfLock
};
1211 EnumeratedHrtfs
.clear();
1213 bool usedefaults
{true};
1216 std::string_view pathlist
{*pathopt
};
1217 while(!pathlist
.empty())
1219 while(!pathlist
.empty() && (std::isspace(pathlist
.front()) || pathlist
.front() == ','))
1220 pathlist
.remove_prefix(1);
1221 if(pathlist
.empty())
1224 auto endpos
= std::min(pathlist
.find(','), pathlist
.size());
1225 auto entry
= pathlist
.substr(0, endpos
);
1226 if(endpos
< pathlist
.size())
1227 pathlist
.remove_prefix(++endpos
);
1230 pathlist
.remove_prefix(endpos
);
1231 usedefaults
= false;
1234 while(!entry
.empty() && std::isspace(entry
.back()))
1235 entry
.remove_suffix(1);
1238 for(const auto &fname
: SearchDataFiles(".mhr"sv
, entry
))
1239 AddFileEntry(fname
);
1246 for(const auto &fname
: SearchDataFiles(".mhr"sv
, "openal/hrtf"sv
))
1247 AddFileEntry(fname
);
1249 if(!GetResource(IDR_DEFAULT_HRTF_MHR
).empty())
1250 AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR
);
1253 std::vector
<std::string
> list
;
1254 list
.reserve(EnumeratedHrtfs
.size());
1255 for(auto &entry
: EnumeratedHrtfs
)
1256 list
.emplace_back(entry
.mDispName
);
1261 HrtfStorePtr
GetLoadedHrtf(const std::string_view name
, const uint devrate
)
1263 if(devrate
> MaxSampleRate
)
1265 WARN("Device sample rate too large for HRTF (%uhz > %uhz)\n", devrate
, MaxSampleRate
);
1268 std::lock_guard
<std::mutex
> enumlock
{EnumeratedHrtfLock
};
1269 auto entry_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1270 [name
](const HrtfEntry
&entry
) -> bool { return entry
.mDispName
== name
; });
1271 if(entry_iter
== EnumeratedHrtfs
.cend())
1273 const std::string
&fname
= entry_iter
->mFilename
;
1275 std::lock_guard
<std::mutex
> loadlock
{LoadedHrtfLock
};
1276 auto hrtf_lt_fname
= [devrate
](LoadedHrtf
&hrtf
, const std::string_view filename
) -> bool
1278 return hrtf
.mSampleRate
< devrate
1279 || (hrtf
.mSampleRate
== devrate
&& hrtf
.mFilename
< filename
);
1281 auto handle
= std::lower_bound(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), fname
, hrtf_lt_fname
);
1282 if(handle
!= LoadedHrtfs
.end() && handle
->mSampleRate
== devrate
&& handle
->mFilename
== fname
)
1284 if(HrtfStore
*hrtf
{handle
->mEntry
.get()})
1286 assert(hrtf
->mSampleRate
== devrate
);
1288 return HrtfStorePtr
{hrtf
};
1292 std::unique_ptr
<std::istream
> stream
;
1295 if(sscanf(fname
.c_str(), "!%d%c", &residx
, &ch
) == 2 && ch
== '_')
1297 TRACE("Loading %s...\n", fname
.c_str());
1298 al::span
<const char> res
{GetResource(residx
)};
1301 ERR("Could not get resource %u, %.*s\n", residx
, al::sizei(name
), name
.data());
1304 /* NOLINTNEXTLINE(*-const-cast) */
1305 stream
= std::make_unique
<idstream
>(al::span
{const_cast<char*>(res
.data()), res
.size()});
1309 TRACE("Loading %s...\n", fname
.c_str());
1310 auto fstr
= std::make_unique
<std::ifstream
>(std::filesystem::u8path(fname
),
1312 if(!fstr
->is_open())
1314 ERR("Could not open %s\n", fname
.c_str());
1317 stream
= std::move(fstr
);
1320 std::unique_ptr
<HrtfStore
> hrtf
;
1321 std::array
<char,GetMarker03Name().size()> magic
{};
1322 stream
->read(magic
.data(), magic
.size());
1323 if(stream
->gcount() < static_cast<std::streamsize
>(GetMarker03Name().size()))
1324 ERR("%.*s data is too short (%zu bytes)\n", al::sizei(name
),name
.data(), stream
->gcount());
1325 else if(GetMarker03Name() == std::string_view
{magic
.data(), magic
.size()})
1327 TRACE("Detected data set format v3\n");
1328 hrtf
= LoadHrtf03(*stream
);
1330 else if(GetMarker02Name() == std::string_view
{magic
.data(), magic
.size()})
1332 TRACE("Detected data set format v2\n");
1333 hrtf
= LoadHrtf02(*stream
);
1335 else if(GetMarker01Name() == std::string_view
{magic
.data(), magic
.size()})
1337 TRACE("Detected data set format v1\n");
1338 hrtf
= LoadHrtf01(*stream
);
1340 else if(GetMarker00Name() == std::string_view
{magic
.data(), magic
.size()})
1342 TRACE("Detected data set format v0\n");
1343 hrtf
= LoadHrtf00(*stream
);
