2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "al/auxeffectslot.h"
33 #include "al/listener.h"
35 #include "alcontext.h"
37 #include "bformatdec.h"
38 #include "filters/biquad.h"
42 /* This is a user config option for modifying the overall output of the reverb
45 ALfloat ReverbBoost
= 1.0f
;
49 using namespace std::placeholders
;
51 /* Max samples per process iteration. Used to limit the size needed for
52 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
54 constexpr size_t MAX_UPDATE_SAMPLES
{256};
56 /* The number of spatialized lines or channels to process. Four channels allows
57 * for a 3D A-Format response. NOTE: This can't be changed without taking care
58 * of the conversion matrices, and a few places where the length arrays are
59 * assumed to have 4 elements.
61 constexpr size_t NUM_LINES
{4u};
64 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
65 * deliberately chosen to align the resulting lines to their spatial opposites
66 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
67 * back left). It's not quite opposite, since the A-Format results in a
68 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
69 * in the future, true opposites can be used.
71 alignas(16) constexpr ALfloat B2A
[NUM_LINES
][MAX_AMBI_CHANNELS
]{
72 { 0.288675134595f
, 0.288675134595f
, 0.288675134595f
, 0.288675134595f
},
73 { 0.288675134595f
, -0.288675134595f
, -0.288675134595f
, 0.288675134595f
},
74 { 0.288675134595f
, 0.288675134595f
, -0.288675134595f
, -0.288675134595f
},
75 { 0.288675134595f
, -0.288675134595f
, 0.288675134595f
, -0.288675134595f
}
78 /* Converts A-Format to B-Format. */
79 alignas(16) constexpr ALfloat A2B
[NUM_LINES
][NUM_LINES
]{
80 { 0.866025403785f
, 0.866025403785f
, 0.866025403785f
, 0.866025403785f
},
81 { 0.866025403785f
, -0.866025403785f
, 0.866025403785f
, -0.866025403785f
},
82 { 0.866025403785f
, -0.866025403785f
, -0.866025403785f
, 0.866025403785f
},
83 { 0.866025403785f
, 0.866025403785f
, -0.866025403785f
, -0.866025403785f
}
87 /* The all-pass and delay lines have a variable length dependent on the
88 * effect's density parameter, which helps alter the perceived environment
89 * size. The size-to-density conversion is a cubed scale:
91 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
93 * The line lengths scale linearly with room size, so the inverse density
94 * conversion is needed, taking the cube root of the re-scaled density to
95 * calculate the line length multiplier:
97 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
99 * The density scale below will result in a max line multiplier of 50, for an
100 * effective size range of 5m to 50m.
102 constexpr ALfloat DENSITY_SCALE
{125000.0f
};
104 /* All delay line lengths are specified in seconds.
106 * To approximate early reflections, we break them up into primary (those
107 * arriving from the same direction as the source) and secondary (those
108 * arriving from the opposite direction).
110 * The early taps decorrelate the 4-channel signal to approximate an average
111 * room response for the primary reflections after the initial early delay.
113 * Given an average room dimension (d_a) and the speed of sound (c) we can
114 * calculate the average reflection delay (r_a) regardless of listener and
115 * source positions as:
120 * This can extended to finding the average difference (r_d) between the
121 * maximum (r_1) and minimum (r_0) reflection delays:
132 * As can be determined by integrating the 1D model with a source (s) and
133 * listener (l) positioned across the dimension of length (d_a):
135 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
137 * The initial taps (T_(i=0)^N) are then specified by taking a power series
138 * that ranges between r_0 and half of r_1 less r_0:
140 * R_i = 2^(i / (2 N - 1)) r_d
141 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
144 * = (2^(i / (2 N - 1)) - 1) r_d
146 * Assuming an average of 1m, we get the following taps:
148 constexpr std::array
<ALfloat
,NUM_LINES
> EARLY_TAP_LENGTHS
{{
149 0.0000000e+0f
, 2.0213520e-4f
, 4.2531060e-4f
, 6.7171600e-4f
152 /* The early all-pass filter lengths are based on the early tap lengths:
156 * Where a is the approximate maximum all-pass cycle limit (20).
158 constexpr std::array
<ALfloat
,NUM_LINES
> EARLY_ALLPASS_LENGTHS
{{
159 9.7096800e-5f
, 1.0720356e-4f
, 1.1836234e-4f
, 1.3068260e-4f
162 /* The early delay lines are used to transform the primary reflections into
163 * the secondary reflections. The A-format is arranged in such a way that
164 * the channels/lines are spatially opposite:
166 * C_i is opposite C_(N-i-1)
168 * The delays of the two opposing reflections (R_i and O_i) from a source
169 * anywhere along a particular dimension always sum to twice its full delay:
173 * With that in mind we can determine the delay between the two reflections
174 * and thus specify our early line lengths (L_(i=0)^N) using:
176 * O_i = 2 r_a - R_(N-i-1)
177 * L_i = O_i - R_(N-i-1)
178 * = 2 (r_a - R_(N-i-1))
179 * = 2 (r_a - T_(N-i-1) - r_0)
180 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
182 * Using an average dimension of 1m, we get:
184 constexpr std::array
<ALfloat
,NUM_LINES
> EARLY_LINE_LENGTHS
{{
185 5.9850400e-4f
, 1.0913150e-3f
, 1.5376658e-3f
, 1.9419362e-3f
188 /* The late all-pass filter lengths are based on the late line lengths:
190 * A_i = (5 / 3) L_i / r_1
192 constexpr std::array
<ALfloat
,NUM_LINES
> LATE_ALLPASS_LENGTHS
{{
193 1.6182800e-4f
, 2.0389060e-4f
, 2.8159360e-4f
, 3.2365600e-4f
196 /* The late lines are used to approximate the decaying cycle of recursive
199 * Splitting the lines in half, we start with the shortest reflection paths
202 * L_i = 2^(i / (N - 1)) r_d
204 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
206 * L_i = 2 r_a - L_(i-N/2)
207 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
209 * For our 1m average room, we get:
211 constexpr std::array
<ALfloat
,NUM_LINES
> LATE_LINE_LENGTHS
{{
212 1.9419362e-3f
, 2.4466860e-3f
, 3.3791220e-3f
, 3.8838720e-3f
216 using ReverbUpdateLine
= std::array
<float,MAX_UPDATE_SAMPLES
>;
219 /* The delay lines use interleaved samples, with the lengths being powers
220 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
224 uintptr_t LineOffset
{0u};
225 std::array
<float,NUM_LINES
> *Line
;
228 /* Given the allocated sample buffer, this function updates each delay line
231 void realizeLineOffset(std::array
<float,NUM_LINES
> *sampleBuffer
) noexcept
232 { Line
= sampleBuffer
+ LineOffset
; }
234 /* Calculate the length of a delay line and store its mask and offset. */
235 ALuint
calcLineLength(const ALfloat length
, const uintptr_t offset
, const ALfloat frequency
,
238 /* All line lengths are powers of 2, calculated from their lengths in
239 * seconds, rounded up.
241 ALuint samples
{float2uint(std::ceil(length
*frequency
))};
242 samples
= NextPowerOf2(samples
+ extra
);
244 /* All lines share a single sample buffer. */
248 /* Return the sample count for accumulation. */
252 void write(size_t offset
, const size_t c
, const ALfloat
*RESTRICT in
, const size_t count
) const noexcept
255 for(size_t i
{0u};i
< count
;)
258 size_t td
{minz(Mask
+1 - offset
, count
- i
)};
260 Line
[offset
++][c
] = in
[i
++];
269 size_t Offset
[NUM_LINES
][2]{};
271 void processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
272 const ALfloat xCoeff
, const ALfloat yCoeff
, ALfloat fadeCount
, const ALfloat fadeStep
,
274 void processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
275 const ALfloat xCoeff
, const ALfloat yCoeff
, const size_t todo
);
279 /* Two filters are used to adjust the signal. One to control the low
280 * frequencies, and one to control the high frequencies.
282 ALfloat MidGain
[2]{0.0f
, 0.0f
};
283 BiquadFilter HFFilter
, LFFilter
;
285 void calcCoeffs(const ALfloat length
, const ALfloat lfDecayTime
, const ALfloat mfDecayTime
,
286 const ALfloat hfDecayTime
, const ALfloat lf0norm
, const ALfloat hf0norm
);
288 /* Applies the two T60 damping filter sections. */
289 void process(const al::span
<float> samples
)
291 HFFilter
.process(samples
, samples
.begin());
292 LFFilter
.process(samples
, samples
.begin());
296 struct EarlyReflections
{
297 /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
298 * The spread from this filter also helps smooth out the reverb tail.
302 /* An echo line is used to complete the second half of the early
306 size_t Offset
[NUM_LINES
][2]{};
307 ALfloat Coeff
[NUM_LINES
][2]{};
309 /* The gain for each output channel based on 3D panning. */
310 ALfloat CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
311 ALfloat PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
313 void updateLines(const ALfloat density
, const ALfloat diffusion
, const ALfloat decayTime
,
314 const ALfloat frequency
);
318 /* A recursive delay line is used fill in the reverb tail. */
320 size_t Offset
[NUM_LINES
][2]{};
322 /* Attenuation to compensate for the modal density and decay rate of the
325 ALfloat DensityGain
[2]{0.0f
, 0.0f
};
327 /* T60 decay filters are used to simulate absorption. */
328 T60Filter T60
[NUM_LINES
];
330 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
333 /* The gain for each output channel based on 3D panning. */
334 ALfloat CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
335 ALfloat PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
337 void updateLines(const ALfloat density
, const ALfloat diffusion
, const ALfloat lfDecayTime
,
338 const ALfloat mfDecayTime
, const ALfloat hfDecayTime
, const ALfloat lf0norm
,
339 const ALfloat hf0norm
, const ALfloat frequency
);
342 struct ReverbState final
: public EffectState
{
343 /* All delay lines are allocated as a single buffer to reduce memory
344 * fragmentation and management code.
