2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
48 #include "al/auxeffectslot.h"
49 #include "al/buffer.h"
50 #include "al/effect.h"
52 #include "al/listener.h"
54 #include "alcontext.h"
56 #include "alnumeric.h"
61 #include "bformatdec.h"
64 #include "devformat.h"
65 #include "effects/base.h"
66 #include "filters/biquad.h"
67 #include "filters/nfc.h"
68 #include "filters/splitter.h"
69 #include "fpu_modes.h"
71 #include "inprogext.h"
72 #include "mastering.h"
73 #include "math_defs.h"
74 #include "mixer/defs.h"
75 #include "opthelpers.h"
76 #include "ringbuffer.h"
79 #include "uhjfilter.h"
82 #include "bsinc_inc.h"
85 static_assert(!(MAX_RESAMPLER_PADDING
&1) && MAX_RESAMPLER_PADDING
>= bsinc24
.m
[0],
86 "MAX_RESAMPLER_PADDING is not a multiple of two, or is too small");
91 using namespace std::placeholders
;
93 ALfloat
InitConeScale()
96 if(auto optval
= al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
98 if(al::strcasecmp(optval
->c_str(), "true") == 0
99 || strtol(optval
->c_str(), nullptr, 0) == 1)
108 if(auto optval
= al::getenv("__ALSOFT_REVERSE_Z"))
110 if(al::strcasecmp(optval
->c_str(), "true") == 0
111 || strtol(optval
->c_str(), nullptr, 0) == 1)
120 const ALfloat ConeScale
{InitConeScale()};
122 /* Localized Z scalar for mono sources */
123 const ALfloat ZScale
{InitZScale()};
128 void ClearArray(ALfloat (&f
)[MAX_OUTPUT_CHANNELS
])
130 std::fill(std::begin(f
), std::end(f
), 0.0f
);
139 HrtfDirectMixerFunc MixDirectHrtf
= MixDirectHrtf_
<CTag
>;
140 inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
143 if((CPUCapFlags
&CPU_CAP_NEON
))
144 return MixDirectHrtf_
<NEONTag
>;
147 if((CPUCapFlags
&CPU_CAP_SSE
))
148 return MixDirectHrtf_
<SSETag
>;
151 return MixDirectHrtf_
<CTag
>;
155 inline void BsincPrepare(const ALuint increment
, BsincState
*state
, const BSincTable
*table
)
157 size_t si
{BSINC_SCALE_COUNT
- 1};
160 if(increment
> FRACTIONONE
)
162 sf
= FRACTIONONE
/ static_cast<float>(increment
);
163 sf
= maxf(0.0f
, (BSINC_SCALE_COUNT
-1) * (sf
-table
->scaleBase
) * table
->scaleRange
);
165 /* The interpolation factor is fit to this diagonally-symmetric curve
166 * to reduce the transition ripple caused by interpolating different
167 * scales of the sinc function.
169 sf
= 1.0f
- std::cos(std::asin(sf
- static_cast<float>(si
)));
173 state
->m
= table
->m
[si
];
174 state
->l
= (state
->m
/2) - 1;
175 state
->filter
= table
->Tab
+ table
->filterOffset
[si
];
178 inline ResamplerFunc
SelectResampler(Resampler resampler
, ALuint increment
)
182 case Resampler::Point
:
183 return Resample_
<PointTag
,CTag
>;
184 case Resampler::Linear
:
186 if((CPUCapFlags
&CPU_CAP_NEON
))
187 return Resample_
<LerpTag
,NEONTag
>;
190 if((CPUCapFlags
&CPU_CAP_SSE4_1
))
191 return Resample_
<LerpTag
,SSE4Tag
>;
194 if((CPUCapFlags
&CPU_CAP_SSE2
))
195 return Resample_
<LerpTag
,SSE2Tag
>;
197 return Resample_
<LerpTag
,CTag
>;
198 case Resampler::Cubic
:
199 return Resample_
<CubicTag
,CTag
>;
200 case Resampler::BSinc12
:
201 case Resampler::BSinc24
:
202 if(increment
<= FRACTIONONE
)
205 case Resampler::FastBSinc12
:
206 case Resampler::FastBSinc24
:
208 if((CPUCapFlags
&CPU_CAP_NEON
))
209 return Resample_
<FastBSincTag
,NEONTag
>;
212 if((CPUCapFlags
&CPU_CAP_SSE
))
213 return Resample_
<FastBSincTag
,SSETag
>;
215 return Resample_
<FastBSincTag
,CTag
>;
218 if((CPUCapFlags
&CPU_CAP_NEON
))
219 return Resample_
<BSincTag
,NEONTag
>;
222 if((CPUCapFlags
&CPU_CAP_SSE
))
223 return Resample_
<BSincTag
,SSETag
>;
225 return Resample_
<BSincTag
,CTag
>;
228 return Resample_
<PointTag
,CTag
>;
235 MixDirectHrtf
= SelectHrtfMixer();
239 ResamplerFunc
PrepareResampler(Resampler resampler
, ALuint increment
, InterpState
*state
)
243 case Resampler::Point
:
244 case Resampler::Linear
:
245 case Resampler::Cubic
:
247 case Resampler::FastBSinc12
:
248 case Resampler::BSinc12
:
249 BsincPrepare(increment
, &state
->bsinc
, &bsinc12
);
251 case Resampler::FastBSinc24
:
252 case Resampler::BSinc24
:
253 BsincPrepare(increment
, &state
->bsinc
, &bsinc24
);
256 return SelectResampler(resampler
, increment
);
260 void ALCdevice::ProcessHrtf(const size_t SamplesToDo
)
262 /* HRTF is stereo output only. */
263 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
264 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
266 MixDirectHrtf(RealOut
.Buffer
[lidx
], RealOut
.Buffer
[ridx
], Dry
.Buffer
, HrtfAccumData
,
267 mHrtfState
.get(), SamplesToDo
);
270 void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo
)
272 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
275 void ALCdevice::ProcessUhj(const size_t SamplesToDo
)
277 /* UHJ is stereo output only. */
278 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
279 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
