2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
31 #include "alc/effects/base.h"
33 #include "alnumbers.h"
34 #include "alnumeric.h"
36 #include "core/ambidefs.h"
37 #include "core/bufferline.h"
38 #include "core/context.h"
39 #include "core/devformat.h"
40 #include "core/device.h"
41 #include "core/effectslot.h"
42 #include "core/filters/biquad.h"
43 #include "core/filters/splitter.h"
44 #include "core/mixer.h"
45 #include "core/mixer/defs.h"
46 #include "intrusive_ptr.h"
47 #include "opthelpers.h"
51 /* This is a user config option for modifying the overall output of the reverb
54 float ReverbBoost
= 1.0f
;
58 using uint
= unsigned int;
60 constexpr float MaxModulationTime
{4.0f
};
61 constexpr float DefaultModulationTime
{0.25f
};
63 #define MOD_FRACBITS 24
64 #define MOD_FRACONE (1<<MOD_FRACBITS)
65 #define MOD_FRACMASK (MOD_FRACONE-1)
68 using namespace std::placeholders
;
70 /* Max samples per process iteration. Used to limit the size needed for
71 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
73 constexpr size_t MAX_UPDATE_SAMPLES
{256};
75 /* The number of spatialized lines or channels to process. Four channels allows
76 * for a 3D A-Format response. NOTE: This can't be changed without taking care
77 * of the conversion matrices, and a few places where the length arrays are
78 * assumed to have 4 elements.
80 constexpr size_t NUM_LINES
{4u};
83 /* This coefficient is used to define the maximum frequency range controlled by
84 * the modulation depth. The current value of 0.05 will allow it to swing from
85 * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
86 * to stall on the downswing, and above 1 it will cause it to sample backwards.
87 * The value 0.05 seems be nearest to Creative hardware behavior.
89 constexpr float MODULATION_DEPTH_COEFF
{0.05f
};
92 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
93 * deliberately chosen to align the resulting lines to their spatial opposites
94 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
95 * back left). It's not quite opposite, since the A-Format results in a
96 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
97 * in the future, true opposites can be used.
99 alignas(16) constexpr float B2A
[NUM_LINES
][NUM_LINES
]{
100 { 0.5f
, 0.5f
, 0.5f
, 0.5f
},
101 { 0.5f
, -0.5f
, -0.5f
, 0.5f
},
102 { 0.5f
, 0.5f
, -0.5f
, -0.5f
},
103 { 0.5f
, -0.5f
, 0.5f
, -0.5f
}
106 /* Converts A-Format to B-Format for early reflections. */
107 alignas(16) constexpr std::array
<std::array
<float,NUM_LINES
>,NUM_LINES
> EarlyA2B
{{
108 {{ 0.5f
, 0.5f
, 0.5f
, 0.5f
}},
109 {{ 0.5f
, -0.5f
, 0.5f
, -0.5f
}},
110 {{ 0.5f
, -0.5f
, -0.5f
, 0.5f
}},
111 {{ 0.5f
, 0.5f
, -0.5f
, -0.5f
}}
114 /* Converts A-Format to B-Format for late reverb. */
115 constexpr auto InvSqrt2
= static_cast<float>(1.0/al::numbers::sqrt2
);
116 alignas(16) constexpr std::array
<std::array
<float,NUM_LINES
>,NUM_LINES
> LateA2B
{{
117 {{ 0.5f
, 0.5f
, 0.5f
, 0.5f
}},
118 {{ InvSqrt2
, -InvSqrt2
, 0.0f
, 0.0f
}},
119 {{ 0.0f
, 0.0f
, InvSqrt2
, -InvSqrt2
}},
120 {{ 0.5f
, 0.5f
, -0.5f
, -0.5f
}}
123 /* The all-pass and delay lines have a variable length dependent on the
124 * effect's density parameter, which helps alter the perceived environment
125 * size. The size-to-density conversion is a cubed scale:
127 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
129 * The line lengths scale linearly with room size, so the inverse density
130 * conversion is needed, taking the cube root of the re-scaled density to
131 * calculate the line length multiplier:
133 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
135 * The density scale below will result in a max line multiplier of 50, for an
136 * effective size range of 5m to 50m.
138 constexpr float DENSITY_SCALE
{125000.0f
};
140 /* All delay line lengths are specified in seconds.
142 * To approximate early reflections, we break them up into primary (those
143 * arriving from the same direction as the source) and secondary (those
144 * arriving from the opposite direction).
146 * The early taps decorrelate the 4-channel signal to approximate an average
147 * room response for the primary reflections after the initial early delay.
149 * Given an average room dimension (d_a) and the speed of sound (c) we can
150 * calculate the average reflection delay (r_a) regardless of listener and
151 * source positions as:
156 * This can extended to finding the average difference (r_d) between the
157 * maximum (r_1) and minimum (r_0) reflection delays:
168 * As can be determined by integrating the 1D model with a source (s) and
169 * listener (l) positioned across the dimension of length (d_a):
171 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
173 * The initial taps (T_(i=0)^N) are then specified by taking a power series
174 * that ranges between r_0 and half of r_1 less r_0:
176 * R_i = 2^(i / (2 N - 1)) r_d
177 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
180 * = (2^(i / (2 N - 1)) - 1) r_d
182 * Assuming an average of 1m, we get the following taps:
184 constexpr std::array
<float,NUM_LINES
> EARLY_TAP_LENGTHS
{{
185 0.0000000e+0f
, 2.0213520e-4f
, 4.2531060e-4f
, 6.7171600e-4f
188 /* The early all-pass filter lengths are based on the early tap lengths:
192 * Where a is the approximate maximum all-pass cycle limit (20).
194 constexpr std::array
<float,NUM_LINES
> EARLY_ALLPASS_LENGTHS
{{
195 9.7096800e-5f
, 1.0720356e-4f
, 1.1836234e-4f
, 1.3068260e-4f
198 /* The early delay lines are used to transform the primary reflections into
199 * the secondary reflections. The A-format is arranged in such a way that
200 * the channels/lines are spatially opposite:
202 * C_i is opposite C_(N-i-1)
204 * The delays of the two opposing reflections (R_i and O_i) from a source
205 * anywhere along a particular dimension always sum to twice its full delay:
209 * With that in mind we can determine the delay between the two reflections
210 * and thus specify our early line lengths (L_(i=0)^N) using:
212 * O_i = 2 r_a - R_(N-i-1)
213 * L_i = O_i - R_(N-i-1)
214 * = 2 (r_a - R_(N-i-1))
215 * = 2 (r_a - T_(N-i-1) - r_0)
216 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
218 * Using an average dimension of 1m, we get:
220 constexpr std::array
<float,NUM_LINES
> EARLY_LINE_LENGTHS
{{
221 5.9850400e-4f
, 1.0913150e-3f
, 1.5376658e-3f
, 1.9419362e-3f
224 /* The late all-pass filter lengths are based on the late line lengths:
226 * A_i = (5 / 3) L_i / r_1
228 constexpr std::array
<float,NUM_LINES
> LATE_ALLPASS_LENGTHS
{{
229 1.6182800e-4f
, 2.0389060e-4f
, 2.8159360e-4f
, 3.2365600e-4f
232 /* The late lines are used to approximate the decaying cycle of recursive
235 * Splitting the lines in half, we start with the shortest reflection paths
238 * L_i = 2^(i / (N - 1)) r_d
240 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
242 * L_i = 2 r_a - L_(i-N/2)
243 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
245 * For our 1m average room, we get:
247 constexpr std::array
<float,NUM_LINES
> LATE_LINE_LENGTHS
{{
248 1.9419362e-3f
, 2.4466860e-3f
, 3.3791220e-3f
, 3.8838720e-3f
252 using ReverbUpdateLine
= std::array
<float,MAX_UPDATE_SAMPLES
>;
255 /* The delay lines use interleaved samples, with the lengths being powers
256 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
260 uintptr_t LineOffset
{0u};
261 std::array
<float,NUM_LINES
> *Line
;
264 /* Given the allocated sample buffer, this function updates each delay line
267 void realizeLineOffset(std::array
<float,NUM_LINES
> *sampleBuffer
) noexcept
268 { Line
= sampleBuffer
+ LineOffset
; }
270 /* Calculate the length of a delay line and store its mask and offset. */
271 uint
calcLineLength(const float length
, const uintptr_t offset
, const float frequency
,
274 /* All line lengths are powers of 2, calculated from their lengths in
275 * seconds, rounded up.