346 al::vector
<std::array
<float,NUM_LINES
>,16> mSampleBuffer
;
349 /* Calculated parameters which indicate if cross-fading is needed after
352 ALfloat Density
{AL_EAXREVERB_DEFAULT_DENSITY
};
353 ALfloat Diffusion
{AL_EAXREVERB_DEFAULT_DIFFUSION
};
354 ALfloat DecayTime
{AL_EAXREVERB_DEFAULT_DECAY_TIME
};
355 ALfloat HFDecayTime
{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO
* AL_EAXREVERB_DEFAULT_DECAY_TIME
};
356 ALfloat LFDecayTime
{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO
* AL_EAXREVERB_DEFAULT_DECAY_TIME
};
357 ALfloat HFReference
{AL_EAXREVERB_DEFAULT_HFREFERENCE
};
358 ALfloat LFReference
{AL_EAXREVERB_DEFAULT_LFREFERENCE
};
361 /* Master effect filters */
365 } mFilter
[NUM_LINES
];
367 /* Core delay line (early reflections and late reverb tap from this). */
370 /* Tap points for early reflection delay. */
371 size_t mEarlyDelayTap
[NUM_LINES
][2]{};
372 ALfloat mEarlyDelayCoeff
[NUM_LINES
][2]{};
374 /* Tap points for late reverb feed and delay. */
375 size_t mLateFeedTap
{};
376 size_t mLateDelayTap
[NUM_LINES
][2]{};
378 /* Coefficients for the all-pass and line scattering matrices. */
382 EarlyReflections mEarly
;
388 /* Maximum number of samples to process at once. */
389 size_t mMaxUpdate
[2]{MAX_UPDATE_SAMPLES
, MAX_UPDATE_SAMPLES
};
391 /* The current write offset for all delay lines. */
394 /* Temporary storage used when processing. */
396 alignas(16) FloatBufferLine mTempLine
{};
397 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mTempSamples
;
399 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mEarlySamples
{};
400 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mLateSamples
{};
402 using MixOutT
= void (ReverbState::*)(const al::span
<FloatBufferLine
> samplesOut
,
403 const size_t counter
, const size_t offset
, const size_t todo
);
405 MixOutT mMixOut
{&ReverbState::MixOutPlain
};
406 std::array
<ALfloat
,MAX_AMBI_ORDER
+1> mOrderScales
{};
407 std::array
<std::array
<BandSplitter
,NUM_LINES
>,2> mAmbiSplitter
;
410 void MixOutPlain(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
411 const size_t offset
, const size_t todo
)
415 /* Convert back to B-Format, and mix the results to output. */
416 const al::span
<float> tmpspan
{mTempLine
.data(), todo
};
417 for(size_t c
{0u};c
< NUM_LINES
;c
++)
419 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
420 MixRowSamples(tmpspan
, {A2B
[c
], NUM_LINES
}, mEarlySamples
[0].data(),
421 mEarlySamples
[0].size());
422 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
425 for(size_t c
{0u};c
< NUM_LINES
;c
++)
427 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
428 MixRowSamples(tmpspan
, {A2B
[c
], NUM_LINES
}, mLateSamples
[0].data(),
429 mLateSamples
[0].size());
430 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
435 void MixOutAmbiUp(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
436 const size_t offset
, const size_t todo
)
440 const al::span
<float> tmpspan
{mTempLine
.data(), todo
};
441 for(size_t c
{0u};c
< NUM_LINES
;c
++)
443 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
444 MixRowSamples(tmpspan
, {A2B
[c
], NUM_LINES
}, mEarlySamples
[0].data(),
445 mEarlySamples
[0].size());
447 /* Apply scaling to the B-Format's HF response to "upsample" it to
448 * higher-order output.
450 const ALfloat hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
451 mAmbiSplitter
[0][c
].applyHfScale(tmpspan
, hfscale
);
453 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
456 for(size_t c
{0u};c
< NUM_LINES
;c
++)
458 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
459 MixRowSamples(tmpspan
, {A2B
[c
], NUM_LINES
}, mLateSamples
[0].data(),
460 mLateSamples
[0].size());
462 const ALfloat hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
463 mAmbiSplitter
[1][c
].applyHfScale(tmpspan
, hfscale
);
465 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
470 bool allocLines(const ALfloat frequency
);
472 void updateDelayLine(const ALfloat earlyDelay
, const ALfloat lateDelay
, const ALfloat density
,
473 const ALfloat decayTime
, const ALfloat frequency
);
474 void update3DPanning(const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
,
475 const ALfloat earlyGain
, const ALfloat lateGain
, const EffectTarget
&target
);
477 void earlyUnfaded(const size_t offset
, const size_t todo
);
478 void earlyFaded(const size_t offset
, const size_t todo
, const ALfloat fade
,
479 const ALfloat fadeStep
);
481 void lateUnfaded(const size_t offset
, const size_t todo
);
482 void lateFaded(const size_t offset
, const size_t todo
, const ALfloat fade
,
483 const ALfloat fadeStep
);
485 ALboolean
deviceUpdate(const ALCdevice
*device
) override
;
486 void update(const ALCcontext
*context
, const ALeffectslot
*slot
, const EffectProps
*props
, const EffectTarget target
) override
;
487 void process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
) override
;
489 DEF_NEWDEL(ReverbState
)
492 /**************************************
494 **************************************/
496 inline ALfloat
CalcDelayLengthMult(ALfloat density
)
497 { return maxf(5.0f
, std::cbrt(density
*DENSITY_SCALE
)); }
499 /* Calculates the delay line metrics and allocates the shared sample buffer
500 * for all lines given the sample rate (frequency). If an allocation failure
501 * occurs, it returns AL_FALSE.
503 bool ReverbState::allocLines(const ALfloat frequency
)
505 /* All delay line lengths are calculated to accomodate the full range of
506 * lengths given their respective paramters.
508 size_t totalSamples
{0u};
510 /* Multiplier for the maximum density value, i.e. density=1, which is
511 * actually the least density...
513 ALfloat multiplier
{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY
)};
515 /* The main delay length includes the maximum early reflection delay, the
516 * largest early tap width, the maximum late reverb delay, and the
517 * largest late tap width. Finally, it must also be extended by the
518 * update size (BUFFERSIZE) for block processing.
520 ALfloat length
{AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+ EARLY_TAP_LENGTHS
.back()*multiplier
+
521 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
+
522 (LATE_LINE_LENGTHS
.back() - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*multiplier
};
523 totalSamples
+= mDelay
.calcLineLength(length
, totalSamples
, frequency
, BUFFERSIZE
);
525 /* The early vector all-pass line. */
526 length
= EARLY_ALLPASS_LENGTHS
.back() * multiplier
;
527 totalSamples
+= mEarly
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
529 /* The early reflection line. */
530 length
= EARLY_LINE_LENGTHS
.back() * multiplier
;
531 totalSamples
+= mEarly
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
533 /* The late vector all-pass line. */
534 length
= LATE_ALLPASS_LENGTHS
.back() * multiplier
;
535 totalSamples
+= mLate
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
537 /* The late delay lines are calculated from the largest maximum density
540 length
= LATE_LINE_LENGTHS
.back() * multiplier
;
541 totalSamples
+= mLate
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
543 if(totalSamples
!= mSampleBuffer
.size())
545 mSampleBuffer
.resize(totalSamples
);
546 mSampleBuffer
.shrink_to_fit();
549 /* Clear the sample buffer. */
550 std::fill(mSampleBuffer
.begin(), mSampleBuffer
.end(), std::array
<float,NUM_LINES
>{});
552 /* Update all delays to reflect the new sample buffer. */
553 mDelay
.realizeLineOffset(mSampleBuffer
.data());
554 mEarly
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
555 mEarly
.Delay
.realizeLineOffset(mSampleBuffer
.data());
556 mLate
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
557 mLate
.Delay
.realizeLineOffset(mSampleBuffer
.data());
562 ALboolean
ReverbState::deviceUpdate(const ALCdevice
*device
)
564 const auto frequency
= static_cast<ALfloat
>(device
->Frequency
);
566 /* Allocate the delay lines. */
567 if(!allocLines(frequency
))
570 const ALfloat multiplier
{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY
)};
572 /* The late feed taps are set a fixed position past the latest delay tap. */
573 mLateFeedTap
= float2uint(
574 (AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+ EARLY_TAP_LENGTHS
.back()*multiplier
) * frequency
);
576 /* Clear filters and gain coefficients since the delay lines were all just
577 * cleared (if not reallocated).
579 for(auto &filter
: mFilter
)
585 for(auto &coeff
: mEarlyDelayCoeff
)
586 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
587 for(auto &coeff
: mEarly
.Coeff
)
588 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
590 mLate
.DensityGain
[0] = 0.0f
;
591 mLate
.DensityGain
[1] = 0.0f
;
592 for(auto &t60
: mLate
.T60
)
594 t60
.MidGain
[0] = 0.0f
;
595 t60
.MidGain
[1] = 0.0f
;
596 t60
.HFFilter
.clear();
597 t60
.LFFilter
.clear();
600 for(auto &gains
: mEarly
.CurrentGain
)
601 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
602 for(auto &gains
: mEarly
.PanGain
)
603 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
604 for(auto &gains
: mLate
.CurrentGain
)
605 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
606 for(auto &gains
: mLate
.PanGain
)
607 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
609 /* Reset fading and offset base. */
611 std::fill(std::begin(mMaxUpdate
), std::end(mMaxUpdate
), MAX_UPDATE_SAMPLES
);
614 if(device
->mAmbiOrder
> 1)
616 mMixOut
= &ReverbState::MixOutAmbiUp
;
617 mOrderScales
= BFormatDec::GetHFOrderScales(1, device
->mAmbiOrder
);
621 mMixOut
= &ReverbState::MixOutPlain
;
622 mOrderScales
.fill(1.0f
);
624 mAmbiSplitter
[0][0].init(400.0f
/ frequency
);
625 std::fill(mAmbiSplitter
[0].begin()+1, mAmbiSplitter
[0].end(), mAmbiSplitter
[0][0]);
626 std::fill(mAmbiSplitter
[1].begin(), mAmbiSplitter
[1].end(), mAmbiSplitter
[0][0]);
631 /**************************************
633 **************************************/
635 /* Calculate a decay coefficient given the length of each cycle and the time
636 * until the decay reaches -60 dB.