281 /* Encode to stereo-compatible 2-channel UHJ output. */
282 Uhj_Encoder
->encode(RealOut
.Buffer
[lidx
], RealOut
.Buffer
[ridx
], Dry
.Buffer
.data(),
286 void ALCdevice::ProcessBs2b(const size_t SamplesToDo
)
288 /* First, decode the ambisonic mix to the "real" output. */
289 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
291 /* BS2B is stereo output only. */
292 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
293 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
295 /* Now apply the BS2B binaural/crossfeed filter. */
296 bs2b_cross_feed(Bs2b
.get(), RealOut
.Buffer
[lidx
].data(), RealOut
.Buffer
[ridx
].data(),
303 /* This RNG method was created based on the math found in opusdec. It's quick,
304 * and starting with a seed value of 22222, is suitable for generating
307 inline ALuint
dither_rng(ALuint
*seed
) noexcept
309 *seed
= (*seed
* 96314165) + 907633515;
314 inline alu::Vector
aluCrossproduct(const alu::Vector
&in1
, const alu::Vector
&in2
)
317 in1
[1]*in2
[2] - in1
[2]*in2
[1],
318 in1
[2]*in2
[0] - in1
[0]*in2
[2],
319 in1
[0]*in2
[1] - in1
[1]*in2
[0],
324 inline ALfloat
aluDotproduct(const alu::Vector
&vec1
, const alu::Vector
&vec2
)
326 return vec1
[0]*vec2
[0] + vec1
[1]*vec2
[1] + vec1
[2]*vec2
[2];
330 alu::Vector
operator*(const alu::Matrix
&mtx
, const alu::Vector
&vec
) noexcept
333 vec
[0]*mtx
[0][0] + vec
[1]*mtx
[1][0] + vec
[2]*mtx
[2][0] + vec
[3]*mtx
[3][0],
334 vec
[0]*mtx
[0][1] + vec
[1]*mtx
[1][1] + vec
[2]*mtx
[2][1] + vec
[3]*mtx
[3][1],
335 vec
[0]*mtx
[0][2] + vec
[1]*mtx
[1][2] + vec
[2]*mtx
[2][2] + vec
[3]*mtx
[3][2],
336 vec
[0]*mtx
[0][3] + vec
[1]*mtx
[1][3] + vec
[2]*mtx
[2][3] + vec
[3]*mtx
[3][3]
341 bool CalcContextParams(ALCcontext
*Context
)
343 ALcontextProps
*props
{Context
->mUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
344 if(!props
) return false;
346 ALlistener
&Listener
= Context
->mListener
;
347 Listener
.Params
.DopplerFactor
= props
->DopplerFactor
;
348 Listener
.Params
.SpeedOfSound
= props
->SpeedOfSound
* props
->DopplerVelocity
;
350 Listener
.Params
.SourceDistanceModel
= props
->SourceDistanceModel
;
351 Listener
.Params
.mDistanceModel
= props
->mDistanceModel
;
353 AtomicReplaceHead(Context
->mFreeContextProps
, props
);
357 bool CalcListenerParams(ALCcontext
*Context
)
359 ALlistener
&Listener
= Context
->mListener
;
361 ALlistenerProps
*props
{Listener
.Params
.Update
.exchange(nullptr, std::memory_order_acq_rel
)};
362 if(!props
) return false;
365 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
367 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
369 /* Build and normalize right-vector */
370 alu::Vector U
{aluCrossproduct(N
, V
)};
373 Listener
.Params
.Matrix
= alu::Matrix
{
374 U
[0], V
[0], -N
[0], 0.0f
,
375 U
[1], V
[1], -N
[1], 0.0f
,
376 U
[2], V
[2], -N
[2], 0.0f
,
377 0.0f
, 0.0f
, 0.0f
, 1.0f
380 const alu::Vector P
{Listener
.Params
.Matrix
*
381 alu::Vector
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
}};
382 Listener
.Params
.Matrix
.setRow(3, -P
[0], -P
[1], -P
[2], 1.0f
);
384 const alu::Vector vel
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
};
385 Listener
.Params
.Velocity
= Listener
.Params
.Matrix
* vel
;
387 Listener
.Params
.Gain
= props
->Gain
* Context
->mGainBoost
;
388 Listener
.Params
.MetersPerUnit
= props
->MetersPerUnit
;
390 AtomicReplaceHead(Context
->mFreeListenerProps
, props
);
394 bool CalcEffectSlotParams(ALeffectslot
*slot
, ALCcontext
*context
)
396 ALeffectslotProps
*props
{slot
->Params
.Update
.exchange(nullptr, std::memory_order_acq_rel
)};
397 if(!props
) return false;
399 slot
->Params
.Gain
= props
->Gain
;
400 slot
->Params
.AuxSendAuto
= props
->AuxSendAuto
;
401 slot
->Params
.Target
= props
->Target
;
402 slot
->Params
.EffectType
= props
->Type
;
403 slot
->Params
.mEffectProps
= props
->Props
;
404 if(IsReverbEffect(props
->Type
))
406 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
407 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
408 slot
->Params
.DecayLFRatio
= props
->Props
.Reverb
.DecayLFRatio
;
409 slot
->Params
.DecayHFRatio
= props
->Props
.Reverb
.DecayHFRatio
;
410 slot
->Params
.DecayHFLimit
= props
->Props
.Reverb
.DecayHFLimit
;
411 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
415 slot
->Params
.RoomRolloff
= 0.0f
;
416 slot
->Params
.DecayTime
= 0.0f
;
417 slot
->Params
.DecayLFRatio
= 0.0f
;
418 slot
->Params
.DecayHFRatio
= 0.0f
;
419 slot
->Params
.DecayHFLimit
= AL_FALSE
;
420 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
423 EffectState
*state
{props
->State
};
424 props
->State
= nullptr;
425 EffectState
*oldstate
{slot
->Params
.mEffectState
};
426 slot
->Params
.mEffectState
= state
;
428 /* Only release the old state if it won't get deleted, since we can't be
429 * deleting/freeing anything in the mixer.