277 uint samples
{float2uint(std::ceil(length
*frequency
))};
278 samples
= NextPowerOf2(samples
+ extra
);
280 /* All lines share a single sample buffer. */
284 /* Return the sample count for accumulation. */
288 void write(size_t offset
, const size_t c
, const float *RESTRICT in
, const size_t count
) const noexcept
291 for(size_t i
{0u};i
< count
;)
294 size_t td
{minz(Mask
+1 - offset
, count
- i
)};
296 Line
[offset
++][c
] = in
[i
++];
305 size_t Offset
[NUM_LINES
][2]{};
307 void processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
308 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
310 void processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
311 const float xCoeff
, const float yCoeff
, const size_t todo
);
315 /* Two filters are used to adjust the signal. One to control the low
316 * frequencies, and one to control the high frequencies.
318 float MidGain
[2]{0.0f
, 0.0f
};
319 BiquadFilter HFFilter
, LFFilter
;
321 void calcCoeffs(const float length
, const float lfDecayTime
, const float mfDecayTime
,
322 const float hfDecayTime
, const float lf0norm
, const float hf0norm
);
324 /* Applies the two T60 damping filter sections. */
325 void process(const al::span
<float> samples
)
326 { DualBiquad
{HFFilter
, LFFilter
}.process(samples
, samples
.data()); }
329 struct EarlyReflections
{
330 /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
331 * The spread from this filter also helps smooth out the reverb tail.
335 /* An echo line is used to complete the second half of the early
339 size_t Offset
[NUM_LINES
][2]{};
340 float Coeff
[NUM_LINES
][2]{};
342 /* The gain for each output channel based on 3D panning. */
343 float CurrentGain
[NUM_LINES
][MaxAmbiChannels
]{};
344 float PanGain
[NUM_LINES
][MaxAmbiChannels
]{};
346 void updateLines(const float density_mult
, const float diffusion
, const float decayTime
,
347 const float frequency
);
352 /* The vibrato time is tracked with an index over a (MOD_FRACONE)
357 /* The depth of frequency change, in samples. */
360 float ModDelays
[MAX_UPDATE_SAMPLES
];
362 void updateModulator(float modTime
, float modDepth
, float frequency
);
364 void calcDelays(size_t todo
);
365 void calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
);
369 /* A recursive delay line is used fill in the reverb tail. */
371 size_t Offset
[NUM_LINES
][2]{};
373 /* Attenuation to compensate for the modal density and decay rate of the
376 float DensityGain
[2]{0.0f
, 0.0f
};
378 /* T60 decay filters are used to simulate absorption. */
379 T60Filter T60
[NUM_LINES
];
383 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
386 /* The gain for each output channel based on 3D panning. */
387 float CurrentGain
[NUM_LINES
][MaxAmbiChannels
]{};
388 float PanGain
[NUM_LINES
][MaxAmbiChannels
]{};
390 void updateLines(const float density_mult
, const float diffusion
, const float lfDecayTime
,
391 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
392 const float hf0norm
, const float frequency
);
395 struct ReverbState final
: public EffectState
{
396 /* All delay lines are allocated as a single buffer to reduce memory
397 * fragmentation and management code.
399 al::vector
<std::array
<float,NUM_LINES
>,16> mSampleBuffer
;
402 /* Calculated parameters which indicate if cross-fading is needed after
406 float Diffusion
{1.0f
};
407 float DecayTime
{1.49f
};
408 float HFDecayTime
{0.83f
* 1.49f
};
409 float LFDecayTime
{1.0f
* 1.49f
};
410 float ModulationTime
{0.25f
};
411 float ModulationDepth
{0.0f
};
412 float HFReference
{5000.0f
};
413 float LFReference
{250.0f
};
416 /* Master effect filters */
420 } mFilter
[NUM_LINES
];
422 /* Core delay line (early reflections and late reverb tap from this). */
423 DelayLineI mEarlyDelayIn
;
424 DelayLineI mLateDelayIn
;
426 /* Tap points for early reflection delay. */
427 size_t mEarlyDelayTap
[NUM_LINES
][2]{};
428 float mEarlyDelayCoeff
[NUM_LINES
][2]{};
430 /* Tap points for late reverb feed and delay. */
431 size_t mLateDelayTap
[NUM_LINES
][2]{};
433 /* Coefficients for the all-pass and line scattering matrices. */
437 EarlyReflections mEarly
;
443 /* The current write offset for all delay lines. */
446 /* Temporary storage used when processing. */
448 alignas(16) FloatBufferLine mTempLine
{};
449 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mTempSamples
;
451 alignas(16) std::array
<FloatBufferLine
,NUM_LINES
> mEarlySamples
{};
452 alignas(16) std::array
<FloatBufferLine
,NUM_LINES
> mLateSamples
{};
455 bool mUpmixOutput
{false};
456 std::array
<float,MaxAmbiOrder
+1> mOrderScales
{};
457 std::array
<std::array
<BandSplitter
,NUM_LINES
>,2> mAmbiSplitter
;
460 static void DoMixRow(const al::span
<float> OutBuffer
, const al::span
<const float,4> Gains
,
461 const float *InSamples
, const size_t InStride
)
463 std::fill(OutBuffer
.begin(), OutBuffer
.end(), 0.0f
);
464 for(const float gain
: Gains
)
466 const float *RESTRICT input
{al::assume_aligned
<16>(InSamples
)};
467 InSamples
+= InStride
;
469 if(!(std::fabs(gain
) > GainSilenceThreshold
))
472 for(float &sample
: OutBuffer
)
474 sample
+= *input
* gain
;
481 void MixOutPlain(const al::span
<FloatBufferLine
> samplesOut
, const size_t todo
)
485 /* When not upsampling, the panning gains convert to B-Format and pan
488 for(size_t c
{0u};c
< NUM_LINES
;c
++)
490 const al::span
<float> tmpspan
{mEarlySamples
[c
].data(), todo
};
491 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], todo
, 0);
493 for(size_t c
{0u};c
< NUM_LINES
;c
++)
495 const al::span
<float> tmpspan
{mLateSamples
[c
].data(), todo
};
496 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], todo
, 0);
500 void MixOutAmbiUp(const al::span
<FloatBufferLine
> samplesOut
, const size_t todo
)
504 /* When upsampling, the B-Format conversion needs to be done separately
505 * so the proper HF scaling can be applied to each B-Format channel.
506 * The panning gains then pan and upsample the B-Format channels.
508 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), todo
};
509 for(size_t c
{0u};c
< NUM_LINES
;c
++)
511 DoMixRow(tmpspan
, EarlyA2B
[c
], mEarlySamples
[0].data(), mEarlySamples
[0].size());
513 /* Apply scaling to the B-Format's HF response to "upsample" it to
514 * higher-order output.
516 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
517 mAmbiSplitter
[0][c
].processHfScale(tmpspan
, hfscale
);
519 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], todo
, 0);
521 for(size_t c
{0u};c
< NUM_LINES
;c
++)
523 DoMixRow(tmpspan
, LateA2B
[c
], mLateSamples
[0].data(), mLateSamples
[0].size());
525 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
526 mAmbiSplitter
[1][c
].processHfScale(tmpspan
, hfscale
);
528 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], todo
, 0);
532 void mixOut(const al::span
<FloatBufferLine
> samplesOut
, const size_t todo
)
535 MixOutAmbiUp(samplesOut
, todo
);
537 MixOutPlain(samplesOut
, todo
);
540 void allocLines(const float frequency
);
542 void updateDelayLine(const float earlyDelay
, const float lateDelay
, const float density_mult
,
543 const float decayTime
, const float frequency
);
544 void update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
545 const float earlyGain
, const float lateGain
, const EffectTarget
&target
);
547 void earlyUnfaded(size_t offset
, const size_t samplesToDo
);
548 void earlyFaded(size_t offset
, const size_t samplesToDo
, const float fadeStep
);
550 void lateUnfaded(size_t offset
, const size_t samplesToDo
);
551 void lateFaded(size_t offset
, const size_t samplesToDo
, const float fadeStep
);
553 void deviceUpdate(const DeviceBase
*device
, const Buffer
&buffer
) override
;
554 void update(const ContextBase
*context
, const EffectSlot
*slot
, const EffectProps
*props
,
555 const EffectTarget target
) override
;
556 void process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
,
557 const al::span
<FloatBufferLine
> samplesOut
) override
;
559 DEF_NEWDEL(ReverbState
)
562 /**************************************
564 **************************************/
566 inline float CalcDelayLengthMult(float density
)
567 { return maxf(5.0f
, std::cbrt(density
*DENSITY_SCALE
)); }
569 /* Calculates the delay line metrics and allocates the shared sample buffer
570 * for all lines given the sample rate (frequency).