638 inline ALfloat
CalcDecayCoeff(const ALfloat length
, const ALfloat decayTime
)
639 { return std::pow(REVERB_DECAY_GAIN
, length
/decayTime
); }
641 /* Calculate a decay length from a coefficient and the time until the decay
644 inline ALfloat
CalcDecayLength(const ALfloat coeff
, const ALfloat decayTime
)
645 { return std::log10(coeff
) * decayTime
/ std::log10(REVERB_DECAY_GAIN
); }
647 /* Calculate an attenuation to be applied to the input of any echo models to
648 * compensate for modal density and decay time.
650 inline ALfloat
CalcDensityGain(const ALfloat a
)
652 /* The energy of a signal can be obtained by finding the area under the
653 * squared signal. This takes the form of Sum(x_n^2), where x is the
654 * amplitude for the sample n.
656 * Decaying feedback matches exponential decay of the form Sum(a^n),
657 * where a is the attenuation coefficient, and n is the sample. The area
658 * under this decay curve can be calculated as: 1 / (1 - a).
660 * Modifying the above equation to find the area under the squared curve
661 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
662 * calculated by inverting the square root of this approximation,
663 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
665 return std::sqrt(1.0f
- a
*a
);
668 /* Calculate the scattering matrix coefficients given a diffusion factor. */
669 inline ALvoid
CalcMatrixCoeffs(const ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
671 /* The matrix is of order 4, so n is sqrt(4 - 1). */
672 ALfloat n
{std::sqrt(3.0f
)};
673 ALfloat t
{diffusion
* std::atan(n
)};
675 /* Calculate the first mixing matrix coefficient. */
677 /* Calculate the second mixing matrix coefficient. */
678 *y
= std::sin(t
) / n
;
681 /* Calculate the limited HF ratio for use with the late reverb low-pass
684 ALfloat
CalcLimitedHfRatio(const ALfloat hfRatio
, const ALfloat airAbsorptionGainHF
,
685 const ALfloat decayTime
)
687 /* Find the attenuation due to air absorption in dB (converting delay
688 * time to meters using the speed of sound). Then reversing the decay
689 * equation, solve for HF ratio. The delay length is cancelled out of
690 * the equation, so it can be calculated once for all lines.
692 ALfloat limitRatio
{1.0f
/
693 (CalcDecayLength(airAbsorptionGainHF
, decayTime
) * SPEEDOFSOUNDMETRESPERSEC
)};
695 /* Using the limit calculated above, apply the upper bound to the HF ratio.
697 return minf(limitRatio
, hfRatio
);
701 /* Calculates the 3-band T60 damping coefficients for a particular delay line
702 * of specified length, using a combination of two shelf filter sections given
703 * decay times for each band split at two reference frequencies.
705 void T60Filter::calcCoeffs(const ALfloat length
, const ALfloat lfDecayTime
,
706 const ALfloat mfDecayTime
, const ALfloat hfDecayTime
, const ALfloat lf0norm
,
707 const ALfloat hf0norm
)
709 const float mfGain
{CalcDecayCoeff(length
, mfDecayTime
)};
710 const float lfGain
{CalcDecayCoeff(length
, lfDecayTime
) / mfGain
};
711 const float hfGain
{CalcDecayCoeff(length
, hfDecayTime
) / mfGain
};
714 LFFilter
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, lfGain
, 1.0f
);
715 HFFilter
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, hfGain
, 1.0f
);
718 /* Update the early reflection line lengths and gain coefficients. */
719 void EarlyReflections::updateLines(const ALfloat density
, const ALfloat diffusion
,
720 const ALfloat decayTime
, const ALfloat frequency
)
722 const ALfloat multiplier
{CalcDelayLengthMult(density
)};
724 /* Calculate the all-pass feed-back/forward coefficient. */
725 VecAp
.Coeff
= std::sqrt(0.5f
) * std::pow(diffusion
, 2.0f
);
727 for(size_t i
{0u};i
< NUM_LINES
;i
++)
729 /* Calculate the length (in seconds) of each all-pass line. */
730 ALfloat length
{EARLY_ALLPASS_LENGTHS
[i
] * multiplier
};
732 /* Calculate the delay offset for each all-pass line. */
733 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
735 /* Calculate the length (in seconds) of each delay line. */
736 length
= EARLY_LINE_LENGTHS
[i
] * multiplier
;
738 /* Calculate the delay offset for each delay line. */
739 Offset
[i
][1] = float2uint(length
* frequency
);
741 /* Calculate the gain (coefficient) for each line. */
742 Coeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
746 /* Update the late reverb line lengths and T60 coefficients. */
747 void LateReverb::updateLines(const ALfloat density
, const ALfloat diffusion
,
748 const ALfloat lfDecayTime
, const ALfloat mfDecayTime
, const ALfloat hfDecayTime
,
749 const ALfloat lf0norm
, const ALfloat hf0norm
, const ALfloat frequency
)
751 /* Scaling factor to convert the normalized reference frequencies from
752 * representing 0...freq to 0...max_reference.
754 const ALfloat norm_weight_factor
{frequency
/ AL_EAXREVERB_MAX_HFREFERENCE
};
756 const ALfloat late_allpass_avg
{
757 std::accumulate(LATE_ALLPASS_LENGTHS
.begin(), LATE_ALLPASS_LENGTHS
.end(), 0.0f
) /
760 /* To compensate for changes in modal density and decay time of the late
761 * reverb signal, the input is attenuated based on the maximal energy of
762 * the outgoing signal. This approximation is used to keep the apparent
763 * energy of the signal equal for all ranges of density and decay time.
765 * The average length of the delay lines is used to calculate the
766 * attenuation coefficient.
768 const ALfloat multiplier
{CalcDelayLengthMult(density
)};
769 ALfloat length
{std::accumulate(LATE_LINE_LENGTHS
.begin(), LATE_LINE_LENGTHS
.end(), 0.0f
) /
770 float{NUM_LINES
} * multiplier
};
771 length
+= late_allpass_avg
* multiplier
;
772 /* The density gain calculation uses an average decay time weighted by
773 * approximate bandwidth. This attempts to compensate for losses of energy
774 * that reduce decay time due to scattering into highly attenuated bands.
776 const ALfloat decayTimeWeighted
{
777 (lf0norm
*norm_weight_factor
)*lfDecayTime
+
778 (hf0norm
*norm_weight_factor
- lf0norm
*norm_weight_factor
)*mfDecayTime
+
779 (1.0f
- hf0norm
*norm_weight_factor
)*hfDecayTime
};
780 DensityGain
[1] = CalcDensityGain(CalcDecayCoeff(length
, decayTimeWeighted
));
782 /* Calculate the all-pass feed-back/forward coefficient. */
783 VecAp
.Coeff
= std::sqrt(0.5f
) * std::pow(diffusion
, 2.0f
);
785 for(size_t i
{0u};i
< NUM_LINES
;i
++)
787 /* Calculate the length (in seconds) of each all-pass line. */
788 length
= LATE_ALLPASS_LENGTHS
[i
] * multiplier
;
790 /* Calculate the delay offset for each all-pass line. */
791 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
793 /* Calculate the length (in seconds) of each delay line. */
794 length
= LATE_LINE_LENGTHS
[i
] * multiplier
;
796 /* Calculate the delay offset for each delay line. */
797 Offset
[i
][1] = float2uint(length
*frequency
+ 0.5f
);
799 /* Approximate the absorption that the vector all-pass would exhibit
800 * given the current diffusion so we don't have to process a full T60
801 * filter for each of its four lines.
803 length
+= lerp(LATE_ALLPASS_LENGTHS
[i
], late_allpass_avg
, diffusion
) * multiplier
;
805 /* Calculate the T60 damping coefficients for each line. */
806 T60
[i
].calcCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
, lf0norm
, hf0norm
);
811 /* Update the offsets for the main effect delay line. */
812 void ReverbState::updateDelayLine(const ALfloat earlyDelay
, const ALfloat lateDelay
,
813 const ALfloat density
, const ALfloat decayTime
, const ALfloat frequency
)
815 const ALfloat multiplier
{CalcDelayLengthMult(density
)};
817 /* Early reflection taps are decorrelated by means of an average room
818 * reflection approximation described above the definition of the taps.
819 * This approximation is linear and so the above density multiplier can
820 * be applied to adjust the width of the taps. A single-band decay
821 * coefficient is applied to simulate initial attenuation and absorption.
823 * Late reverb taps are based on the late line lengths to allow a zero-
824 * delay path and offsets that would continue the propagation naturally
825 * into the late lines.
827 for(size_t i
{0u};i
< NUM_LINES
;i
++)
829 ALfloat length
{earlyDelay
+ EARLY_TAP_LENGTHS
[i
]*multiplier
};
830 mEarlyDelayTap
[i
][1] = float2uint(length
* frequency
);
832 length
= EARLY_TAP_LENGTHS
[i
]*multiplier
;
833 mEarlyDelayCoeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
835 length
= (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*multiplier
+
837 mLateDelayTap
[i
][1] = mLateFeedTap
+ float2uint(length
* frequency
);
841 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
842 * reflections toward the given direction, using its magnitude (up to 1) as a
843 * focal strength. This function results in a B-Format transformation matrix
844 * that spatially focuses the signal in the desired direction.