431 if(!oldstate
->releaseIfNoDelete())
433 /* Otherwise, if it would be deleted send it off with a release event. */
434 RingBuffer
*ring
{context
->mAsyncEvents
.get()};
435 auto evt_vec
= ring
->getWriteVector();
436 if LIKELY(evt_vec
.first
.len
> 0)
438 AsyncEvent
*evt
{new (evt_vec
.first
.buf
) AsyncEvent
{EventType_ReleaseEffectState
}};
439 evt
->u
.mEffectState
= oldstate
;
440 ring
->writeAdvance(1);
441 context
->mEventSem
.post();
445 /* If writing the event failed, the queue was probably full. Store
446 * the old state in the property object where it can eventually be
447 * cleaned up sometime later (not ideal, but better than blocking
450 props
->State
= oldstate
;
454 AtomicReplaceHead(context
->mFreeEffectslotProps
, props
);
457 if(ALeffectslot
*target
{slot
->Params
.Target
})
458 output
= EffectTarget
{&target
->Wet
, nullptr};
461 ALCdevice
*device
{context
->mDevice
.get()};
462 output
= EffectTarget
{&device
->Dry
, &device
->RealOut
};
464 state
->update(context
, slot
, &slot
->Params
.mEffectProps
, output
);
469 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
472 inline float ScaleAzimuthFront(float azimuth
, float scale
)
474 const ALfloat abs_azi
{std::fabs(azimuth
)};
475 if(!(abs_azi
>= al::MathDefs
<float>::Pi()*0.5f
))
476 return std::copysign(minf(abs_azi
*scale
, al::MathDefs
<float>::Pi()*0.5f
), azimuth
);
480 void CalcPanningAndFilters(ALvoice
*voice
, const ALfloat xpos
, const ALfloat ypos
,
481 const ALfloat zpos
, const ALfloat Distance
, const ALfloat Spread
, const ALfloat DryGain
,
482 const ALfloat DryGainHF
, const ALfloat DryGainLF
, const ALfloat (&WetGain
)[MAX_SENDS
],
483 const ALfloat (&WetGainLF
)[MAX_SENDS
], const ALfloat (&WetGainHF
)[MAX_SENDS
],
484 ALeffectslot
*(&SendSlots
)[MAX_SENDS
], const ALvoicePropsBase
*props
,
485 const ALlistener
&Listener
, const ALCdevice
*Device
)
487 static constexpr ChanMap MonoMap
[1]{
488 { FrontCenter
, 0.0f
, 0.0f
}
490 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
491 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) }
493 { FrontLeft
, Deg2Rad( -45.0f
), Deg2Rad(0.0f
) },
494 { FrontRight
, Deg2Rad( 45.0f
), Deg2Rad(0.0f
) },
495 { BackLeft
, Deg2Rad(-135.0f
), Deg2Rad(0.0f
) },
496 { BackRight
, Deg2Rad( 135.0f
), Deg2Rad(0.0f
) }
498 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
499 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
500 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
502 { SideLeft
, Deg2Rad(-110.0f
), Deg2Rad(0.0f
) },
503 { SideRight
, Deg2Rad( 110.0f
), Deg2Rad(0.0f
) }
505 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
506 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
507 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
509 { BackCenter
, Deg2Rad(180.0f
), Deg2Rad(0.0f
) },
510 { SideLeft
, Deg2Rad(-90.0f
), Deg2Rad(0.0f
) },
511 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
513 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
514 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
515 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
517 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
518 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) },
519 { SideLeft
, Deg2Rad( -90.0f
), Deg2Rad(0.0f
) },
520 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
523 ChanMap StereoMap
[2]{
524 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
525 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) }
528 const auto Frequency
= static_cast<ALfloat
>(Device
->Frequency
);
529 const ALuint NumSends
{Device
->NumAuxSends
};
531 bool DirectChannels
{props
->DirectChannels
!= AL_FALSE
};
532 const ChanMap
*chans
{nullptr};
533 ALuint num_channels
{0};
534 bool isbformat
{false};
535 ALfloat downmix_gain
{1.0f
};
536 switch(voice
->mFmtChannels
)
541 /* Mono buffers are never played direct. */
542 DirectChannels
= false;
546 /* Convert counter-clockwise to clockwise. */
547 StereoMap
[0].angle
= -props
->StereoPan
[0];
548 StereoMap
[1].angle
= -props
->StereoPan
[1];
552 downmix_gain
= 1.0f
/ 2.0f
;
558 downmix_gain
= 1.0f
/ 2.0f
;
564 downmix_gain
= 1.0f
/ 4.0f
;
570 /* NOTE: Excludes LFE. */
571 downmix_gain
= 1.0f
/ 5.0f
;
577 /* NOTE: Excludes LFE. */
578 downmix_gain
= 1.0f
/ 6.0f
;
584 /* NOTE: Excludes LFE. */
585 downmix_gain
= 1.0f
/ 7.0f
;
591 DirectChannels
= false;
597 DirectChannels
= false;
600 ASSUME(num_channels
> 0);
602 std::for_each(voice
->mChans
.begin(), voice
->mChans
.begin()+num_channels
,
603 [NumSends
](ALvoice::ChannelData
&chandata
) -> void
605 chandata
.mDryParams
.Hrtf
.Target
= HrtfFilter
{};
606 ClearArray(chandata
.mDryParams
.Gains
.Target
);
607 std::for_each(chandata
.mWetParams
.begin(), chandata
.mWetParams
.begin()+NumSends
,
608 [](SendParams
¶ms
) -> void { ClearArray(params
.Gains
.Target
); });
611 voice
->mFlags
&= ~(VOICE_HAS_HRTF
| VOICE_HAS_NFC
);
614 /* Special handling for B-Format sources. */
616 if(Distance
> std::numeric_limits
<float>::epsilon())
618 /* Panning a B-Format sound toward some direction is easy. Just pan
619 * the first (W) channel as a normal mono sound and silence the
623 if(Device
->AvgSpeakerDist
> 0.0f
)
625 /* Clamp the distance for really close sources, to prevent
628 const ALfloat mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
629 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (mdist
* Frequency
)};
631 /* Only need to adjust the first channel of a B-Format source. */
632 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(w0
);
634 voice
->mFlags
|= VOICE_HAS_NFC
;
637 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
638 if(Device
->mRenderMode
!= StereoPair
)
639 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
642 /* Clamp Y, in case rounding errors caused it to end up outside
645 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
646 /* Negate Z for right-handed coords with -Z in front. */
647 const ALfloat az
{std::atan2(xpos
, -zpos
)};
649 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
650 * being moved to +/-90 degrees for direct right and left
653 CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, Spread
, coeffs
);
656 /* NOTE: W needs to be scaled due to FuMa normalization. */
657 const ALfloat
&scale0
= AmbiScale::FromFuMa
[0];
658 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
*scale0
,
659 voice
->mChans
[0].mDryParams
.Gains
.Target
);
660 for(ALuint i
{0};i
< NumSends
;i
++)
662 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
663 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
]*scale0
,
664 voice
->mChans
[0].mWetParams
[i
].Gains
.Target
);
669 if(Device
->AvgSpeakerDist
> 0.0f
)
671 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
672 * is what we want for FOA input. The first channel may have
673 * been previously re-adjusted if panned, so reset it.