1346 ERR("Invalid header in %.*s: \"%.8s\"\n", al::sizei(name
), name
.data(), magic
.data());
1352 if(hrtf
->mSampleRate
!= devrate
)
1354 TRACE("Resampling HRTF %.*s (%uhz -> %uhz)\n", al::sizei(name
), name
.data(),
1355 hrtf
->mSampleRate
, devrate
);
1357 /* Calculate the last elevation's index and get the total IR count. */
1358 const size_t lastEv
{std::accumulate(hrtf
->mFields
.begin(), hrtf
->mFields
.end(), 0_uz
,
1359 [](const size_t curval
, const HrtfStore::Field
&field
) noexcept
-> size_t
1360 { return curval
+ field
.evCount
; }
1362 const size_t irCount
{size_t{hrtf
->mElev
[lastEv
].irOffset
} + hrtf
->mElev
[lastEv
].azCount
};
1364 /* Resample all the IRs. */
1365 std::array
<std::array
<double,HrirLength
>,2> inout
;
1367 rs
.init(hrtf
->mSampleRate
, devrate
);
1368 for(size_t i
{0};i
< irCount
;++i
)
1370 /* NOLINTNEXTLINE(*-const-cast) */
1371 auto coeffs
= al::span
{const_cast<HrirArray
&>(hrtf
->mCoeffs
[i
])};
1372 for(size_t j
{0};j
< 2;++j
)
1374 std::transform(coeffs
.cbegin(), coeffs
.cend(), inout
[0].begin(),
1375 [j
](const float2
&in
) noexcept
-> double { return in
[j
]; });
1376 rs
.process(inout
[0], inout
[1]);
1377 for(size_t k
{0};k
< HrirLength
;++k
)
1378 coeffs
[k
][j
] = static_cast<float>(inout
[1][k
]);
1383 /* Scale the delays for the new sample rate. */
1384 float max_delay
{0.0f
};
1385 auto new_delays
= std::vector
<float2
>(irCount
);
1386 const float rate_scale
{static_cast<float>(devrate
)/static_cast<float>(hrtf
->mSampleRate
)};
1387 for(size_t i
{0};i
< irCount
;++i
)
1389 for(size_t j
{0};j
< 2;++j
)
1391 const float new_delay
{std::round(float(hrtf
->mDelays
[i
][j
]) * rate_scale
) /
1392 float{HrirDelayFracOne
}};
1393 max_delay
= std::max(max_delay
, new_delay
);
1394 new_delays
[i
][j
] = new_delay
;
1398 /* If the new delays exceed the max, scale it down to fit (essentially
1399 * shrinking the head radius; not ideal but better than a per-delay
1402 float delay_scale
{HrirDelayFracOne
};
1403 if(max_delay
> MaxHrirDelay
)
1405 WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay
, MaxHrirDelay
);
1406 delay_scale
*= float{MaxHrirDelay
} / max_delay
;
1409 for(size_t i
{0};i
< irCount
;++i
)
1411 /* NOLINTNEXTLINE(*-const-cast) */
1412 auto delays
= al::span
{const_cast<ubyte2
&>(hrtf
->mDelays
[i
])};
1413 std::transform(new_delays
[i
].cbegin(), new_delays
[i
].cend(), delays
.begin(),
1414 [delay_scale
](const float delay
)
1415 { return static_cast<ubyte
>(float2int(delay
*delay_scale
+ 0.5f
)); });
1418 /* Scale the IR size for the new sample rate and update the stored
1421 const float newIrSize
{std::round(static_cast<float>(hrtf
->mIrSize
) * rate_scale
)};
1422 hrtf
->mIrSize
= static_cast<uint8_t>(std::min(float{HrirLength
}, newIrSize
));
1423 hrtf
->mSampleRate
= devrate
& 0xff'ff'ff;
1426 handle
= LoadedHrtfs
.emplace(handle
, fname
, devrate
, std::move(hrtf
));
1427 TRACE("Loaded HRTF %.*s for sample rate %uhz, %u-sample filter\n", al::sizei(name
),name
.data(),
1428 handle
->mEntry
->mSampleRate
, handle
->mEntry
->mIrSize
);
1430 return HrtfStorePtr
{handle
->mEntry
.get()};
1432 catch(std::exception
& e
) {
1433 ERR("Failed to load %.*s: %s\n", al::sizei(name
), name
.data(), e
.what());
1438 void HrtfStore::add_ref()
1440 auto ref
= IncrementRef(mRef
);
1441 TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1444 void HrtfStore::dec_ref()
1446 auto ref
= DecrementRef(mRef
);
1447 TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1450 std::lock_guard
<std::mutex
> loadlock
{LoadedHrtfLock
};
1452 /* Go through and remove all unused HRTFs. */
1453 auto remove_unused
= [](LoadedHrtf
&hrtf
) -> bool
1455 HrtfStore
*entry
{hrtf
.mEntry
.get()};
1456 if(entry
&& entry
->mRef
.load() == 0)
1458 TRACE("Unloading unused HRTF %s\n", hrtf
.mFilename
.c_str());
1459 hrtf
.mEntry
= nullptr;
1464 auto iter
= std::remove_if(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), remove_unused
);
1465 LoadedHrtfs
.erase(iter
, LoadedHrtfs
.end());