846 alu::Matrix
GetTransformFromVector(const ALfloat
*vec
)
848 constexpr float sqrt_3
{1.73205080756887719318f
};
850 /* Normalize the panning vector according to the N3D scale, which has an
851 * extra sqrt(3) term on the directional components. Converting from OpenAL
852 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
853 * that the reverb panning vectors use left-handed coordinates, unlike the
854 * rest of OpenAL which use right-handed. This is fixed by negating Z,
855 * which cancels out with the B-Format Z negation.
858 ALfloat mag
{std::sqrt(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2])};
861 norm
[0] = vec
[0] / mag
* -sqrt_3
;
862 norm
[1] = vec
[1] / mag
* sqrt_3
;
863 norm
[2] = vec
[2] / mag
* sqrt_3
;
868 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
869 * term. There's no need to renormalize the magnitude since it would
870 * just be reapplied in the matrix.
872 norm
[0] = vec
[0] * -sqrt_3
;
873 norm
[1] = vec
[1] * sqrt_3
;
874 norm
[2] = vec
[2] * sqrt_3
;
878 1.0f
, 0.0f
, 0.0f
, 0.0f
,
879 norm
[0], 1.0f
-mag
, 0.0f
, 0.0f
,
880 norm
[1], 0.0f
, 1.0f
-mag
, 0.0f
,
881 norm
[2], 0.0f
, 0.0f
, 1.0f
-mag
885 /* Update the early and late 3D panning gains. */
886 void ReverbState::update3DPanning(const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
,
887 const ALfloat earlyGain
, const ALfloat lateGain
, const EffectTarget
&target
)
889 /* Create matrices that transform a B-Format signal according to the
892 const alu::Matrix earlymat
{GetTransformFromVector(ReflectionsPan
)};
893 const alu::Matrix latemat
{GetTransformFromVector(LateReverbPan
)};
895 mOutTarget
= target
.Main
->Buffer
;
896 for(size_t i
{0u};i
< NUM_LINES
;i
++)
898 const ALfloat coeffs
[MAX_AMBI_CHANNELS
]{earlymat
[0][i
], earlymat
[1][i
], earlymat
[2][i
],
900 ComputePanGains(target
.Main
, coeffs
, earlyGain
, mEarly
.PanGain
[i
]);
902 for(size_t i
{0u};i
< NUM_LINES
;i
++)
904 const ALfloat coeffs
[MAX_AMBI_CHANNELS
]{latemat
[0][i
], latemat
[1][i
], latemat
[2][i
],
906 ComputePanGains(target
.Main
, coeffs
, lateGain
, mLate
.PanGain
[i
]);
910 void ReverbState::update(const ALCcontext
*Context
, const ALeffectslot
*Slot
, const EffectProps
*props
, const EffectTarget target
)
912 const ALCdevice
*Device
{Context
->mDevice
.get()};
913 const auto frequency
= static_cast<ALfloat
>(Device
->Frequency
);
915 /* Calculate the master filters */
916 float hf0norm
{minf(props
->Reverb
.HFReference
/frequency
, 0.49f
)};
917 mFilter
[0].Lp
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, props
->Reverb
.GainHF
, 1.0f
);
918 float lf0norm
{minf(props
->Reverb
.LFReference
/frequency
, 0.49f
)};
919 mFilter
[0].Hp
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, props
->Reverb
.GainLF
, 1.0f
);
920 for(size_t i
{1u};i
< NUM_LINES
;i
++)
922 mFilter
[i
].Lp
.copyParamsFrom(mFilter
[0].Lp
);
923 mFilter
[i
].Hp
.copyParamsFrom(mFilter
[0].Hp
);
926 /* Update the main effect delay and associated taps. */
927 updateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
928 props
->Reverb
.Density
, props
->Reverb
.DecayTime
, frequency
);
930 /* Update the early lines. */
931 mEarly
.updateLines(props
->Reverb
.Density
, props
->Reverb
.Diffusion
, props
->Reverb
.DecayTime
,
934 /* Get the mixing matrix coefficients. */
935 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &mMixX
, &mMixY
);
937 /* If the HF limit parameter is flagged, calculate an appropriate limit
938 * based on the air absorption parameter.
940 ALfloat hfRatio
{props
->Reverb
.DecayHFRatio
};
941 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
942 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
943 props
->Reverb
.DecayTime
);
945 /* Calculate the LF/HF decay times. */
946 const ALfloat lfDecayTime
{clampf(props
->Reverb
.DecayTime
* props
->Reverb
.DecayLFRatio
,
947 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
)};
948 const ALfloat hfDecayTime
{clampf(props
->Reverb
.DecayTime
* hfRatio
,
949 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
)};
951 /* Update the late lines. */
952 mLate
.updateLines(props
->Reverb
.Density
, props
->Reverb
.Diffusion
, lfDecayTime
,
953 props
->Reverb
.DecayTime
, hfDecayTime
, lf0norm
, hf0norm
, frequency
);
955 /* Update early and late 3D panning. */
956 const ALfloat gain
{props
->Reverb
.Gain
* Slot
->Params
.Gain
* ReverbBoost
};
957 update3DPanning(props
->Reverb
.ReflectionsPan
, props
->Reverb
.LateReverbPan
,
958 props
->Reverb
.ReflectionsGain
*gain
, props
->Reverb
.LateReverbGain
*gain
, target
);
960 /* Calculate the max update size from the smallest relevant delay. */
961 mMaxUpdate
[1] = minz(MAX_UPDATE_SAMPLES
, minz(mEarly
.Offset
[0][1], mLate
.Offset
[0][1]));
963 /* Determine if delay-line cross-fading is required. Density is essentially
964 * a master control for the feedback delays, so changes the offsets of many
967 mDoFading
|= (mParams
.Density
!= props
->Reverb
.Density
||
968 /* Diffusion and decay times influences the decay rate (gain) of the
969 * late reverb T60 filter.
971 mParams
.Diffusion
!= props
->Reverb
.Diffusion
||
972 mParams
.DecayTime
!= props
->Reverb
.DecayTime
||
973 mParams
.HFDecayTime
!= hfDecayTime
||
974 mParams
.LFDecayTime
!= lfDecayTime
||
975 /* HF/LF References control the weighting used to calculate the density
978 mParams
.HFReference
!= props
->Reverb
.HFReference
||
979 mParams
.LFReference
!= props
->Reverb
.LFReference
);
982 mParams
.Density
= props
->Reverb
.Density
;
983 mParams
.Diffusion
= props
->Reverb
.Diffusion
;
984 mParams
.DecayTime
= props
->Reverb
.DecayTime
;
985 mParams
.HFDecayTime
= hfDecayTime
;
986 mParams
.LFDecayTime
= lfDecayTime
;
987 mParams
.HFReference
= props
->Reverb
.HFReference
;
988 mParams
.LFReference
= props
->Reverb
.LFReference
;
993 /**************************************
994 * Effect Processing *
995 **************************************/
997 /* Applies a scattering matrix to the 4-line (vector) input. This is used
998 * for both the below vector all-pass model and to perform modal feed-back
999 * delay network (FDN) mixing.
1001 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1002 * matrix with a single unitary rotational parameter:
1004 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1009 * The rotation is constructed from the effect's diffusion parameter,
1014 * Where a, b, and c are the coefficient y with differing signs, and d is the
1015 * coefficient x. The final matrix is thus:
1017 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1018 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1019 * [ y, -y, x, y ] x = cos(t)
1020 * [ -y, -y, -y, x ] y = sin(t) / n
1022 * Any square orthogonal matrix with an order that is a power of two will
1023 * work (where ^T is transpose, ^-1 is inverse):
1027 * Using that knowledge, finding an appropriate matrix can be accomplished
1028 * naively by searching all combinations of:
1032 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1033 * whose combination of signs are being iterated.
1035 inline auto VectorPartialScatter(const std::array
<float,NUM_LINES
> &RESTRICT in
,
1036 const ALfloat xCoeff
, const ALfloat yCoeff
) -> std::array
<float,NUM_LINES
>
1038 std::array
<float,NUM_LINES
> out
;
1039 out
[0] = xCoeff
*in
[0] + yCoeff
*( in
[1] + -in
[2] + in
[3]);
1040 out
[1] = xCoeff
*in
[1] + yCoeff
*(-in
[0] + in
[2] + in
[3]);
1041 out
[2] = xCoeff
*in
[2] + yCoeff
*( in
[0] + -in
[1] + in
[3]);
1042 out
[3] = xCoeff
*in
[3] + yCoeff
*(-in
[0] + -in
[1] + -in
[2] );
1046 /* Utilizes the above, but reverses the input channels. */
1047 void VectorScatterRevDelayIn(const DelayLineI delay
, size_t offset
, const ALfloat xCoeff
,
1048 const ALfloat yCoeff
, const al::span
<const ReverbUpdateLine
,NUM_LINES
> in
, const size_t count
)
1052 for(size_t i
{0u};i
< count
;)
1054 offset
&= delay
.Mask
;
1055 size_t td
{minz(delay
.Mask
+1 - offset
, count
-i
)};
1057 std::array
<float,NUM_LINES
> f
;
1058 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1059 f
[NUM_LINES
-1-j
] = in
[j
][i
];
1062 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1067 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1068 * filter to the 4-line input.
1070 * It works by vectorizing a regular all-pass filter and replacing the delay
1071 * element with a scattering matrix (like the one above) and a diagonal
1072 * matrix of delay elements.
1074 * Two static specializations are used for transitional (cross-faded) delay
1075 * line processing and non-transitional processing.