572 void ReverbState::allocLines(const float frequency
)
574 /* All delay line lengths are calculated to accomodate the full range of
575 * lengths given their respective paramters.
577 size_t totalSamples
{0u};
579 /* Multiplier for the maximum density value, i.e. density=1, which is
580 * actually the least density...
582 const float multiplier
{CalcDelayLengthMult(1.0f
)};
584 /* The main delay length includes the maximum early reflection delay, the
585 * largest early tap width, the maximum late reverb delay, and the
586 * largest late tap width. Finally, it must also be extended by the
587 * update size (BufferLineSize) for block processing.
589 float length
{ReverbMaxReflectionsDelay
+ EARLY_TAP_LENGTHS
.back()*multiplier
};
590 totalSamples
+= mEarlyDelayIn
.calcLineLength(length
, totalSamples
, frequency
, BufferLineSize
);
592 constexpr float LateLineDiffAvg
{(LATE_LINE_LENGTHS
.back()-LATE_LINE_LENGTHS
.front()) /
594 length
= ReverbMaxLateReverbDelay
+ LateLineDiffAvg
*multiplier
;
595 totalSamples
+= mLateDelayIn
.calcLineLength(length
, totalSamples
, frequency
, BufferLineSize
);
597 /* The early vector all-pass line. */
598 length
= EARLY_ALLPASS_LENGTHS
.back() * multiplier
;
599 totalSamples
+= mEarly
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
601 /* The early reflection line. */
602 length
= EARLY_LINE_LENGTHS
.back() * multiplier
;
603 totalSamples
+= mEarly
.Delay
.calcLineLength(length
, totalSamples
, frequency
,
606 /* The late vector all-pass line. */
607 length
= LATE_ALLPASS_LENGTHS
.back() * multiplier
;
608 totalSamples
+= mLate
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
610 /* The modulator's line length is calculated from the maximum modulation
611 * time and depth coefficient, and halfed for the low-to-high frequency
614 constexpr float max_mod_delay
{MaxModulationTime
*MODULATION_DEPTH_COEFF
/ 2.0f
};
616 /* The late delay lines are calculated from the largest maximum density
617 * line length, and the maximum modulation delay. An additional sample is
618 * added to keep it stable when there is no modulation.
620 length
= LATE_LINE_LENGTHS
.back()*multiplier
+ max_mod_delay
;
621 totalSamples
+= mLate
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 1);
623 if(totalSamples
!= mSampleBuffer
.size())
624 decltype(mSampleBuffer
)(totalSamples
).swap(mSampleBuffer
);
626 /* Clear the sample buffer. */
627 std::fill(mSampleBuffer
.begin(), mSampleBuffer
.end(), decltype(mSampleBuffer
)::value_type
{});
629 /* Update all delays to reflect the new sample buffer. */
630 mEarlyDelayIn
.realizeLineOffset(mSampleBuffer
.data());
631 mLateDelayIn
.realizeLineOffset(mSampleBuffer
.data());
632 mEarly
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
633 mEarly
.Delay
.realizeLineOffset(mSampleBuffer
.data());
634 mLate
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
635 mLate
.Delay
.realizeLineOffset(mSampleBuffer
.data());
638 void ReverbState::deviceUpdate(const DeviceBase
*device
, const Buffer
&)
640 const auto frequency
= static_cast<float>(device
->Frequency
);
642 /* Allocate the delay lines. */
643 allocLines(frequency
);
645 /* Clear filters and gain coefficients since the delay lines were all just
646 * cleared (if not reallocated).
648 for(auto &filter
: mFilter
)
654 for(auto &coeff
: mEarlyDelayCoeff
)
655 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
656 for(auto &coeff
: mEarly
.Coeff
)
657 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
659 mLate
.DensityGain
[0] = 0.0f
;
660 mLate
.DensityGain
[1] = 0.0f
;
661 for(auto &t60
: mLate
.T60
)
663 t60
.MidGain
[0] = 0.0f
;
664 t60
.MidGain
[1] = 0.0f
;
665 t60
.HFFilter
.clear();
666 t60
.LFFilter
.clear();
671 std::fill(std::begin(mLate
.Mod
.Depth
), std::end(mLate
.Mod
.Depth
), 0.0f
);
673 for(auto &gains
: mEarly
.CurrentGain
)
674 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
675 for(auto &gains
: mEarly
.PanGain
)
676 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
677 for(auto &gains
: mLate
.CurrentGain
)
678 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
679 for(auto &gains
: mLate
.PanGain
)
680 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
682 /* Reset fading and offset base. */
686 if(device
->mAmbiOrder
> 1)
689 mOrderScales
= AmbiScale::GetHFOrderScales(1, true);
693 mUpmixOutput
= false;
694 mOrderScales
.fill(1.0f
);
696 mAmbiSplitter
[0][0].init(device
->mXOverFreq
/ frequency
);
697 std::fill(mAmbiSplitter
[0].begin()+1, mAmbiSplitter
[0].end(), mAmbiSplitter
[0][0]);
698 std::fill(mAmbiSplitter
[1].begin(), mAmbiSplitter
[1].end(), mAmbiSplitter
[0][0]);
701 /**************************************
703 **************************************/
705 /* Calculate a decay coefficient given the length of each cycle and the time
706 * until the decay reaches -60 dB.
708 inline float CalcDecayCoeff(const float length
, const float decayTime
)
709 { return std::pow(ReverbDecayGain
, length
/decayTime
); }
711 /* Calculate a decay length from a coefficient and the time until the decay
714 inline float CalcDecayLength(const float coeff
, const float decayTime
)
716 constexpr float log10_decaygain
{-3.0f
/*std::log10(ReverbDecayGain)*/};
717 return std::log10(coeff
) * decayTime
/ log10_decaygain
;
720 /* Calculate an attenuation to be applied to the input of any echo models to
721 * compensate for modal density and decay time.
723 inline float CalcDensityGain(const float a
)
725 /* The energy of a signal can be obtained by finding the area under the
726 * squared signal. This takes the form of Sum(x_n^2), where x is the
727 * amplitude for the sample n.
729 * Decaying feedback matches exponential decay of the form Sum(a^n),
730 * where a is the attenuation coefficient, and n is the sample. The area
731 * under this decay curve can be calculated as: 1 / (1 - a).
733 * Modifying the above equation to find the area under the squared curve
734 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
735 * calculated by inverting the square root of this approximation,
736 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
738 return std::sqrt(1.0f
- a
*a
);
741 /* Calculate the scattering matrix coefficients given a diffusion factor. */
742 inline void CalcMatrixCoeffs(const float diffusion
, float *x
, float *y
)
744 /* The matrix is of order 4, so n is sqrt(4 - 1). */
745 constexpr float n
{al::numbers::sqrt3_v
<float>};
746 const float t
{diffusion
* std::atan(n
)};
748 /* Calculate the first mixing matrix coefficient. */
750 /* Calculate the second mixing matrix coefficient. */
751 *y
= std::sin(t
) / n
;
754 /* Calculate the limited HF ratio for use with the late reverb low-pass
757 float CalcLimitedHfRatio(const float hfRatio
, const float airAbsorptionGainHF
,
758 const float decayTime
)
760 /* Find the attenuation due to air absorption in dB (converting delay
761 * time to meters using the speed of sound). Then reversing the decay
762 * equation, solve for HF ratio. The delay length is cancelled out of
763 * the equation, so it can be calculated once for all lines.
765 float limitRatio
{1.0f
/ SpeedOfSoundMetersPerSec
/
766 CalcDecayLength(airAbsorptionGainHF
, decayTime
)};
768 /* Using the limit calculated above, apply the upper bound to the HF ratio. */
769 return minf(limitRatio
, hfRatio
);
773 /* Calculates the 3-band T60 damping coefficients for a particular delay line
774 * of specified length, using a combination of two shelf filter sections given
775 * decay times for each band split at two reference frequencies.