675 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(0.0f
);
677 voice
->mFlags
|= VOICE_HAS_NFC
;
680 /* Local B-Format sources have their XYZ channels rotated according
681 * to the orientation.
684 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
686 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
688 if(!props
->HeadRelative
)
690 N
= Listener
.Params
.Matrix
* N
;
691 V
= Listener
.Params
.Matrix
* V
;
693 /* Build and normalize right-vector */
694 alu::Vector U
{aluCrossproduct(N
, V
)};
697 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
698 * matrix is transposed, for the inputs to align on the rows and
699 * outputs on the columns.
701 const ALfloat
&wscale
= AmbiScale::FromFuMa
[0];
702 const ALfloat
&yscale
= AmbiScale::FromFuMa
[1];
703 const ALfloat
&zscale
= AmbiScale::FromFuMa
[2];
704 const ALfloat
&xscale
= AmbiScale::FromFuMa
[3];
705 const ALfloat matrix
[4][MAX_AMBI_CHANNELS
]{
706 // ACN0 ACN1 ACN2 ACN3
707 { wscale
, 0.0f
, 0.0f
, 0.0f
}, // FuMa W
708 { 0.0f
, -N
[0]*xscale
, N
[1]*xscale
, -N
[2]*xscale
}, // FuMa X
709 { 0.0f
, U
[0]*yscale
, -U
[1]*yscale
, U
[2]*yscale
}, // FuMa Y
710 { 0.0f
, -V
[0]*zscale
, V
[1]*zscale
, -V
[2]*zscale
} // FuMa Z
713 for(ALuint c
{0};c
< num_channels
;c
++)
715 ComputePanGains(&Device
->Dry
, matrix
[c
], DryGain
,
716 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
718 for(ALuint i
{0};i
< NumSends
;i
++)
720 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
721 ComputePanGains(&Slot
->Wet
, matrix
[c
], WetGain
[i
],
722 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
727 else if(DirectChannels
)
729 /* Direct source channels always play local. Skip the virtual channels
730 * and write inputs to the matching real outputs.
732 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
734 for(ALuint c
{0};c
< num_channels
;c
++)
736 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
737 if(idx
!= INVALID_CHANNEL_INDEX
)
738 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
741 /* Auxiliary sends still use normal channel panning since they mix to
742 * B-Format, which can't channel-match.
744 for(ALuint c
{0};c
< num_channels
;c
++)
746 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
747 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
749 for(ALuint i
{0};i
< NumSends
;i
++)
751 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
752 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
753 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
757 else if(Device
->mRenderMode
== HrtfRender
)
759 /* Full HRTF rendering. Skip the virtual channels and render to the
762 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
764 if(Distance
> std::numeric_limits
<float>::epsilon())
766 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
767 const ALfloat az
{std::atan2(xpos
, -zpos
)};
769 /* Get the HRIR coefficients and delays just once, for the given
772 GetHrtfCoeffs(Device
->mHrtf
, ev
, az
, Distance
, Spread
,
773 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Coeffs
,
774 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Delay
);
775 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Gain
= DryGain
* downmix_gain
;
777 /* Remaining channels use the same results as the first. */
778 for(ALuint c
{1};c
< num_channels
;c
++)
781 if(chans
[c
].channel
== LFE
) continue;
782 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
= voice
->mChans
[0].mDryParams
.Hrtf
.Target
;
785 /* Calculate the directional coefficients once, which apply to all
786 * input channels of the source sends.
788 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
789 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
791 for(ALuint c
{0};c
< num_channels
;c
++)
794 if(chans
[c
].channel
== LFE
)
796 for(ALuint i
{0};i
< NumSends
;i
++)
798 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
799 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
] * downmix_gain
,
800 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
806 /* Local sources on HRTF play with each channel panned to its
807 * relative location around the listener, providing "virtual
808 * speaker" responses.
810 for(ALuint c
{0};c
< num_channels
;c
++)
813 if(chans
[c
].channel
== LFE
)
816 /* Get the HRIR coefficients and delays for this channel
819 GetHrtfCoeffs(Device
->mHrtf
, chans
[c
].elevation
, chans
[c
].angle
,
820 std::numeric_limits
<float>::infinity(), Spread
,
821 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Coeffs
,
822 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Delay
);
823 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Gain
= DryGain
;
825 /* Normal panning for auxiliary sends. */
826 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
827 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, Spread
, coeffs
);
829 for(ALuint i
{0};i
< NumSends
;i
++)
831 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
832 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
833 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
838 voice
->mFlags
|= VOICE_HAS_HRTF
;
842 /* Non-HRTF rendering. Use normal panning to the output. */
844 if(Distance
> std::numeric_limits
<float>::epsilon())
846 /* Calculate NFC filter coefficient if needed. */
847 if(Device
->AvgSpeakerDist
> 0.0f
)
849 /* Clamp the distance for really close sources, to prevent
852 const ALfloat mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
853 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (mdist
* Frequency
)};
855 /* Adjust NFC filters. */
856 for(ALuint c
{0};c
< num_channels
;c
++)
857 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
859 voice
->mFlags
|= VOICE_HAS_NFC
;
862 /* Calculate the directional coefficients once, which apply to all
865 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
866 if(Device
->mRenderMode
!= StereoPair
)
867 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
870 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
871 const ALfloat az
{std::atan2(xpos
, -zpos
)};
872 CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, Spread
, coeffs
);
875 for(ALuint c
{0};c
< num_channels
;c
++)
877 /* Special-case LFE */
878 if(chans
[c
].channel
== LFE
)
880 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
882 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
883 if(idx
!= INVALID_CHANNEL_INDEX
)
884 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
889 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
* downmix_gain
,
890 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
891 for(ALuint i
{0};i
< NumSends
;i
++)
893 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
894 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
] * downmix_gain
,
895 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
901 if(Device
->AvgSpeakerDist
> 0.0f
)
903 /* If the source distance is 0, set w0 to w1 to act as a pass-
904 * through. We still want to pass the signal through the
905 * filters so they keep an appropriate history, in case the
906 * source moves away from the listener.