1077 void VecAllpass::processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1078 const ALfloat xCoeff
, const ALfloat yCoeff
, const size_t todo
)
1080 const DelayLineI delay
{Delay
};
1081 const ALfloat feedCoeff
{Coeff
};
1085 size_t vap_offset
[NUM_LINES
];
1086 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1087 vap_offset
[j
] = offset
- Offset
[j
][0];
1088 for(size_t i
{0u};i
< todo
;)
1090 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1091 vap_offset
[j
] &= delay
.Mask
;
1092 offset
&= delay
.Mask
;
1094 size_t maxoff
{offset
};
1095 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1096 maxoff
= maxz(maxoff
, vap_offset
[j
]);
1097 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1100 std::array
<float,NUM_LINES
> f
;
1101 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1103 const ALfloat input
{samples
[j
][i
]};
1104 const ALfloat out
{delay
.Line
[vap_offset
[j
]++][j
] - feedCoeff
*input
};
1105 f
[j
] = input
+ feedCoeff
*out
;
1107 samples
[j
][i
] = out
;
1111 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1115 void VecAllpass::processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1116 const ALfloat xCoeff
, const ALfloat yCoeff
, ALfloat fadeCount
, const ALfloat fadeStep
,
1119 const DelayLineI delay
{Delay
};
1120 const ALfloat feedCoeff
{Coeff
};
1124 size_t vap_offset
[NUM_LINES
][2];
1125 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1127 vap_offset
[j
][0] = offset
- Offset
[j
][0];
1128 vap_offset
[j
][1] = offset
- Offset
[j
][1];
1130 for(size_t i
{0u};i
< todo
;)
1132 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1134 vap_offset
[j
][0] &= delay
.Mask
;
1135 vap_offset
[j
][1] &= delay
.Mask
;
1137 offset
&= delay
.Mask
;
1139 size_t maxoff
{offset
};
1140 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1141 maxoff
= maxz(maxoff
, maxz(vap_offset
[j
][0], vap_offset
[j
][1]));
1142 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1146 const float fade
{fadeCount
* fadeStep
};
1148 std::array
<float,NUM_LINES
> f
;
1149 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1150 f
[j
] = delay
.Line
[vap_offset
[j
][0]++][j
]*(1.0f
-fade
) +
1151 delay
.Line
[vap_offset
[j
][1]++][j
]*fade
;
1153 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1155 const ALfloat input
{samples
[j
][i
]};
1156 const ALfloat out
{f
[j
] - feedCoeff
*input
};
1157 f
[j
] = input
+ feedCoeff
*out
;
1159 samples
[j
][i
] = out
;
1163 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1168 /* This generates early reflections.
1170 * This is done by obtaining the primary reflections (those arriving from the
1171 * same direction as the source) from the main delay line. These are
1172 * attenuated and all-pass filtered (based on the diffusion parameter).
1174 * The early lines are then fed in reverse (according to the approximately
1175 * opposite spatial location of the A-Format lines) to create the secondary
1176 * reflections (those arriving from the opposite direction as the source).
1178 * The early response is then completed by combining the primary reflections
1179 * with the delayed and attenuated output from the early lines.
1181 * Finally, the early response is reversed, scattered (based on diffusion),
1182 * and fed into the late reverb section of the main delay line.
1184 * Two static specializations are used for transitional (cross-faded) delay
1185 * line processing and non-transitional processing.
1187 void ReverbState::earlyUnfaded(const size_t offset
, const size_t todo
)
1189 const DelayLineI early_delay
{mEarly
.Delay
};
1190 const DelayLineI main_delay
{mDelay
};
1191 const ALfloat mixX
{mMixX
};
1192 const ALfloat mixY
{mMixY
};
1196 /* First, load decorrelated samples from the main delay line as the primary
1199 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1201 size_t early_delay_tap
{offset
- mEarlyDelayTap
[j
][0]};
1202 const ALfloat coeff
{mEarlyDelayCoeff
[j
][0]};
1203 for(size_t i
{0u};i
< todo
;)
1205 early_delay_tap
&= main_delay
.Mask
;
1206 size_t td
{minz(main_delay
.Mask
+1 - early_delay_tap
, todo
- i
)};
1208 mTempSamples
[j
][i
++] = main_delay
.Line
[early_delay_tap
++][j
] * coeff
;
1213 /* Apply a vector all-pass, to help color the initial reflections based on
1214 * the diffusion strength.
1216 mEarly
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1218 /* Apply a delay and bounce to generate secondary reflections, combine with
1219 * the primary reflections and write out the result for mixing.
1221 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1223 size_t feedb_tap
{offset
- mEarly
.Offset
[j
][0]};
1224 const ALfloat feedb_coeff
{mEarly
.Coeff
[j
][0]};
1225 float *out
= mEarlySamples
[j
].data();
1227 for(size_t i
{0u};i
< todo
;)
1229 feedb_tap
&= early_delay
.Mask
;
1230 size_t td
{minz(early_delay
.Mask
+1 - feedb_tap
, todo
- i
)};
1232 out
[i
] = mTempSamples
[j
][i
] + early_delay
.Line
[feedb_tap
++][j
]*feedb_coeff
;
1237 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1238 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1240 /* Also write the result back to the main delay line for the late reverb
1241 * stage to pick up at the appropriate time, appplying a scatter and
1242 * bounce to improve the initial diffusion in the late reverb.
1244 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1245 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1247 void ReverbState::earlyFaded(const size_t offset
, const size_t todo
, const ALfloat fade
,
1248 const ALfloat fadeStep
)
1250 const DelayLineI early_delay
{mEarly
.Delay
};
1251 const DelayLineI main_delay
{mDelay
};
1252 const ALfloat mixX
{mMixX
};
1253 const ALfloat mixY
{mMixY
};
1257 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1259 size_t early_delay_tap0
{offset
- mEarlyDelayTap
[j
][0]};
1260 size_t early_delay_tap1
{offset
- mEarlyDelayTap
[j
][1]};
1261 const ALfloat oldCoeff
{mEarlyDelayCoeff
[j
][0]};
1262 const ALfloat oldCoeffStep
{-oldCoeff
* fadeStep
};
1263 const ALfloat newCoeffStep
{mEarlyDelayCoeff
[j
][1] * fadeStep
};
1264 ALfloat fadeCount
{fade
};
1266 for(size_t i
{0u};i
< todo
;)
1268 early_delay_tap0
&= main_delay
.Mask
;
1269 early_delay_tap1
&= main_delay
.Mask
;
1270 size_t td
{minz(main_delay
.Mask
+1 - maxz(early_delay_tap0
, early_delay_tap1
), todo
-i
)};
1273 const ALfloat fade0
{oldCoeff
+ oldCoeffStep
*fadeCount
};
1274 const ALfloat fade1
{newCoeffStep
*fadeCount
};
1275 mTempSamples
[j
][i
++] =
1276 main_delay
.Line
[early_delay_tap0
++][j
]*fade0
+
1277 main_delay
.Line
[early_delay_tap1
++][j
]*fade1
;
1282 mEarly
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1284 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1286 size_t feedb_tap0
{offset
- mEarly
.Offset
[j
][0]};
1287 size_t feedb_tap1
{offset
- mEarly
.Offset
[j
][1]};
1288 const ALfloat feedb_oldCoeff
{mEarly
.Coeff
[j
][0]};
1289 const ALfloat feedb_oldCoeffStep
{-feedb_oldCoeff
* fadeStep
};
1290 const ALfloat feedb_newCoeffStep
{mEarly
.Coeff
[j
][1] * fadeStep
};
1291 float *out
= mEarlySamples
[j
].data();
1292 ALfloat fadeCount
{fade
};
1294 for(size_t i
{0u};i
< todo
;)
1296 feedb_tap0
&= early_delay
.Mask
;
1297 feedb_tap1
&= early_delay
.Mask
;
1298 size_t td
{minz(early_delay
.Mask
+1 - maxz(feedb_tap0
, feedb_tap1
), todo
- i
)};
1302 const ALfloat fade0
{feedb_oldCoeff
+ feedb_oldCoeffStep
*fadeCount
};
1303 const ALfloat fade1
{feedb_newCoeffStep
*fadeCount
};
1304 out
[i
] = mTempSamples
[j
][i
] +
1305 early_delay
.Line
[feedb_tap0
++][j
]*fade0
+
1306 early_delay
.Line
[feedb_tap1
++][j
]*fade1
;
1311 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1312 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1314 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1315 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1318 /* This generates the reverb tail using a modified feed-back delay network
1321 * Results from the early reflections are mixed with the output from the late
1324 * The late response is then completed by T60 and all-pass filtering the mix.
1326 * Finally, the lines are reversed (so they feed their opposite directions)
1327 * and scattered with the FDN matrix before re-feeding the delay lines.
1329 * Two variations are made, one for for transitional (cross-faded) delay line
1330 * processing and one for non-transitional processing.
1332 void ReverbState::lateUnfaded(const size_t offset
, const size_t todo
)
1334 const DelayLineI late_delay
{mLate
.Delay
};
1335 const DelayLineI main_delay
{mDelay
};
1336 const ALfloat mixX
{mMixX
};
1337 const ALfloat mixY
{mMixY
};
1341 /* First, load decorrelated samples from the main and feedback delay lines.
1342 * Filter the signal to apply its frequency-dependent decay.
1344 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1346 size_t late_delay_tap
{offset
- mLateDelayTap
[j
][0]};
1347 size_t late_feedb_tap
{offset
- mLate
.Offset
[j
][0]};
1348 const ALfloat midGain
{mLate
.T60
[j
].MidGain
[0]};
1349 const ALfloat densityGain
{mLate
.DensityGain
[0] * midGain
};
1350 for(size_t i
{0u};i
< todo
;)
1352 late_delay_tap
&= main_delay
.Mask
;
1353 late_feedb_tap
&= late_delay
.Mask
;
1354 size_t td
{minz(todo
- i
,
1355 minz(main_delay
.Mask
+1 - late_delay_tap
, late_delay
.Mask
+1 - late_feedb_tap
))};
1357 mTempSamples
[j
][i
++] =
1358 main_delay
.Line
[late_delay_tap
++][j
]*densityGain
+
1359 late_delay
.Line
[late_feedb_tap
++][j
]*midGain
;
1362 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1365 /* Apply a vector all-pass to improve micro-surface diffusion, and write
1366 * out the results for mixing.