777 void T60Filter::calcCoeffs(const float length
, const float lfDecayTime
,
778 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
781 const float mfGain
{CalcDecayCoeff(length
, mfDecayTime
)};
782 const float lfGain
{CalcDecayCoeff(length
, lfDecayTime
) / mfGain
};
783 const float hfGain
{CalcDecayCoeff(length
, hfDecayTime
) / mfGain
};
786 LFFilter
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, lfGain
, 1.0f
);
787 HFFilter
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, hfGain
, 1.0f
);
790 /* Update the early reflection line lengths and gain coefficients. */
791 void EarlyReflections::updateLines(const float density_mult
, const float diffusion
,
792 const float decayTime
, const float frequency
)
794 /* Calculate the all-pass feed-back/forward coefficient. */
795 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
797 for(size_t i
{0u};i
< NUM_LINES
;i
++)
799 /* Calculate the delay length of each all-pass line. */
800 float length
{EARLY_ALLPASS_LENGTHS
[i
] * density_mult
};
801 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
803 /* Calculate the delay length of each delay line. */
804 length
= EARLY_LINE_LENGTHS
[i
] * density_mult
;
805 Offset
[i
][1] = float2uint(length
* frequency
);
807 /* Calculate the gain (coefficient) for each line. */
808 Coeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
812 /* Update the EAX modulation step and depth. Keep in mind that this kind of
813 * vibrato is additive and not multiplicative as one may expect. The downswing
814 * will sound stronger than the upswing.
816 void Modulation::updateModulator(float modTime
, float modDepth
, float frequency
)
818 /* Modulation is calculated in two parts.
820 * The modulation time effects the sinus rate, altering the speed of
821 * frequency changes. An index is incremented for each sample with an
822 * appropriate step size to generate an LFO, which will vary the feedback
825 Step
= maxu(fastf2u(MOD_FRACONE
/ (frequency
* modTime
)), 1);
827 /* The modulation depth effects the amount of frequency change over the
828 * range of the sinus. It needs to be scaled by the modulation time so that
829 * a given depth produces a consistent change in frequency over all ranges
830 * of time. Since the depth is applied to a sinus value, it needs to be
831 * halved once for the sinus range and again for the sinus swing in time
832 * (half of it is spent decreasing the frequency, half is spent increasing
835 if(modTime
>= DefaultModulationTime
)
837 /* To cancel the effects of a long period modulation on the late
838 * reverberation, the amount of pitch should be varied (decreased)
839 * according to the modulation time. The natural form is varying
840 * inversely, in fact resulting in an invariant.
842 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* DefaultModulationTime
* modDepth
* frequency
;
845 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* modTime
* modDepth
* frequency
;
848 /* Update the late reverb line lengths and T60 coefficients. */
849 void LateReverb::updateLines(const float density_mult
, const float diffusion
,
850 const float lfDecayTime
, const float mfDecayTime
, const float hfDecayTime
,
851 const float lf0norm
, const float hf0norm
, const float frequency
)
853 /* Scaling factor to convert the normalized reference frequencies from
854 * representing 0...freq to 0...max_reference.
856 constexpr float MaxHFReference
{20000.0f
};
857 const float norm_weight_factor
{frequency
/ MaxHFReference
};
859 const float late_allpass_avg
{
860 std::accumulate(LATE_ALLPASS_LENGTHS
.begin(), LATE_ALLPASS_LENGTHS
.end(), 0.0f
) /
863 /* To compensate for changes in modal density and decay time of the late
864 * reverb signal, the input is attenuated based on the maximal energy of
865 * the outgoing signal. This approximation is used to keep the apparent
866 * energy of the signal equal for all ranges of density and decay time.
868 * The average length of the delay lines is used to calculate the
869 * attenuation coefficient.
871 float length
{std::accumulate(LATE_LINE_LENGTHS
.begin(), LATE_LINE_LENGTHS
.end(), 0.0f
) /
872 float{NUM_LINES
} + late_allpass_avg
};
873 length
*= density_mult
;
874 /* The density gain calculation uses an average decay time weighted by
875 * approximate bandwidth. This attempts to compensate for losses of energy
876 * that reduce decay time due to scattering into highly attenuated bands.
878 const float decayTimeWeighted
{
879 lf0norm
*norm_weight_factor
*lfDecayTime
+
880 (hf0norm
- lf0norm
)*norm_weight_factor
*mfDecayTime
+
881 (1.0f
- hf0norm
*norm_weight_factor
)*hfDecayTime
};
882 DensityGain
[1] = CalcDensityGain(CalcDecayCoeff(length
, decayTimeWeighted
));
884 /* Calculate the all-pass feed-back/forward coefficient. */
885 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
887 for(size_t i
{0u};i
< NUM_LINES
;i
++)
889 /* Calculate the delay length of each all-pass line. */
890 length
= LATE_ALLPASS_LENGTHS
[i
] * density_mult
;
891 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
893 /* Calculate the delay length of each feedback delay line. */
894 length
= LATE_LINE_LENGTHS
[i
] * density_mult
;
895 Offset
[i
][1] = float2uint(length
*frequency
+ 0.5f
);
899 /* Limit the modulation depth to avoid underflowing the read offset. */
900 if(Offset
[0][1] <= MAX_UPDATE_SAMPLES
)
904 const auto maxdepth
= static_cast<float>(Offset
[0][1] - MAX_UPDATE_SAMPLES
);
905 if(Mod
.Depth
[1] > maxdepth
) Mod
.Depth
[1] = maxdepth
;
909 /* Approximate the absorption that the vector all-pass would exhibit
910 * given the current diffusion so we don't have to process a full T60
911 * filter for each of its four lines. Also include the average
912 * modulation delay (depth is half the max delay in samples).
914 length
+= lerpf(LATE_ALLPASS_LENGTHS
[i
], late_allpass_avg
, diffusion
)*density_mult
+
915 Mod
.Depth
[1]/frequency
;
917 /* Calculate the T60 damping coefficients for each line. */
918 T60
[i
].calcCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
, lf0norm
, hf0norm
);
923 /* Update the offsets for the main effect delay line. */
924 void ReverbState::updateDelayLine(const float earlyDelay
, const float lateDelay
,
925 const float density_mult
, const float decayTime
, const float frequency
)
927 /* Early reflection taps are decorrelated by means of an average room
928 * reflection approximation described above the definition of the taps.
929 * This approximation is linear and so the above density multiplier can
930 * be applied to adjust the width of the taps. A single-band decay
931 * coefficient is applied to simulate initial attenuation and absorption.
933 * Late reverb taps are based on the late line lengths to allow a zero-
934 * delay path and offsets that would continue the propagation naturally
935 * into the late lines.
937 for(size_t i
{0u};i
< NUM_LINES
;i
++)
939 float length
{EARLY_TAP_LENGTHS
[i
]*density_mult
};
940 mEarlyDelayTap
[i
][1] = float2uint((earlyDelay
+length
) * frequency
);
941 mEarlyDelayCoeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
943 length
= (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*density_mult
+
945 mLateDelayTap
[i
][1] = float2uint(length
* frequency
);
949 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
950 * reflections toward the given direction, using its magnitude (up to 1) as a
951 * focal strength. This function results in a B-Format transformation matrix
952 * that spatially focuses the signal in the desired direction.
954 std::array
<std::array
<float,4>,4> GetTransformFromVector(const float *vec
)
956 /* Normalize the panning vector according to the N3D scale, which has an
957 * extra sqrt(3) term on the directional components. Converting from OpenAL
958 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
959 * that the reverb panning vectors use left-handed coordinates, unlike the
960 * rest of OpenAL which use right-handed. This is fixed by negating Z,
961 * which cancels out with the B-Format Z negation.
964 float mag
{std::sqrt(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2])};
967 norm
[0] = vec
[0] / mag
* -al::numbers::sqrt3_v
<float>;
968 norm
[1] = vec
[1] / mag
* al::numbers::sqrt3_v
<float>;
969 norm
[2] = vec
[2] / mag
* al::numbers::sqrt3_v
<float>;
974 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
975 * term. There's no need to renormalize the magnitude since it would
976 * just be reapplied in the matrix.