908 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (Device
->AvgSpeakerDist
* Frequency
)};
910 for(ALuint c
{0};c
< num_channels
;c
++)
911 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
913 voice
->mFlags
|= VOICE_HAS_NFC
;
916 for(ALuint c
{0};c
< num_channels
;c
++)
918 /* Special-case LFE */
919 if(chans
[c
].channel
== LFE
)
921 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
923 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
924 if(idx
!= INVALID_CHANNEL_INDEX
)
925 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
930 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
932 (Device
->mRenderMode
==StereoPair
) ? ScaleAzimuthFront(chans
[c
].angle
, 3.0f
)
934 chans
[c
].elevation
, Spread
, coeffs
937 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
,
938 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
939 for(ALuint i
{0};i
< NumSends
;i
++)
941 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
942 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
943 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
950 const ALfloat hfScale
{props
->Direct
.HFReference
/ Frequency
};
951 const ALfloat lfScale
{props
->Direct
.LFReference
/ Frequency
};
952 const ALfloat gainHF
{maxf(DryGainHF
, 0.001f
)}; /* Limit -60dB */
953 const ALfloat gainLF
{maxf(DryGainLF
, 0.001f
)};
955 voice
->mDirect
.FilterType
= AF_None
;
956 if(gainHF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_LowPass
;
957 if(gainLF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_HighPass
;
958 auto &lowpass
= voice
->mChans
[0].mDryParams
.LowPass
;
959 auto &highpass
= voice
->mChans
[0].mDryParams
.HighPass
;
960 lowpass
.setParams(BiquadType::HighShelf
, gainHF
, hfScale
,
961 lowpass
.rcpQFromSlope(gainHF
, 1.0f
));
962 highpass
.setParams(BiquadType::LowShelf
, gainLF
, lfScale
,
963 highpass
.rcpQFromSlope(gainLF
, 1.0f
));
964 for(ALuint c
{1};c
< num_channels
;c
++)
966 voice
->mChans
[c
].mDryParams
.LowPass
.copyParamsFrom(lowpass
);
967 voice
->mChans
[c
].mDryParams
.HighPass
.copyParamsFrom(highpass
);
970 for(ALuint i
{0};i
< NumSends
;i
++)
972 const ALfloat hfScale
{props
->Send
[i
].HFReference
/ Frequency
};
973 const ALfloat lfScale
{props
->Send
[i
].LFReference
/ Frequency
};
974 const ALfloat gainHF
{maxf(WetGainHF
[i
], 0.001f
)};
975 const ALfloat gainLF
{maxf(WetGainLF
[i
], 0.001f
)};
977 voice
->mSend
[i
].FilterType
= AF_None
;
978 if(gainHF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_LowPass
;
979 if(gainLF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_HighPass
;
981 auto &lowpass
= voice
->mChans
[0].mWetParams
[i
].LowPass
;
982 auto &highpass
= voice
->mChans
[0].mWetParams
[i
].HighPass
;
983 lowpass
.setParams(BiquadType::HighShelf
, gainHF
, hfScale
,
984 lowpass
.rcpQFromSlope(gainHF
, 1.0f
));
985 highpass
.setParams(BiquadType::LowShelf
, gainLF
, lfScale
,
986 highpass
.rcpQFromSlope(gainLF
, 1.0f
));
987 for(ALuint c
{1};c
< num_channels
;c
++)
989 voice
->mChans
[c
].mWetParams
[i
].LowPass
.copyParamsFrom(lowpass
);
990 voice
->mChans
[c
].mWetParams
[i
].HighPass
.copyParamsFrom(highpass
);
995 void CalcNonAttnSourceParams(ALvoice
*voice
, const ALvoicePropsBase
*props
, const ALCcontext
*ALContext
)
997 const ALCdevice
*Device
{ALContext
->mDevice
.get()};
998 ALeffectslot
*SendSlots
[MAX_SENDS
];
1000 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
1001 for(ALuint i
{0};i
< Device
->NumAuxSends
;i
++)
1003 SendSlots
[i
] = props
->Send
[i
].Slot
;
1004 if(!SendSlots
[i
] && i
== 0)
1005 SendSlots
[i
] = ALContext
->mDefaultSlot
.get();
1006 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1008 SendSlots
[i
] = nullptr;
1009 voice
->mSend
[i
].Buffer
= {};
1012 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
1015 /* Calculate the stepping value */
1016 const auto Pitch
= static_cast<ALfloat
>(voice
->mFrequency
) /
1017 static_cast<ALfloat
>(Device
->Frequency
) * props
->Pitch
;
1018 if(Pitch
> float{MAX_PITCH
})
1019 voice
->mStep
= MAX_PITCH
<<FRACTIONBITS
;
1021 voice
->mStep
= maxu(fastf2u(Pitch
* FRACTIONONE
), 1);
1022 voice
->mResampler
= PrepareResampler(props
->mResampler
, voice
->mStep
, &voice
->mResampleState
);
1024 /* Calculate gains */
1025 const ALlistener
&Listener
= ALContext
->mListener
;
1026 ALfloat DryGain
{clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
)};
1027 DryGain
*= props
->Direct
.Gain
* Listener
.Params
.Gain
;
1028 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