1368 mLate
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1369 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1370 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1372 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1373 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1375 void ReverbState::lateFaded(const size_t offset
, const size_t todo
, const ALfloat fade
,
1376 const ALfloat fadeStep
)
1378 const DelayLineI late_delay
{mLate
.Delay
};
1379 const DelayLineI main_delay
{mDelay
};
1380 const ALfloat mixX
{mMixX
};
1381 const ALfloat mixY
{mMixY
};
1385 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1387 const ALfloat oldMidGain
{mLate
.T60
[j
].MidGain
[0]};
1388 const ALfloat midGain
{mLate
.T60
[j
].MidGain
[1]};
1389 const ALfloat oldMidStep
{-oldMidGain
* fadeStep
};
1390 const ALfloat midStep
{midGain
* fadeStep
};
1391 const ALfloat oldDensityGain
{mLate
.DensityGain
[0] * oldMidGain
};
1392 const ALfloat densityGain
{mLate
.DensityGain
[1] * midGain
};
1393 const ALfloat oldDensityStep
{-oldDensityGain
* fadeStep
};
1394 const ALfloat densityStep
{densityGain
* fadeStep
};
1395 size_t late_delay_tap0
{offset
- mLateDelayTap
[j
][0]};
1396 size_t late_delay_tap1
{offset
- mLateDelayTap
[j
][1]};
1397 size_t late_feedb_tap0
{offset
- mLate
.Offset
[j
][0]};
1398 size_t late_feedb_tap1
{offset
- mLate
.Offset
[j
][1]};
1399 ALfloat fadeCount
{fade
};
1401 for(size_t i
{0u};i
< todo
;)
1403 late_delay_tap0
&= main_delay
.Mask
;
1404 late_delay_tap1
&= main_delay
.Mask
;
1405 late_feedb_tap0
&= late_delay
.Mask
;
1406 late_feedb_tap1
&= late_delay
.Mask
;
1407 size_t td
{minz(todo
- i
,
1408 minz(main_delay
.Mask
+1 - maxz(late_delay_tap0
, late_delay_tap1
),
1409 late_delay
.Mask
+1 - maxz(late_feedb_tap0
, late_feedb_tap1
)))};
1412 const ALfloat fade0
{oldDensityGain
+ oldDensityStep
*fadeCount
};
1413 const ALfloat fade1
{densityStep
*fadeCount
};
1414 const ALfloat gfade0
{oldMidGain
+ oldMidStep
*fadeCount
};
1415 const ALfloat gfade1
{midStep
*fadeCount
};
1416 mTempSamples
[j
][i
++] =
1417 main_delay
.Line
[late_delay_tap0
++][j
]*fade0
+
1418 main_delay
.Line
[late_delay_tap1
++][j
]*fade1
+
1419 late_delay
.Line
[late_feedb_tap0
++][j
]*gfade0
+
1420 late_delay
.Line
[late_feedb_tap1
++][j
]*gfade1
;
1423 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1426 mLate
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1427 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1428 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1430 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1433 void ReverbState::process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
)
1435 size_t offset
{mOffset
};
1437 ASSUME(samplesToDo
> 0);
1439 /* Convert B-Format to A-Format for processing. */
1440 const size_t numInput
{samplesIn
.size()};
1441 const al::span
<float> tmpspan
{mTempLine
.data(), samplesToDo
};
1442 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1444 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
1445 MixRowSamples(tmpspan
, {B2A
[c
], numInput
}, samplesIn
[0].data(), samplesIn
[0].size());
1447 /* Band-pass the incoming samples and feed the initial delay line. */
1448 mFilter
[c
].Lp
.process(tmpspan
, tmpspan
.begin());
1449 mFilter
[c
].Hp
.process(tmpspan
, tmpspan
.begin());
1450 mDelay
.write(offset
, c
, tmpspan
.cbegin(), samplesToDo
);
1453 /* Process reverb for these samples. */
1454 if LIKELY(!mDoFading
)
1456 for(size_t base
{0};base
< samplesToDo
;)
1458 /* Calculate the number of samples we can do this iteration. */
1459 size_t todo
{minz(samplesToDo
- base
, mMaxUpdate
[0])};
1460 /* Some mixers require maintaining a 4-sample alignment, so ensure
1461 * that if it's not the last iteration.
1463 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1466 /* Generate non-faded early reflections and late reverb. */
1467 earlyUnfaded(offset
, todo
);
1468 lateUnfaded(offset
, todo
);
1470 /* Finally, mix early reflections and late reverb. */
1471 (this->*mMixOut
)(samplesOut
, samplesToDo
-base
, base
, todo
);
1479 const float fadeStep
{1.0f
/ static_cast<float>(samplesToDo
)};
1480 for(size_t base
{0};base
< samplesToDo
;)
1482 size_t todo
{minz(samplesToDo
- base
, minz(mMaxUpdate
[0], mMaxUpdate
[1]))};
1483 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1486 /* Generate cross-faded early reflections and late reverb. */
1487 auto fadeCount
= static_cast<ALfloat
>(base
);
1488 earlyFaded(offset
, todo
, fadeCount
, fadeStep
);
1489 lateFaded(offset
, todo
, fadeCount
, fadeStep
);
1491 (this->*mMixOut
)(samplesOut
, samplesToDo
-base
, base
, todo
);
1497 /* Update the cross-fading delay line taps. */
1498 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1500 mEarlyDelayTap
[c
][0] = mEarlyDelayTap
[c
][1];
1501 mEarlyDelayCoeff
[c
][0] = mEarlyDelayCoeff
[c
][1];
1502 mEarly
.VecAp
.Offset
[c
][0] = mEarly
.VecAp
.Offset
[c
][1];
1503 mEarly
.Offset
[c
][0] = mEarly
.Offset
[c
][1];
1504 mEarly
.Coeff
[c
][0] = mEarly
.Coeff
[c
][1];
1505 mLateDelayTap
[c
][0] = mLateDelayTap
[c
][1];
1506 mLate
.VecAp
.Offset
[c
][0] = mLate
.VecAp
.Offset
[c
][1];
1507 mLate
.Offset
[c
][0] = mLate
.Offset
[c
][1];
1508 mLate
.T60
[c
].MidGain
[0] = mLate
.T60
[c
].MidGain
[1];
1510 mLate
.DensityGain
[0] = mLate
.DensityGain
[1];
1511 mMaxUpdate
[0] = mMaxUpdate
[1];
1518 void EAXReverb_setParami(EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint val
)
1522 case AL_EAXREVERB_DECAY_HFLIMIT
:
1523 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_EAXREVERB_MAX_DECAY_HFLIMIT
))
1524 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb decay hflimit out of range");
1525 props
->Reverb
.DecayHFLimit
= val
!= AL_FALSE
;
1529 context
->setError(AL_INVALID_ENUM
, "Invalid EAX reverb integer property 0x%04x",
1533 void EAXReverb_setParamiv(EffectProps
*props
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
1534 { EAXReverb_setParami(props
, context
, param
, vals
[0]); }
1535 void EAXReverb_setParamf(EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat val
)
1539 case AL_EAXREVERB_DENSITY
:
1540 if(!(val
>= AL_EAXREVERB_MIN_DENSITY
&& val
<= AL_EAXREVERB_MAX_DENSITY
))
1541 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb density out of range");
1542 props
->Reverb
.Density
= val
;
1545 case AL_EAXREVERB_DIFFUSION
:
1546 if(!(val
>= AL_EAXREVERB_MIN_DIFFUSION
&& val
<= AL_EAXREVERB_MAX_DIFFUSION
))
1547 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb diffusion out of range");
1548 props
->Reverb
.Diffusion
= val
;
1551 case AL_EAXREVERB_GAIN
:
1552 if(!(val
>= AL_EAXREVERB_MIN_GAIN
&& val
<= AL_EAXREVERB_MAX_GAIN
))
1553 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb gain out of range");
1554 props
->Reverb
.Gain
= val
;
1557 case AL_EAXREVERB_GAINHF
:
1558 if(!(val
>= AL_EAXREVERB_MIN_GAINHF
&& val
<= AL_EAXREVERB_MAX_GAINHF
))
1559 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb gainhf out of range");
1560 props
->Reverb
.GainHF
= val
;
1563 case AL_EAXREVERB_GAINLF
:
1564 if(!(val
>= AL_EAXREVERB_MIN_GAINLF
&& val
<= AL_EAXREVERB_MAX_GAINLF
))
1565 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb gainlf out of range");
1566 props
->Reverb
.GainLF
= val
;
1569 case AL_EAXREVERB_DECAY_TIME
:
1570 if(!(val
>= AL_EAXREVERB_MIN_DECAY_TIME
&& val
<= AL_EAXREVERB_MAX_DECAY_TIME
))
1571 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb decay time out of range");
1572 props
->Reverb
.DecayTime
= val
;
1575 case AL_EAXREVERB_DECAY_HFRATIO
:
1576 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_HFRATIO
))
1577 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb decay hfratio out of range");
1578 props
->Reverb
.DecayHFRatio
= val
;
1581 case AL_EAXREVERB_DECAY_LFRATIO
:
1582 if(!(val
>= AL_EAXREVERB_MIN_DECAY_LFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_LFRATIO
))
1583 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb decay lfratio out of range");
1584 props
->Reverb
.DecayLFRatio
= val
;
1587 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1588 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_GAIN
))
1589 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb reflections gain out of range");
1590 props
->Reverb
.ReflectionsGain
= val
;
1593 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1594 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
))
1595 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb reflections delay out of range");
1596 props
->Reverb
.ReflectionsDelay
= val
;