978 norm
[0] = vec
[0] * -al::numbers::sqrt3_v
<float>;
979 norm
[1] = vec
[1] * al::numbers::sqrt3_v
<float>;
980 norm
[2] = vec
[2] * al::numbers::sqrt3_v
<float>;
983 return std::array
<std::array
<float,4>,4>{{
984 {{1.0f
, 0.0f
, 0.0f
, 0.0f
}},
985 {{norm
[0], 1.0f
-mag
, 0.0f
, 0.0f
}},
986 {{norm
[1], 0.0f
, 1.0f
-mag
, 0.0f
}},
987 {{norm
[2], 0.0f
, 0.0f
, 1.0f
-mag
}}
991 /* Update the early and late 3D panning gains. */
992 void ReverbState::update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
993 const float earlyGain
, const float lateGain
, const EffectTarget
&target
)
995 /* Create matrices that transform a B-Format signal according to the
998 const std::array
<std::array
<float,4>,4> earlymat
{GetTransformFromVector(ReflectionsPan
)};
999 const std::array
<std::array
<float,4>,4> latemat
{GetTransformFromVector(LateReverbPan
)};
1003 /* When upsampling, combine the early and late transforms with the
1004 * first-order upsample matrix. This results in panning gains that
1005 * apply the panning transform to first-order B-Format, which is then
1008 auto mult_matrix
= [](const al::span
<const std::array
<float,4>,4> mtx1
)
1010 auto&& mtx2
= AmbiScale::FirstOrderUp
;
1011 std::array
<std::array
<float,MaxAmbiChannels
>,NUM_LINES
> res
{};
1013 for(size_t i
{0};i
< mtx1
[0].size();++i
)
1015 for(size_t j
{0};j
< mtx2
[0].size();++j
)
1018 for(size_t k
{0};k
< mtx1
.size();++k
)
1019 sum
+= double{mtx1
[k
][i
]} * mtx2
[k
][j
];
1020 res
[i
][j
] = static_cast<float>(sum
);
1026 auto earlycoeffs
= mult_matrix(earlymat
);
1027 auto latecoeffs
= mult_matrix(latemat
);
1029 mOutTarget
= target
.Main
->Buffer
;
1030 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1031 ComputePanGains(target
.Main
, earlycoeffs
[i
].data(), earlyGain
, mEarly
.PanGain
[i
]);
1032 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1033 ComputePanGains(target
.Main
, latecoeffs
[i
].data(), lateGain
, mLate
.PanGain
[i
]);
1037 /* When not upsampling, combine the early and late A-to-B-Format
1038 * conversions with their respective transform. This results panning
1039 * gains that convert A-Format to B-Format, which is then panned.
1041 auto mult_matrix
= [](const al::span
<const std::array
<float,NUM_LINES
>,4> mtx1
,
1042 const al::span
<const std::array
<float,4>,4> mtx2
)
1044 std::array
<std::array
<float,MaxAmbiChannels
>,NUM_LINES
> res
{};
1046 for(size_t i
{0};i
< mtx1
[0].size();++i
)
1048 for(size_t j
{0};j
< mtx2
.size();++j
)
1051 for(size_t k
{0};k
< mtx1
.size();++k
)
1052 sum
+= double{mtx1
[k
][i
]} * mtx2
[j
][k
];
1053 res
[i
][j
] = static_cast<float>(sum
);
1059 auto earlycoeffs
= mult_matrix(EarlyA2B
, earlymat
);
1060 auto latecoeffs
= mult_matrix(LateA2B
, latemat
);
1062 mOutTarget
= target
.Main
->Buffer
;
1063 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1064 ComputePanGains(target
.Main
, earlycoeffs
[i
].data(), earlyGain
, mEarly
.PanGain
[i
]);
1065 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1066 ComputePanGains(target
.Main
, latecoeffs
[i
].data(), lateGain
, mLate
.PanGain
[i
]);
1070 void ReverbState::update(const ContextBase
*Context
, const EffectSlot
*Slot
,
1071 const EffectProps
*props
, const EffectTarget target
)
1073 const DeviceBase
*Device
{Context
->mDevice
};
1074 const auto frequency
= static_cast<float>(Device
->Frequency
);
1076 /* Calculate the master filters */
1077 float hf0norm
{minf(props
->Reverb
.HFReference
/frequency
, 0.49f
)};
1078 mFilter
[0].Lp
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, props
->Reverb
.GainHF
, 1.0f
);
1079 float lf0norm
{minf(props
->Reverb
.LFReference
/frequency
, 0.49f
)};
1080 mFilter
[0].Hp
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, props
->Reverb
.GainLF
, 1.0f
);
1081 for(size_t i
{1u};i
< NUM_LINES
;i
++)
1083 mFilter
[i
].Lp
.copyParamsFrom(mFilter
[0].Lp
);
1084 mFilter
[i
].Hp
.copyParamsFrom(mFilter
[0].Hp
);
1087 /* The density-based room size (delay length) multiplier. */
1088 const float density_mult
{CalcDelayLengthMult(props
->Reverb
.Density
)};
1090 /* Update the main effect delay and associated taps. */
1091 updateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
1092 density_mult
, props
->Reverb
.DecayTime
, frequency
);
1094 /* Update the early lines. */
1095 mEarly
.updateLines(density_mult
, props
->Reverb
.Diffusion
, props
->Reverb
.DecayTime
, frequency
);
1097 /* Get the mixing matrix coefficients. */
1098 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &mMixX
, &mMixY
);
1100 /* If the HF limit parameter is flagged, calculate an appropriate limit
1101 * based on the air absorption parameter.
1103 float hfRatio
{props
->Reverb
.DecayHFRatio
};
1104 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1105 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
1106 props
->Reverb
.DecayTime
);
1108 /* Calculate the LF/HF decay times. */
1109 constexpr float MinDecayTime
{0.1f
}, MaxDecayTime
{20.0f
};
1110 const float lfDecayTime
{clampf(props
->Reverb
.DecayTime
*props
->Reverb
.DecayLFRatio
,
1111 MinDecayTime
, MaxDecayTime
)};
1112 const float hfDecayTime
{clampf(props
->Reverb
.DecayTime
*hfRatio
, MinDecayTime
, MaxDecayTime
)};
1114 /* Update the modulator rate and depth. */
1115 mLate
.Mod
.updateModulator(props
->Reverb
.ModulationTime
, props
->Reverb
.ModulationDepth
,
1118 /* Update the late lines. */
1119 mLate
.updateLines(density_mult
, props
->Reverb
.Diffusion
, lfDecayTime
,
1120 props
->Reverb
.DecayTime
, hfDecayTime
, lf0norm
, hf0norm
, frequency
);
1122 /* Update early and late 3D panning. */
1123 const float gain
{props
->Reverb
.Gain
* Slot
->Gain
* ReverbBoost
};
1124 update3DPanning(props
->Reverb
.ReflectionsPan
, props
->Reverb
.LateReverbPan
,
1125 props
->Reverb
.ReflectionsGain
*gain
, props
->Reverb
.LateReverbGain
*gain
, target
);
1127 /* Determine if delay-line cross-fading is required. Density is essentially
1128 * a master control for the feedback delays, so changes the offsets of many
1131 mDoFading
|= (mParams
.Density
!= props
->Reverb
.Density
||
1132 /* Diffusion and decay times influences the decay rate (gain) of the
1133 * late reverb T60 filter.
1135 mParams
.Diffusion
!= props
->Reverb
.Diffusion
||
1136 mParams
.DecayTime
!= props
->Reverb
.DecayTime
||
1137 mParams
.HFDecayTime
!= hfDecayTime
||
1138 mParams
.LFDecayTime
!= lfDecayTime
||
1139 /* Modulation time and depth both require fading the modulation delay. */
1140 mParams
.ModulationTime
!= props
->Reverb
.ModulationTime
||
1141 mParams
.ModulationDepth
!= props
->Reverb
.ModulationDepth
||
1142 /* HF/LF References control the weighting used to calculate the density
1145 mParams
.HFReference
!= props
->Reverb
.HFReference
||
1146 mParams
.LFReference
!= props
->Reverb
.LFReference
);
1149 mParams
.Density
= props
->Reverb
.Density
;
1150 mParams
.Diffusion
= props
->Reverb
.Diffusion
;
1151 mParams
.DecayTime
= props
->Reverb
.DecayTime
;
1152 mParams
.HFDecayTime
= hfDecayTime
;
1153 mParams
.LFDecayTime
= lfDecayTime
;
1154 mParams
.ModulationTime
= props
->Reverb
.ModulationTime
;
1155 mParams
.ModulationDepth
= props
->Reverb
.ModulationDepth
;
1156 mParams
.HFReference
= props
->Reverb
.HFReference
;
1157 mParams
.LFReference
= props
->Reverb
.LFReference
;
1162 /**************************************
1163 * Effect Processing *
1164 **************************************/
1166 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1167 * for both the below vector all-pass model and to perform modal feed-back
1168 * delay network (FDN) mixing.