1029 ALfloat DryGainHF
{props
->Direct
.GainHF
};
1030 ALfloat DryGainLF
{props
->Direct
.GainLF
};
1031 ALfloat WetGain
[MAX_SENDS
], WetGainHF
[MAX_SENDS
], WetGainLF
[MAX_SENDS
];
1032 for(ALuint i
{0};i
< Device
->NumAuxSends
;i
++)
1034 WetGain
[i
] = clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
1035 WetGain
[i
] *= props
->Send
[i
].Gain
* Listener
.Params
.Gain
;
1036 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
1037 WetGainHF
[i
] = props
->Send
[i
].GainHF
;
1038 WetGainLF
[i
] = props
->Send
[i
].GainLF
;
1041 CalcPanningAndFilters(voice
, 0.0f
, 0.0f
, -1.0f
, 0.0f
, 0.0f
, DryGain
, DryGainHF
, DryGainLF
,
1042 WetGain
, WetGainLF
, WetGainHF
, SendSlots
, props
, Listener
, Device
);
1045 void CalcAttnSourceParams(ALvoice
*voice
, const ALvoicePropsBase
*props
, const ALCcontext
*ALContext
)
1047 const ALCdevice
*Device
{ALContext
->mDevice
.get()};
1048 const ALuint NumSends
{Device
->NumAuxSends
};
1049 const ALlistener
&Listener
= ALContext
->mListener
;
1051 /* Set mixing buffers and get send parameters. */
1052 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
1053 ALeffectslot
*SendSlots
[MAX_SENDS
];
1054 ALfloat RoomRolloff
[MAX_SENDS
];
1055 ALfloat DecayDistance
[MAX_SENDS
];
1056 ALfloat DecayLFDistance
[MAX_SENDS
];
1057 ALfloat DecayHFDistance
[MAX_SENDS
];
1058 for(ALuint i
{0};i
< NumSends
;i
++)
1060 SendSlots
[i
] = props
->Send
[i
].Slot
;
1061 if(!SendSlots
[i
] && i
== 0)
1062 SendSlots
[i
] = ALContext
->mDefaultSlot
.get();
1063 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1065 SendSlots
[i
] = nullptr;
1066 RoomRolloff
[i
] = 0.0f
;
1067 DecayDistance
[i
] = 0.0f
;
1068 DecayLFDistance
[i
] = 0.0f
;
1069 DecayHFDistance
[i
] = 0.0f
;
1071 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
1073 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ props
->RoomRolloffFactor
;
1074 /* Calculate the distances to where this effect's decay reaches
1077 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
* SPEEDOFSOUNDMETRESPERSEC
;
1078 DecayLFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayLFRatio
;
1079 DecayHFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayHFRatio
;
1080 if(SendSlots
[i
]->Params
.DecayHFLimit
)
1082 ALfloat airAbsorption
{SendSlots
[i
]->Params
.AirAbsorptionGainHF
};
1083 if(airAbsorption
< 1.0f
)
1085 /* Calculate the distance to where this effect's air
1086 * absorption reaches -60dB, and limit the effect's HF
1087 * decay distance (so it doesn't take any longer to decay
1088 * than the air would allow).
1090 ALfloat absorb_dist
{std::log10(REVERB_DECAY_GAIN
) / std::log10(airAbsorption
)};
1091 DecayHFDistance
[i
] = minf(absorb_dist
, DecayHFDistance
[i
]);
1097 /* If the slot's auxiliary send auto is off, the data sent to the
1098 * effect slot is the same as the dry path, sans filter effects */
1099 RoomRolloff
[i
] = props
->RolloffFactor
;
1100 DecayDistance
[i
] = 0.0f
;
1101 DecayLFDistance
[i
] = 0.0f
;
1102 DecayHFDistance
[i
] = 0.0f
;
1106 voice
->mSend
[i
].Buffer
= {};
1108 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
1111 /* Transform source to listener space (convert to head relative) */
1112 alu::Vector Position
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
};
1113 alu::Vector Velocity
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
};
1114 alu::Vector Direction
{props
->Direction
[0], props
->Direction
[1], props
->Direction
[2], 0.0f
};
1115 if(props
->HeadRelative
== AL_FALSE
)
1117 /* Transform source vectors */
1118 Position
= Listener
.Params
.Matrix
* Position
;
1119 Velocity
= Listener
.Params
.Matrix
* Velocity
;
1120 Direction
= Listener
.Params
.Matrix
* Direction
;
1124 /* Offset the source velocity to be relative of the listener velocity */
1125 Velocity
+= Listener
.Params
.Velocity
;
1128 const bool directional
{Direction
.normalize() > 0.0f
};
1129 alu::Vector ToSource
{Position
[0], Position
[1], Position
[2], 0.0f
};
1130 const ALfloat Distance
{ToSource
.normalize()};
1132 /* Initial source gain */
1133 ALfloat DryGain
{props
->Gain
};
1134 ALfloat DryGainHF
{1.0f
};
1135 ALfloat DryGainLF
{1.0f
};
1136 ALfloat WetGain
[MAX_SENDS
], WetGainHF
[MAX_SENDS
], WetGainLF
[MAX_SENDS
];
1137 for(ALuint i
{0};i
< NumSends
;i
++)
1139 WetGain
[i
] = props
->Gain
;
1140 WetGainHF
[i
] = 1.0f
;
1141 WetGainLF
[i
] = 1.0f
;
1144 /* Calculate distance attenuation */
1145 ALfloat ClampedDist
{Distance
};
1147 switch(Listener
.Params
.SourceDistanceModel
?