1599 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1600 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_GAIN
))
1601 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb late reverb gain out of range");
1602 props
->Reverb
.LateReverbGain
= val
;
1605 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1606 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_DELAY
))
1607 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb late reverb delay out of range");
1608 props
->Reverb
.LateReverbDelay
= val
;
1611 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1612 if(!(val
>= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF
))
1613 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb air absorption gainhf out of range");
1614 props
->Reverb
.AirAbsorptionGainHF
= val
;
1617 case AL_EAXREVERB_ECHO_TIME
:
1618 if(!(val
>= AL_EAXREVERB_MIN_ECHO_TIME
&& val
<= AL_EAXREVERB_MAX_ECHO_TIME
))
1619 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb echo time out of range");
1620 props
->Reverb
.EchoTime
= val
;
1623 case AL_EAXREVERB_ECHO_DEPTH
:
1624 if(!(val
>= AL_EAXREVERB_MIN_ECHO_DEPTH
&& val
<= AL_EAXREVERB_MAX_ECHO_DEPTH
))
1625 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb echo depth out of range");
1626 props
->Reverb
.EchoDepth
= val
;
1629 case AL_EAXREVERB_MODULATION_TIME
:
1630 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_TIME
&& val
<= AL_EAXREVERB_MAX_MODULATION_TIME
))
1631 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb modulation time out of range");
1632 props
->Reverb
.ModulationTime
= val
;
1635 case AL_EAXREVERB_MODULATION_DEPTH
:
1636 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_DEPTH
&& val
<= AL_EAXREVERB_MAX_MODULATION_DEPTH
))
1637 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb modulation depth out of range");
1638 props
->Reverb
.ModulationDepth
= val
;
1641 case AL_EAXREVERB_HFREFERENCE
:
1642 if(!(val
>= AL_EAXREVERB_MIN_HFREFERENCE
&& val
<= AL_EAXREVERB_MAX_HFREFERENCE
))
1643 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb hfreference out of range");
1644 props
->Reverb
.HFReference
= val
;
1647 case AL_EAXREVERB_LFREFERENCE
:
1648 if(!(val
>= AL_EAXREVERB_MIN_LFREFERENCE
&& val
<= AL_EAXREVERB_MAX_LFREFERENCE
))
1649 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb lfreference out of range");
1650 props
->Reverb
.LFReference
= val
;
1653 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1654 if(!(val
>= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR
))
1655 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb room rolloff factor out of range");
1656 props
->Reverb
.RoomRolloffFactor
= val
;
1660 context
->setError(AL_INVALID_ENUM
, "Invalid EAX reverb float property 0x%04x", param
);
1663 void EAXReverb_setParamfv(EffectProps
*props
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
1667 case AL_EAXREVERB_REFLECTIONS_PAN
:
1668 if(!(std::isfinite(vals
[0]) && std::isfinite(vals
[1]) && std::isfinite(vals
[2])))
1669 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb reflections pan out of range");
1670 props
->Reverb
.ReflectionsPan
[0] = vals
[0];
1671 props
->Reverb
.ReflectionsPan
[1] = vals
[1];
1672 props
->Reverb
.ReflectionsPan
[2] = vals
[2];
1674 case AL_EAXREVERB_LATE_REVERB_PAN
:
1675 if(!(std::isfinite(vals
[0]) && std::isfinite(vals
[1]) && std::isfinite(vals
[2])))
1676 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "EAX Reverb late reverb pan out of range");
1677 props
->Reverb
.LateReverbPan
[0] = vals
[0];
1678 props
->Reverb
.LateReverbPan
[1] = vals
[1];
1679 props
->Reverb
.LateReverbPan
[2] = vals
[2];
1683 EAXReverb_setParamf(props
, context
, param
, vals
[0]);
1688 void EAXReverb_getParami(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint
*val
)
1692 case AL_EAXREVERB_DECAY_HFLIMIT
:
1693 *val
= props
->Reverb
.DecayHFLimit
;
1697 context
->setError(AL_INVALID_ENUM
, "Invalid EAX reverb integer property 0x%04x",
1701 void EAXReverb_getParamiv(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
1702 { EAXReverb_getParami(props
, context
, param
, vals
); }
1703 void EAXReverb_getParamf(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
1707 case AL_EAXREVERB_DENSITY
:
1708 *val
= props
->Reverb
.Density
;
1711 case AL_EAXREVERB_DIFFUSION
:
1712 *val
= props
->Reverb
.Diffusion
;
1715 case AL_EAXREVERB_GAIN
:
1716 *val
= props
->Reverb
.Gain
;
1719 case AL_EAXREVERB_GAINHF
:
1720 *val
= props
->Reverb
.GainHF
;
1723 case AL_EAXREVERB_GAINLF
:
1724 *val
= props
->Reverb
.GainLF
;
1727 case AL_EAXREVERB_DECAY_TIME
:
1728 *val
= props
->Reverb
.DecayTime
;
1731 case AL_EAXREVERB_DECAY_HFRATIO
:
1732 *val
= props
->Reverb
.DecayHFRatio
;
1735 case AL_EAXREVERB_DECAY_LFRATIO
:
1736 *val
= props
->Reverb
.DecayLFRatio
;
1739 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1740 *val
= props
->Reverb
.ReflectionsGain
;
1743 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1744 *val
= props
->Reverb
.ReflectionsDelay
;
1747 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1748 *val
= props
->Reverb
.LateReverbGain
;
1751 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1752 *val
= props
->Reverb
.LateReverbDelay
;
1755 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1756 *val
= props
->Reverb
.AirAbsorptionGainHF
;
1759 case AL_EAXREVERB_ECHO_TIME
:
1760 *val
= props
->Reverb
.EchoTime
;
1763 case AL_EAXREVERB_ECHO_DEPTH
:
1764 *val
= props
->Reverb
.EchoDepth
;
1767 case AL_EAXREVERB_MODULATION_TIME
:
1768 *val
= props
->Reverb
.ModulationTime
;
1771 case AL_EAXREVERB_MODULATION_DEPTH
:
1772 *val
= props
->Reverb
.ModulationDepth
;
1775 case AL_EAXREVERB_HFREFERENCE
:
1776 *val
= props
->Reverb
.HFReference
;
1779 case AL_EAXREVERB_LFREFERENCE
:
1780 *val
= props
->Reverb
.LFReference
;
1783 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1784 *val
= props
->Reverb
.RoomRolloffFactor
;
1788 context
->setError(AL_INVALID_ENUM
, "Invalid EAX reverb float property 0x%04x", param
);
1791 void EAXReverb_getParamfv(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
1795 case AL_EAXREVERB_REFLECTIONS_PAN
:
1796 vals
[0] = props
->Reverb
.ReflectionsPan
[0];
1797 vals
[1] = props
->Reverb
.ReflectionsPan
[1];
1798 vals
[2] = props
->Reverb
.ReflectionsPan
[2];
1800 case AL_EAXREVERB_LATE_REVERB_PAN
:
1801 vals
[0] = props
->Reverb
.LateReverbPan
[0];
1802 vals
[1] = props
->Reverb
.LateReverbPan
[1];
1803 vals
[2] = props
->Reverb
.LateReverbPan
[2];
1807 EAXReverb_getParamf(props
, context
, param
, vals
);
1812 DEFINE_ALEFFECT_VTABLE(EAXReverb
);
1815 struct ReverbStateFactory final
: public EffectStateFactory
{
1816 EffectState
*create() override
{ return new ReverbState
{}; }
1817 EffectProps
getDefaultProps() const noexcept override
;
1818 const EffectVtable
*getEffectVtable() const noexcept override
{ return &EAXReverb_vtable
; }
1821 EffectProps
ReverbStateFactory::getDefaultProps() const noexcept
1823 EffectProps props
{};
1824 props
.Reverb
.Density
= AL_EAXREVERB_DEFAULT_DENSITY
;
1825 props
.Reverb
.Diffusion
= AL_EAXREVERB_DEFAULT_DIFFUSION
;
1826 props
.Reverb
.Gain
= AL_EAXREVERB_DEFAULT_GAIN
;
1827 props
.Reverb
.GainHF
= AL_EAXREVERB_DEFAULT_GAINHF
;
1828 props
.Reverb
.GainLF
= AL_EAXREVERB_DEFAULT_GAINLF
;
1829 props
.Reverb
.DecayTime
= AL_EAXREVERB_DEFAULT_DECAY_TIME
;
1830 props
.Reverb
.DecayHFRatio
= AL_EAXREVERB_DEFAULT_DECAY_HFRATIO
;
1831 props
.Reverb
.DecayLFRatio
= AL_EAXREVERB_DEFAULT_DECAY_LFRATIO
;
1832 props
.Reverb
.ReflectionsGain
= AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN
;
1833 props
.Reverb
.ReflectionsDelay
= AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY
;
1834 props
.Reverb
.ReflectionsPan
[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1835 props
.Reverb
.ReflectionsPan
[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1836 props
.Reverb
.ReflectionsPan
[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1837 props
.Reverb
.LateReverbGain
= AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN
;
1838 props
.Reverb
.LateReverbDelay
= AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY
;
1839 props
.Reverb
.LateReverbPan
[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
1840 props
.Reverb
.LateReverbPan
[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
1841 props
.Reverb
.LateReverbPan
[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
1842 props
.Reverb
.EchoTime
= AL_EAXREVERB_DEFAULT_ECHO_TIME
;
1843 props
.Reverb
.EchoDepth
= AL_EAXREVERB_DEFAULT_ECHO_DEPTH
;
1844 props
.Reverb
.ModulationTime