1170 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1171 * matrix with a single unitary rotational parameter:
1173 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1178 * The rotation is constructed from the effect's diffusion parameter,
1183 * Where a, b, and c are the coefficient y with differing signs, and d is the
1184 * coefficient x. The final matrix is thus:
1186 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1187 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1188 * [ y, -y, x, y ] x = cos(t)
1189 * [ -y, -y, -y, x ] y = sin(t) / n
1191 * Any square orthogonal matrix with an order that is a power of two will
1192 * work (where ^T is transpose, ^-1 is inverse):
1196 * Using that knowledge, finding an appropriate matrix can be accomplished
1197 * naively by searching all combinations of:
1201 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1202 * whose combination of signs are being iterated.
1204 inline auto VectorPartialScatter(const std::array
<float,NUM_LINES
> &RESTRICT in
,
1205 const float xCoeff
, const float yCoeff
) -> std::array
<float,NUM_LINES
>
1207 return std::array
<float,NUM_LINES
>{{
1208 xCoeff
*in
[0] + yCoeff
*( in
[1] + -in
[2] + in
[3]),
1209 xCoeff
*in
[1] + yCoeff
*(-in
[0] + in
[2] + in
[3]),
1210 xCoeff
*in
[2] + yCoeff
*( in
[0] + -in
[1] + in
[3]),
1211 xCoeff
*in
[3] + yCoeff
*(-in
[0] + -in
[1] + -in
[2] )
1215 /* Utilizes the above, but reverses the input channels. */
1216 void VectorScatterRevDelayIn(const DelayLineI delay
, size_t offset
, const float xCoeff
,
1217 const float yCoeff
, const al::span
<const ReverbUpdateLine
,NUM_LINES
> in
, const size_t count
)
1221 for(size_t i
{0u};i
< count
;)
1223 offset
&= delay
.Mask
;
1224 size_t td
{minz(delay
.Mask
+1 - offset
, count
-i
)};
1226 std::array
<float,NUM_LINES
> f
;
1227 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1228 f
[NUM_LINES
-1-j
] = in
[j
][i
];
1231 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1236 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1237 * filter to the 4-line input.
1239 * It works by vectorizing a regular all-pass filter and replacing the delay
1240 * element with a scattering matrix (like the one above) and a diagonal
1241 * matrix of delay elements.
1243 * Two static specializations are used for transitional (cross-faded) delay
1244 * line processing and non-transitional processing.
1246 void VecAllpass::processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1247 const float xCoeff
, const float yCoeff
, const size_t todo
)
1249 const DelayLineI delay
{Delay
};
1250 const float feedCoeff
{Coeff
};
1254 size_t vap_offset
[NUM_LINES
];
1255 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1256 vap_offset
[j
] = offset
- Offset
[j
][0];
1257 for(size_t i
{0u};i
< todo
;)
1259 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1260 vap_offset
[j
] &= delay
.Mask
;
1261 offset
&= delay
.Mask
;
1263 size_t maxoff
{offset
};
1264 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1265 maxoff
= maxz(maxoff
, vap_offset
[j
]);
1266 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1269 std::array
<float,NUM_LINES
> f
;
1270 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1272 const float input
{samples
[j
][i
]};
1273 const float out
{delay
.Line
[vap_offset
[j
]++][j
] - feedCoeff
*input
};
1274 f
[j
] = input
+ feedCoeff
*out
;
1276 samples
[j
][i
] = out
;
1280 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1284 void VecAllpass::processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1285 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
1288 const DelayLineI delay
{Delay
};
1289 const float feedCoeff
{Coeff
};
1293 size_t vap_offset
[NUM_LINES
][2];
1294 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1296 vap_offset
[j
][0] = offset
- Offset
[j
][0];
1297 vap_offset
[j
][1] = offset
- Offset
[j
][1];
1299 for(size_t i
{0u};i
< todo
;)
1301 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1303 vap_offset
[j
][0] &= delay
.Mask
;
1304 vap_offset
[j
][1] &= delay
.Mask
;
1306 offset
&= delay
.Mask
;
1308 size_t maxoff
{offset
};
1309 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1310 maxoff
= maxz(maxoff
, maxz(vap_offset
[j
][0], vap_offset
[j
][1]));
1311 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1315 const float fade
{fadeCount
* fadeStep
};
1317 std::array
<float,NUM_LINES
> f
;
1318 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1319 f
[j
] = delay
.Line
[vap_offset
[j
][0]++][j
]*(1.0f
-fade
) +
1320 delay
.Line
[vap_offset
[j
][1]++][j
]*fade
;
1322 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1324 const float input
{samples
[j
][i
]};
1325 const float out
{f
[j
] - feedCoeff
*input
};
1326 f
[j
] = input
+ feedCoeff
*out
;
1328 samples
[j
][i
] = out
;
1332 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1337 /* This generates early reflections.
1339 * This is done by obtaining the primary reflections (those arriving from the
1340 * same direction as the source) from the main delay line. These are
1341 * attenuated and all-pass filtered (based on the diffusion parameter).
1343 * The early lines are then fed in reverse (according to the approximately
1344 * opposite spatial location of the A-Format lines) to create the secondary
1345 * reflections (those arriving from the opposite direction as the source).
1347 * The early response is then completed by combining the primary reflections
1348 * with the delayed and attenuated output from the early lines.
1350 * Finally, the early response is reversed, scattered (based on diffusion),
1351 * and fed into the late reverb section of the main delay line.
1353 * Two static specializations are used for transitional (cross-faded) delay
1354 * line processing and non-transitional processing.
1356 void ReverbState::earlyUnfaded(size_t offset
, const size_t samplesToDo
)
1358 const DelayLineI early_delay
{mEarly
.Delay
};
1359 const DelayLineI in_delay
{mEarlyDelayIn
};
1360 const float mixX
{mMixX
};
1361 const float mixY
{mMixY
};
1363 ASSUME(samplesToDo
> 0);
1365 for(size_t base
{0};base
< samplesToDo
;)
1367 const size_t todo
{minz(samplesToDo
-base
, MAX_UPDATE_SAMPLES
)};
1369 /* First, load decorrelated samples from the main delay line as the
1370 * primary reflections.
1372 const float fadeStep
{1.0f
/ static_cast<float>(todo
)};
1373 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1375 size_t early_delay_tap0
{offset
- mEarlyDelayTap
[j
][0]};
1376 size_t early_delay_tap1
{offset
- mEarlyDelayTap
[j
][1]};
1377 const float coeff
{mEarlyDelayCoeff
[j
][0]};
1378 const float coeffStep
{early_delay_tap0
!= early_delay_tap1
? coeff
*fadeStep
: 0.0f
};
1379 float fadeCount
{0.0f
};
1381 for(size_t i
{0u};i
< todo
;)
1383 early_delay_tap0
&= in_delay
.Mask
;
1384 early_delay_tap1
&= in_delay
.Mask
;
1385 const size_t max_tap
{maxz(early_delay_tap0
, early_delay_tap1
)};
1386 size_t td
{minz(in_delay
.Mask
+1 - max_tap
, todo
-i
)};
1388 const float fade0
{coeff
- coeffStep
*fadeCount
};
1389 const float fade1
{coeffStep
*fadeCount
};
1391 mTempSamples
[j
][i
++] = in_delay
.Line
[early_delay_tap0
++][j
]*fade0
+
1392 in_delay
.Line
[early_delay_tap1
++][j
]*fade1
;
1396 mEarlyDelayTap
[j
][0] = mEarlyDelayTap
[j
][1];
1399 /* Apply a vector all-pass, to help color the initial reflections based
1400 * on the diffusion strength.