1148 props
->mDistanceModel
: Listener
.Params
.mDistanceModel
)
1150 case DistanceModel::InverseClamped
:
1151 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1152 if(props
->MaxDistance
< props
->RefDistance
) break;
1154 case DistanceModel::Inverse
:
1155 if(!(props
->RefDistance
> 0.0f
))
1156 ClampedDist
= props
->RefDistance
;
1159 ALfloat dist
= lerp(props
->RefDistance
, ClampedDist
, props
->RolloffFactor
);
1160 if(dist
> 0.0f
) DryGain
*= props
->RefDistance
/ dist
;
1161 for(ALuint i
{0};i
< NumSends
;i
++)
1163 dist
= lerp(props
->RefDistance
, ClampedDist
, RoomRolloff
[i
]);
1164 if(dist
> 0.0f
) WetGain
[i
] *= props
->RefDistance
/ dist
;
1169 case DistanceModel::LinearClamped
:
1170 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1171 if(props
->MaxDistance
< props
->RefDistance
) break;
1173 case DistanceModel::Linear
:
1174 if(!(props
->MaxDistance
!= props
->RefDistance
))
1175 ClampedDist
= props
->RefDistance
;
1178 ALfloat attn
= props
->RolloffFactor
* (ClampedDist
-props
->RefDistance
) /
1179 (props
->MaxDistance
-props
->RefDistance
);
1180 DryGain
*= maxf(1.0f
- attn
, 0.0f
);
1181 for(ALuint i
{0};i
< NumSends
;i
++)
1183 attn
= RoomRolloff
[i
] * (ClampedDist
-props
->RefDistance
) /
1184 (props
->MaxDistance
-props
->RefDistance
);
1185 WetGain
[i
] *= maxf(1.0f
- attn
, 0.0f
);
1190 case DistanceModel::ExponentClamped
:
1191 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1192 if(props
->MaxDistance
< props
->RefDistance
) break;
1194 case DistanceModel::Exponent
:
1195 if(!(ClampedDist
> 0.0f
&& props
->RefDistance
> 0.0f
))
1196 ClampedDist
= props
->RefDistance
;
1199 DryGain
*= std::pow(ClampedDist
/props
->RefDistance
, -props
->RolloffFactor
);
1200 for(ALuint i
{0};i
< NumSends
;i
++)
1201 WetGain
[i
] *= std::pow(ClampedDist
/props
->RefDistance
, -RoomRolloff
[i
]);
1205 case DistanceModel::Disable
:
1206 ClampedDist
= props
->RefDistance
;
1210 /* Calculate directional soundcones */
1211 if(directional
&& props
->InnerAngle
< 360.0f
)
1213 const ALfloat Angle
{Rad2Deg(std::acos(-aluDotproduct(Direction
, ToSource
)) *
1216 ALfloat ConeVolume
, ConeHF
;
1217 if(!(Angle
> props
->InnerAngle
))
1222 else if(Angle
< props
->OuterAngle
)
1224 ALfloat scale
= ( Angle
-props
->InnerAngle
) /
1225 (props
->OuterAngle
-props
->InnerAngle
);
1226 ConeVolume
= lerp(1.0f
, props
->OuterGain
, scale
);
1227 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, scale
);
1231 ConeVolume
= props
->OuterGain
;
1232 ConeHF
= props
->OuterGainHF
;
1235 DryGain
*= ConeVolume
;
1236 if(props
->DryGainHFAuto
)
1237 DryGainHF
*= ConeHF
;
1238 if(props
->WetGainAuto
)
1239 std::transform(std::begin(WetGain
), std::begin(WetGain
)+NumSends
, std::begin(WetGain
),
1240 [ConeVolume
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* ConeVolume
; }
1242 if(props
->WetGainHFAuto
)
1243 std::transform(std::begin(WetGainHF
), std::begin(WetGainHF
)+NumSends
,
1244 std::begin(WetGainHF
),
1245 [ConeHF
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* ConeHF
; }
1249 /* Apply gain and frequency filters */
1250 DryGain
= clampf(DryGain
, props
->MinGain
, props
->MaxGain
);
1251 DryGain
= minf(DryGain
*props
->Direct
.Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1252 DryGainHF
*= props
->Direct
.GainHF
;
1253 DryGainLF
*= props
->Direct
.GainLF
;
1254 for(ALuint i
{0};i
< NumSends
;i
++)
1256 WetGain
[i
] = clampf(WetGain
[i
], props
->MinGain
, props
->MaxGain
);
1257 WetGain
[i
] = minf(WetGain
[i
]*props
->Send
[i
].Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1258 WetGainHF
[i
] *= props
->Send
[i
].GainHF
;
1259 WetGainLF
[i
] *= props
->Send
[i
].GainLF
;
1262 /* Distance-based air absorption and initial send decay. */
1263 if(ClampedDist
> props
->RefDistance
&& props
->RolloffFactor
> 0.0f
)
1265 ALfloat meters_base
{(ClampedDist
-props
->RefDistance
) * props
->RolloffFactor
*
1266 Listener
.Params
.MetersPerUnit
};
1267 if(props
->AirAbsorptionFactor
> 0.0f
)
1269 ALfloat hfattn
{std::pow(AIRABSORBGAINHF
, meters_base
* props
->AirAbsorptionFactor
)};
1270 DryGainHF
*= hfattn
;
1271 std::transform(std::begin(WetGainHF
), std::begin(WetGainHF
)+NumSends
,
1272 std::begin(WetGainHF
),
1273 [hfattn
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* hfattn
; }
1277 if(props
->WetGainAuto
)
1279 /* Apply a decay-time transformation to the wet path, based on the
1280 * source distance in meters. The initial decay of the reverb
1281 * effect is calculated and applied to the wet path.
1283 for(ALuint i
{0};i
< NumSends
;i
++)
1285 if(!(DecayDistance
[i
] > 0.0f
))
1288 const ALfloat gain
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayDistance
[i
])};
1290 /* Yes, the wet path's air absorption is applied with
1291 * WetGainAuto on, rather than WetGainHFAuto.
1295 ALfloat gainhf
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayHFDistance
[i
])};
1296 WetGainHF
[i
] *= minf(gainhf
/ gain
, 1.0f
);
1297 ALfloat gainlf
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayLFDistance
[i
])};
1298 WetGainLF
[i
] *= minf(gainlf
/ gain
, 1.0f
);
1305 /* Initial source pitch */
1306 ALfloat Pitch
{props
->Pitch
};
1308 /* Calculate velocity-based doppler effect */
1309 ALfloat DopplerFactor
{props
->DopplerFactor
* Listener
.Params
.DopplerFactor
};
1310 if(DopplerFactor
> 0.0f
)
1312 const alu::Vector
&lvelocity
= Listener
.Params
.Velocity
;
1313 ALfloat vss
{aluDotproduct(Velocity
, ToSource
) * -DopplerFactor
};
1314 ALfloat vls
{aluDotproduct(lvelocity
, ToSource
) * -DopplerFactor
};
1316 const ALfloat SpeedOfSound
{Listener
.Params
.SpeedOfSound
};
1317 if(!(vls
< SpeedOfSound
))
1319 /* Listener moving away from the source at the speed of sound.