= AL_EAXREVERB_DEFAULT_MODULATION_TIME
;
1845 props
.Reverb
.ModulationDepth
= AL_EAXREVERB_DEFAULT_MODULATION_DEPTH
;
1846 props
.Reverb
.AirAbsorptionGainHF
= AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF
;
1847 props
.Reverb
.HFReference
= AL_EAXREVERB_DEFAULT_HFREFERENCE
;
1848 props
.Reverb
.LFReference
= AL_EAXREVERB_DEFAULT_LFREFERENCE
;
1849 props
.Reverb
.RoomRolloffFactor
= AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR
;
1850 props
.Reverb
.DecayHFLimit
= AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT
;
1855 void StdReverb_setParami(EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint val
)
1859 case AL_REVERB_DECAY_HFLIMIT
:
1860 if(!(val
>= AL_REVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_REVERB_MAX_DECAY_HFLIMIT
))
1861 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb decay hflimit out of range");
1862 props
->Reverb
.DecayHFLimit
= val
!= AL_FALSE
;
1866 context
->setError(AL_INVALID_ENUM
, "Invalid reverb integer property 0x%04x", param
);
1869 void StdReverb_setParamiv(EffectProps
*props
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
1870 { StdReverb_setParami(props
, context
, param
, vals
[0]); }
1871 void StdReverb_setParamf(EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat val
)
1875 case AL_REVERB_DENSITY
:
1876 if(!(val
>= AL_REVERB_MIN_DENSITY
&& val
<= AL_REVERB_MAX_DENSITY
))
1877 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb density out of range");
1878 props
->Reverb
.Density
= val
;
1881 case AL_REVERB_DIFFUSION
:
1882 if(!(val
>= AL_REVERB_MIN_DIFFUSION
&& val
<= AL_REVERB_MAX_DIFFUSION
))
1883 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb diffusion out of range");
1884 props
->Reverb
.Diffusion
= val
;
1887 case AL_REVERB_GAIN
:
1888 if(!(val
>= AL_REVERB_MIN_GAIN
&& val
<= AL_REVERB_MAX_GAIN
))
1889 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb gain out of range");
1890 props
->Reverb
.Gain
= val
;
1893 case AL_REVERB_GAINHF
:
1894 if(!(val
>= AL_REVERB_MIN_GAINHF
&& val
<= AL_REVERB_MAX_GAINHF
))
1895 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb gainhf out of range");
1896 props
->Reverb
.GainHF
= val
;
1899 case AL_REVERB_DECAY_TIME
:
1900 if(!(val
>= AL_REVERB_MIN_DECAY_TIME
&& val
<= AL_REVERB_MAX_DECAY_TIME
))
1901 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb decay time out of range");
1902 props
->Reverb
.DecayTime
= val
;
1905 case AL_REVERB_DECAY_HFRATIO
:
1906 if(!(val
>= AL_REVERB_MIN_DECAY_HFRATIO
&& val
<= AL_REVERB_MAX_DECAY_HFRATIO
))
1907 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb decay hfratio out of range");
1908 props
->Reverb
.DecayHFRatio
= val
;
1911 case AL_REVERB_REFLECTIONS_GAIN
:
1912 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_REVERB_MAX_REFLECTIONS_GAIN
))
1913 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb reflections gain out of range");
1914 props
->Reverb
.ReflectionsGain
= val
;
1917 case AL_REVERB_REFLECTIONS_DELAY
:
1918 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_REVERB_MAX_REFLECTIONS_DELAY
))
1919 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb reflections delay out of range");
1920 props
->Reverb
.ReflectionsDelay
= val
;
1923 case AL_REVERB_LATE_REVERB_GAIN
:
1924 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_REVERB_MAX_LATE_REVERB_GAIN
))
1925 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb late reverb gain out of range");
1926 props
->Reverb
.LateReverbGain
= val
;
1929 case AL_REVERB_LATE_REVERB_DELAY
:
1930 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_REVERB_MAX_LATE_REVERB_DELAY
))
1931 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb late reverb delay out of range");
1932 props
->Reverb
.LateReverbDelay
= val
;
1935 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
1936 if(!(val
>= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF
))
1937 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb air absorption gainhf out of range");
1938 props
->Reverb
.AirAbsorptionGainHF
= val
;
1941 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
1942 if(!(val
>= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR
))
1943 SETERR_RETURN(context
, AL_INVALID_VALUE
,, "Reverb room rolloff factor out of range");
1944 props
->Reverb
.RoomRolloffFactor
= val
;
1948 context
->setError(AL_INVALID_ENUM
, "Invalid reverb float property 0x%04x", param
);
1951 void StdReverb_setParamfv(EffectProps
*props
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
1952 { StdReverb_setParamf(props
, context
, param
, vals
[0]); }
1954 void StdReverb_getParami(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint
*val
)
1958 case AL_REVERB_DECAY_HFLIMIT
:
1959 *val
= props
->Reverb
.DecayHFLimit
;
1963 context
->setError(AL_INVALID_ENUM
, "Invalid reverb integer property 0x%04x", param
);
1966 void StdReverb_getParamiv(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
1967 { StdReverb_getParami(props
, context
, param
, vals
); }
1968 void StdReverb_getParamf(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
1972 case AL_REVERB_DENSITY
:
1973 *val
= props
->Reverb
.Density
;
1976 case AL_REVERB_DIFFUSION
:
1977 *val
= props
->Reverb
.Diffusion
;
1980 case AL_REVERB_GAIN
:
1981 *val
= props
->Reverb
.Gain
;
1984 case AL_REVERB_GAINHF
:
1985 *val
= props
->Reverb
.GainHF
;
1988 case AL_REVERB_DECAY_TIME
:
1989 *val
= props
->Reverb
.DecayTime
;
1992 case AL_REVERB_DECAY_HFRATIO
:
1993 *val
= props
->Reverb
.DecayHFRatio
;
1996 case AL_REVERB_REFLECTIONS_GAIN
:
1997 *val
= props
->Reverb
.ReflectionsGain
;
2000 case AL_REVERB_REFLECTIONS_DELAY
:
2001 *val
= props
->Reverb
.ReflectionsDelay
;
2004 case AL_REVERB_LATE_REVERB_GAIN
:
2005 *val
= props
->Reverb
.LateReverbGain
;
2008 case AL_REVERB_LATE_REVERB_DELAY
:
2009 *val
= props
->Reverb
.LateReverbDelay
;
2012 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
2013 *val
= props
->Reverb
.AirAbsorptionGainHF
;
2016 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
2017 *val
= props
->Reverb
.RoomRolloffFactor
;
2021 context
->setError(AL_INVALID_ENUM
, "Invalid reverb float property 0x%04x", param
);
2024 void StdReverb_getParamfv(const EffectProps
*props
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
2025 { StdReverb_getParamf(props
, context
, param
, vals
); }
2027 DEFINE_ALEFFECT_VTABLE(StdReverb
);
2030 struct StdReverbStateFactory final
: public EffectStateFactory
{
2031 EffectState
*create() override
{ return new ReverbState
{}; }
2032 EffectProps
getDefaultProps() const noexcept override
;
2033 const EffectVtable
*getEffectVtable() const noexcept override
{ return &StdReverb_vtable
; }
2036 EffectProps
StdReverbStateFactory::getDefaultProps() const noexcept
2038 EffectProps props
{};
2039 props
.Reverb
.Density
= AL_REVERB_DEFAULT_DENSITY
;
2040 props
.Reverb
.Diffusion
= AL_REVERB_DEFAULT_DIFFUSION
;
2041 props
.Reverb
.Gain
= AL_REVERB_DEFAULT_GAIN
;
2042 props
.Reverb
.GainHF
= AL_REVERB_DEFAULT_GAINHF
;
2043 props
.Reverb
.GainLF
= 1.0f
;
2044 props
.Reverb
.DecayTime
= AL_REVERB_DEFAULT_DECAY_TIME
;
2045 props
.Reverb
.DecayHFRatio
= AL_REVERB_DEFAULT_DECAY_HFRATIO
;
2046 props
.Reverb
.DecayLFRatio
= 1.0f
;
2047 props
.Reverb
.ReflectionsGain
= AL_REVERB_DEFAULT_REFLECTIONS_GAIN
;
2048 props
.Reverb
.ReflectionsDelay
= AL_REVERB_DEFAULT_REFLECTIONS_DELAY
;
2049 props
.Reverb
.ReflectionsPan
[0] = 0.0f
;
2050 props
.Reverb
.ReflectionsPan
[1] = 0.0f
;
2051 props
.Reverb
.ReflectionsPan
[2] = 0.0f
;
2052 props
.Reverb
.LateReverbGain
= AL_REVERB_DEFAULT_LATE_REVERB_GAIN
;
2053 props
.Reverb
.LateReverbDelay
= AL_REVERB_DEFAULT_LATE_REVERB_DELAY
;
2054 props
.Reverb
.LateReverbPan
[0] = 0.0f
;
2055 props
.Reverb
.LateReverbPan
[1] = 0.0f
;
2056 props
.Reverb
.LateReverbPan
[2] = 0.0f
;
2057 props
.Reverb
.EchoTime
= 0.25f
;
2058 props
.Reverb
.EchoDepth
= 0.0f
;
2059 props
.Reverb
.ModulationTime
= 0.25f
;
2060 props
.Reverb
.ModulationDepth
= 0.0f
;
2061 props
.Reverb
.AirAbsorptionGainHF
= AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF
;
2062 props
.Reverb
.HFReference
= 5000.0f
;
2063 props
.Reverb
.LFReference
= 250.0f
;
2064 props
.Reverb
.RoomRolloffFactor
= AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR
;
2065 props
.Reverb
.DecayHFLimit
= AL_REVERB_DEFAULT_DECAY_HFLIMIT
;
2071 EffectStateFactory
*ReverbStateFactory_getFactory()
2073 static ReverbStateFactory ReverbFactory
{};
2074 return &ReverbFactory
;
2077 EffectStateFactory
*StdReverbStateFactory_getFactory()
2079 static StdReverbStateFactory ReverbFactory
{};
2080 return &ReverbFactory
;