1402 mEarly
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1404 /* Apply a delay and bounce to generate secondary reflections, combine
1405 * with the primary reflections and write out the result for mixing.
1407 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1408 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1409 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1411 size_t feedb_tap
{offset
- mEarly
.Offset
[j
][0]};
1412 const float feedb_coeff
{mEarly
.Coeff
[j
][0]};
1413 float *out
{al::assume_aligned
<16>(mEarlySamples
[j
].data() + base
)};
1415 for(size_t i
{0u};i
< todo
;)
1417 feedb_tap
&= early_delay
.Mask
;
1418 size_t td
{minz(early_delay
.Mask
+1 - feedb_tap
, todo
- i
)};
1420 mTempSamples
[j
][i
] += early_delay
.Line
[feedb_tap
++][j
]*feedb_coeff
;
1421 out
[i
] = mTempSamples
[j
][i
];
1427 /* Finally, write the result to the late delay line input for the late
1428 * reverb stage to pick up at the appropriate time, applying a scatter
1429 * and bounce to improve the initial diffusion in the late reverb.
1431 VectorScatterRevDelayIn(mLateDelayIn
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1437 void ReverbState::earlyFaded(size_t offset
, const size_t samplesToDo
, const float fadeStep
)
1439 const DelayLineI early_delay
{mEarly
.Delay
};
1440 const DelayLineI in_delay
{mEarlyDelayIn
};
1441 const float mixX
{mMixX
};
1442 const float mixY
{mMixY
};
1444 ASSUME(samplesToDo
> 0);
1446 for(size_t base
{0};base
< samplesToDo
;)
1448 const size_t todo
{minz(samplesToDo
-base
, MAX_UPDATE_SAMPLES
)};
1449 const float fade
{static_cast<float>(base
)};
1451 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1453 size_t early_delay_tap0
{offset
- mEarlyDelayTap
[j
][0]};
1454 size_t early_delay_tap1
{offset
- mEarlyDelayTap
[j
][1]};
1455 const float oldCoeff
{mEarlyDelayCoeff
[j
][0]};
1456 const float oldCoeffStep
{-oldCoeff
* fadeStep
};
1457 const float newCoeffStep
{mEarlyDelayCoeff
[j
][1] * fadeStep
};
1458 float fadeCount
{fade
};
1460 for(size_t i
{0u};i
< todo
;)
1462 early_delay_tap0
&= in_delay
.Mask
;
1463 early_delay_tap1
&= in_delay
.Mask
;
1464 const size_t max_tap
{maxz(early_delay_tap0
, early_delay_tap1
)};
1465 size_t td
{minz(in_delay
.Mask
+1 - max_tap
, todo
-i
)};
1468 const float fade0
{oldCoeff
+ oldCoeffStep
*fadeCount
};
1469 const float fade1
{newCoeffStep
*fadeCount
};
1470 mTempSamples
[j
][i
++] = in_delay
.Line
[early_delay_tap0
++][j
]*fade0
+
1471 in_delay
.Line
[early_delay_tap1
++][j
]*fade1
;
1476 mEarly
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1478 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1479 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1480 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1482 size_t feedb_tap0
{offset
- mEarly
.Offset
[j
][0]};
1483 size_t feedb_tap1
{offset
- mEarly
.Offset
[j
][1]};
1484 const float feedb_oldCoeff
{mEarly
.Coeff
[j
][0]};
1485 const float feedb_oldCoeffStep
{-feedb_oldCoeff
* fadeStep
};
1486 const float feedb_newCoeffStep
{mEarly
.Coeff
[j
][1] * fadeStep
};
1487 float *out
{mEarlySamples
[j
].data() + base
};
1488 float fadeCount
{fade
};
1490 for(size_t i
{0u};i
< todo
;)
1492 feedb_tap0
&= early_delay
.Mask
;
1493 feedb_tap1
&= early_delay
.Mask
;
1494 size_t td
{minz(early_delay
.Mask
+1 - maxz(feedb_tap0
, feedb_tap1
), todo
- i
)};
1498 const float fade0
{feedb_oldCoeff
+ feedb_oldCoeffStep
*fadeCount
};
1499 const float fade1
{feedb_newCoeffStep
*fadeCount
};
1500 mTempSamples
[j
][i
] += early_delay
.Line
[feedb_tap0
++][j
]*fade0
+
1501 early_delay
.Line
[feedb_tap1
++][j
]*fade1
;
1502 out
[i
] = mTempSamples
[j
][i
];
1508 VectorScatterRevDelayIn(mLateDelayIn
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1516 void Modulation::calcDelays(size_t todo
)
1518 constexpr float mod_scale
{al::numbers::pi_v
<float> * 2.0f
/ MOD_FRACONE
};
1520 const uint step
{Step
};
1521 const float depth
{Depth
[0]};
1522 for(size_t i
{0};i
< todo
;++i
)
1525 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) * mod_scale
)};
1526 ModDelays
[i
] = (lfo
+1.0f
) * depth
;
1531 void Modulation::calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
)
1533 constexpr float mod_scale
{al::numbers::pi_v
<float> * 2.0f
/ MOD_FRACONE
};
1535 const uint step
{Step
};
1536 const float depth
{Depth
[0]};
1537 const float depthStep
{(Depth
[1]-depth
) * fadeStep
};
1538 for(size_t i
{0};i
< todo
;++i
)
1542 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) * mod_scale
)};
1543 ModDelays
[i
] = (lfo
+1.0f
) * (depth
+ depthStep
*fadeCount
);
1549 /* This generates the reverb tail using a modified feed-back delay network
1552 * Results from the early reflections are mixed with the output from the
1553 * modulated late delay lines.
1555 * The late response is then completed by T60 and all-pass filtering the mix.
1557 * Finally, the lines are reversed (so they feed their opposite directions)
1558 * and scattered with the FDN matrix before re-feeding the delay lines.
1560 * Two variations are made, one for for transitional (cross-faded) delay line
1561 * processing and one for non-transitional processing.
1563 void ReverbState::lateUnfaded(size_t offset
, const size_t samplesToDo
)
1565 const DelayLineI late_delay
{mLate
.Delay
};
1566 const DelayLineI in_delay
{mLateDelayIn
};
1567 const float mixX
{mMixX
};
1568 const float mixY
{mMixY
};
1570 ASSUME(samplesToDo
> 0);
1572 for(size_t base
{0};base
< samplesToDo
;)
1574 const size_t todo
{minz(samplesToDo
-base
, minz(mLate
.Offset
[0][0], MAX_UPDATE_SAMPLES
))};
1577 /* First, calculate the modulated delays for the late feedback. */
1578 mLate
.Mod
.calcDelays(todo
);
1580 /* Next, load decorrelated samples from the main and feedback delay
1581 * lines. Filter the signal to apply its frequency-dependent decay.
1583 const float fadeStep
{1.0f
/ static_cast<float>(todo
)};
1584 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1586 size_t late_delay_tap0
{offset
- mLateDelayTap
[j
][0]};
1587 size_t late_delay_tap1
{offset
- mLateDelayTap
[j
][1]};
1588 size_t late_feedb_tap
{offset
- mLate
.Offset
[j
][0]};
1589 const float midGain
{mLate
.T60
[j
].MidGain
[0]};
1590 const float densityGain
{mLate
.DensityGain
[0] * midGain
};
1591 const float densityStep
{late_delay_tap0
!= late_delay_tap1
?
1592 densityGain
*fadeStep
: 0.0f
};
1593 float fadeCount
{0.0f
};
1595 for(size_t i
{0u};i
< todo
;)
1597 late_delay_tap0
&= in_delay
.Mask
;
1598 late_delay_tap1
&= in_delay
.Mask
;
1599 size_t td
{minz(todo
-i
, in_delay
.Mask
+1 - maxz(late_delay_tap0
, late_delay_tap1
))};
1601 /* Calculate the read offset and fraction between it and
1604 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1605 const size_t delay
{float2uint(fdelay
)};
1606 const float frac
{fdelay
- static_cast<float>(delay
)};
1608 /* Get the two samples crossed by the delayed offset. */
1609 const float out0
{late_delay
.Line
[(late_feedb_tap
-delay
) & late_delay
.Mask
][j
]};
1610 const float out1
{late_delay
.Line
[(late_feedb_tap
-delay
-1) & late_delay
.Mask
][j
]};
1613 /* The output is obtained by linearly interpolating the two
1614 * samples that were acquired above, and combined with the
1617 const float fade0
{densityGain
- densityStep
*fadeCount
};
1618 const float fade1
{densityStep
*fadeCount
};
1620 mTempSamples
[j
][i
] = lerpf(out0
, out1
, frac
)*midGain
+
1621 in_delay
.Line
[late_delay_tap0
++][j
]*fade0
+
1622 in_delay
.Line
[late_delay_tap1
++][j
]*fade1
;
1626 mLateDelayTap
[j
][0] = mLateDelayTap
[j
][1];
1628 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1631 /* Apply a vector all-pass to improve micro-surface diffusion, and
1632 * write out the results for mixing.
1634 mLate
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1635 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1636 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin()+base
);
1638 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1639 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1645 void ReverbState::lateFaded(size_t offset
, const size_t samplesToDo
, const float fadeStep
)
1647 const DelayLineI late_delay
{mLate
.Delay
};
1648 const DelayLineI in_delay
{mLateDelayIn
};
1649 const float mixX
{mMixX
};
1650 const float mixY
{mMixY
};
1652 ASSUME(samplesToDo
> 0);
1654 for(size_t base
{0};base
< samplesToDo
;)
1656 const size_t min_offset
{mLate
.Offset
[0][0] ? minz(mLate
.Offset
[0][0], mLate
.Offset
[0][1])
1657 : mLate
.Offset
[0][1]};
1658 const size_t todo
{minz(minz(samplesToDo
-base
, min_offset
), MAX_UPDATE_SAMPLES
)};
1661 const float fade
{static_cast<float>(base
)};
1663 mLate
.Mod
.calcFadedDelays(todo
, fade
, fadeStep
);
1665 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1667 const float oldMidGain
{mLate
.T60
[j
].MidGain
[0]};
1668 const float midGain
{mLate
.T60
[j
].MidGain
[1]};
1669 const float oldMidStep
{-oldMidGain
* fadeStep
};
1670 const float midStep
{midGain
* fadeStep
};
1671 const float oldDensityGain
{mLate
.DensityGain
[0] * oldMidGain
};
1672 const float densityGain
{mLate
.DensityGain
[1] * midGain
};
1673 const float oldDensityStep
{-oldDensityGain
* fadeStep
};
1674 const float densityStep
{densityGain
* fadeStep
};
1675 size_t late_delay_tap0
{offset
- mLateDelayTap
[j
][0]};
1676 size_t late_delay_tap1
{offset
- mLateDelayTap
[j
][1]};
1677 size_t late_feedb_tap0
{offset
- mLate
.Offset
[j
][0]};
1678 size_t late_feedb_tap1
{offset
- mLate
.Offset
[j
][1]};
1679 float fadeCount
{fade
};
1681 for(size_t i
{0u};i
< todo
;)
1683 late_delay_tap0
&= in_delay
.Mask
;
1684 late_delay_tap1
&= in_delay
.Mask
;
1685 size_t td
{minz(todo
-i
, in_delay
.Mask
+1 - maxz(late_delay_tap0
, late_delay_tap1
))};
1689 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1690 const size_t delay
{float2uint(fdelay
)};
1691 const float frac
{fdelay
- static_cast<float>(delay
)};
1693 const size_t late_mask
{late_delay
.Mask
};
1694 const float out00
{late_delay
.Line
[(late_feedb_tap0
-delay
) & late_mask
][j
]};
1695 const float out01
{late_delay
.Line
[(late_feedb_tap0
-delay
-1) & late_mask
][j
]};
1697 const float out10
{late_delay
.Line
[(late_feedb_tap1
-delay
) & late_mask
][j
]};
1698 const float out11
{late_delay
.Line
[(late_feedb_tap1
-delay
-1) & late_mask
][j
]};
1701 const float fade0
{oldDensityGain
+ oldDensityStep
*fadeCount
};
1702 const float fade1
{densityStep
*fadeCount
};
1703 const float gfade0
{oldMidGain
+ oldMidStep
*fadeCount
};
1704 const float gfade1
{midStep
*fadeCount
};
1705 mTempSamples
[j
][i
] = lerpf(out00
, out01
, frac
)*gfade0
+
1706 lerpf(out10
, out11
, frac
)*gfade1
+
1707 in_delay
.Line
[late_delay_tap0
++][j
]*fade0
+
1708 in_delay
.Line
[late_delay_tap1
++][j
]*fade1
;
1712 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1715 mLate
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1716 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1717 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin()+base
);
1719 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1726 void ReverbState::process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
)
1728 size_t offset
{mOffset
};
1730 ASSUME(samplesToDo
> 0);
1732 /* Convert B-Format to A-Format for processing. */
1733 const size_t numInput
{minz(samplesIn
.size(), NUM_LINES
)};
1734 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), samplesToDo
};
1735 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1737 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
1738 for(size_t i
{0};i
< numInput
;++i
)
1740 const float gain
{B2A
[c
][i
]};
1741 const float *RESTRICT input
{al::assume_aligned
<16>(samplesIn
[i
].data())};
1743 for(float &sample
: tmpspan
)
1745 sample
+= *input
* gain
;
1750 /* Band-pass the incoming samples and feed the initial delay line. */
1751 DualBiquad
{mFilter
[c
].Lp
, mFilter
[c
].Hp
}.process(tmpspan
, tmpspan
.data());
1752 mEarlyDelayIn
.write(offset
, c
, tmpspan
.cbegin(), samplesToDo
);
1755 /* Process reverb for these samples. */
1756 if LIKELY(!mDoFading
)
1758 /* Generate non-faded early reflections and late reverb. */
1759 earlyUnfaded(offset
, samplesToDo
);
1760 lateUnfaded(offset
, samplesToDo
);
1762 /* Finally, mix early reflections and late reverb. */
1763 mixOut(samplesOut
, samplesToDo
);
1767 const float fadeStep
{1.0f
/ static_cast<float>(samplesToDo
)};
1769 /* Generate cross-faded early reflections and late reverb. */
1770 earlyFaded(offset
, samplesToDo
, fadeStep
);
1771 lateFaded(offset
, samplesToDo
, fadeStep
);
1773 mixOut(samplesOut
, samplesToDo
);
1776 /* Update the cross-fading delay line taps. */
1777 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1779 mEarlyDelayTap
[c
][0] = mEarlyDelayTap
[c
][1];
1780 mEarlyDelayCoeff
[c
][0] = mEarlyDelayCoeff
[c
][1];
1781 mLateDelayTap
[c
][0] = mLateDelayTap
[c
][1];
1782 mEarly
.VecAp
.Offset
[c
][0] = mEarly
.VecAp
.Offset
[c
][1];
1783 mEarly
.Offset
[c
][0] = mEarly
.Offset
[c
][1];
1784 mEarly
.Coeff
[c
][0] = mEarly
.Coeff
[c
][1];
1785 mLate
.Offset
[c
][0] = mLate
.Offset
[c
][1];
1786 mLate
.T60
[c
].MidGain
[0] = mLate
.T60
[c
].MidGain
[1];
1787 mLate
.VecAp
.Offset
[c
][0] = mLate
.VecAp
.Offset
[c
][1];
1789 mLate
.DensityGain
[0] = mLate
.DensityGain
[1];
1790 mLate
.Mod
.Depth
[0] = mLate
.Mod
.Depth
[1];
1793 mOffset
+= samplesToDo
;
1797 struct ReverbStateFactory final
: public EffectStateFactory
{
1798 al::intrusive_ptr
<EffectState
> create() override
1799 { return al::intrusive_ptr
<EffectState
>{new ReverbState
{}}; }
1802 struct StdReverbStateFactory final
: public EffectStateFactory
{
1803 al::intrusive_ptr
<EffectState
> create() override
1804 { return al::intrusive_ptr
<EffectState
>{new ReverbState
{}}; }
1809 EffectStateFactory
*ReverbStateFactory_getFactory()
1811 static ReverbStateFactory ReverbFactory
{};
1812 return &ReverbFactory
;
1815 EffectStateFactory
*StdReverbStateFactory_getFactory()
1817 static StdReverbStateFactory ReverbFactory
{};
1818 return &ReverbFactory
;