1320 * Sound waves can't catch it.
1324 else if(!(vss
< SpeedOfSound
))
1326 /* Source moving toward the listener at the speed of sound. Sound
1327 * waves bunch up to extreme frequencies.
1329 Pitch
= std::numeric_limits
<float>::infinity();
1333 /* Source and listener movement is nominal. Calculate the proper
1336 Pitch
*= (SpeedOfSound
-vls
) / (SpeedOfSound
-vss
);
1340 /* Adjust pitch based on the buffer and output frequencies, and calculate
1341 * fixed-point stepping value.
1343 Pitch
*= static_cast<ALfloat
>(voice
->mFrequency
)/static_cast<ALfloat
>(Device
->Frequency
);
1344 if(Pitch
> float{MAX_PITCH
})
1345 voice
->mStep
= MAX_PITCH
<<FRACTIONBITS
;
1347 voice
->mStep
= maxu(fastf2u(Pitch
* FRACTIONONE
), 1);
1348 voice
->mResampler
= PrepareResampler(props
->mResampler
, voice
->mStep
, &voice
->mResampleState
);
1350 ALfloat spread
{0.0f
};
1351 if(props
->Radius
> Distance
)
1352 spread
= al::MathDefs
<float>::Tau() - Distance
/props
->Radius
*al::MathDefs
<float>::Pi();
1353 else if(Distance
> 0.0f
)
1354 spread
= std::asin(props
->Radius
/Distance
) * 2.0f
;
1356 CalcPanningAndFilters(voice
, ToSource
[0], ToSource
[1], ToSource
[2]*ZScale
,
1357 Distance
*Listener
.Params
.MetersPerUnit
, spread
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1358 WetGainLF
, WetGainHF
, SendSlots
, props
, Listener
, Device
);
1361 void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, bool force
)
1363 ALvoiceProps
*props
{voice
->mUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
1364 if(!props
&& !force
) return;
1368 voice
->mProps
= *props
;
1370 AtomicReplaceHead(context
->mFreeVoiceProps
, props
);
1373 if((voice
->mProps
.mSpatializeMode
== SpatializeAuto
&& voice
->mFmtChannels
== FmtMono
) ||
1374 voice
->mProps
.mSpatializeMode
== SpatializeOn
)
1375 CalcAttnSourceParams(voice
, &voice
->mProps
, context
);
1377 CalcNonAttnSourceParams(voice
, &voice
->mProps
, context
);
1381 void ProcessParamUpdates(ALCcontext
*ctx
, const ALeffectslotArray
&slots
,
1382 const al::span
<ALvoice
> voices
)
1384 IncrementRef(ctx
->mUpdateCount
);
1385 if LIKELY(!ctx
->mHoldUpdates
.load(std::memory_order_acquire
))
1387 bool force
{CalcContextParams(ctx
)};
1388 force
|= CalcListenerParams(ctx
);
1389 force
= std::accumulate(slots
.begin(), slots
.end(), force
,
1390 [ctx
](const bool f
, ALeffectslot
*slot
) -> bool
1391 { return CalcEffectSlotParams(slot
, ctx
) | f
; }
1394 auto calc_params
= [ctx
,force
](ALvoice
&voice
) -> void
1396 if(voice
.mSourceID
.load(std::memory_order_acquire
) != 0)
1397 CalcSourceParams(&voice
, ctx
, force
);
1399 std::for_each(voices
.begin(), voices
.end(), calc_params
);
1401 IncrementRef(ctx
->mUpdateCount
);
1404 void ProcessContext(ALCcontext
*ctx
, const ALuint SamplesToDo
)
1406 ASSUME(SamplesToDo
> 0);
1408 const ALeffectslotArray
&auxslots
= *ctx
->mActiveAuxSlots
.load(std::memory_order_acquire
);
1409 const al::span
<ALvoice
> voices
{ctx
->mVoices
.data(), ctx
->mVoices
.size()};
1411 /* Process pending propery updates for objects on the context. */
1412 ProcessParamUpdates(ctx
, auxslots
, voices
);
1414 /* Clear auxiliary effect slot mixing buffers. */
1415 std::for_each(auxslots
.begin(), auxslots
.end(),
1416 [SamplesToDo
](ALeffectslot
*slot
) -> void
1418 for(auto &buffer
: slot
->MixBuffer
)
1419 std::fill_n(buffer
.begin(), SamplesToDo
, 0.0f
);
1423 /* Process voices that have a playing source. */
1424 std::for_each(voices
.begin(), voices
.end(),
1425 [SamplesToDo
,ctx
](ALvoice
&voice
) -> void
1427 const ALvoice::State vstate
{voice
.mPlayState
.load(std::memory_order_acquire
)};
1428 if(vstate
!= ALvoice::Stopped
) voice
.mix(vstate
, ctx
, SamplesToDo
);
1432 /* Process effects. */
1433 if(auxslots
.empty()) return;
1434 auto slots
= auxslots
.data();
1435 auto slots_end
= slots
+ auxslots
.size();
1437 /* First sort the slots into scratch storage, so that effects come before
1438 * their effect target (or their targets' target).
1440 auto sorted_slots
= const_cast<ALeffectslot
**>(slots_end
);
1441 auto sorted_slots_end
= sorted_slots
;
1442 auto in_chain
= [](const ALeffectslot
*slot1
, const ALeffectslot
*slot2
) noexcept
-> bool
1444 while((slot1
=slot1
->Params
.Target
) != nullptr) {
1445 if(slot1
== slot2
) return true;
1450 *sorted_slots_end
= *slots
;
1452 while(++slots
!= slots_end
)
1454 /* If this effect slot targets an effect slot already in the list (i.e.
1455 * slots outputs to something in sorted_slots), directly or indirectly,
1456 * insert it prior to that element.
1458 auto checker
= sorted_slots
;
1460 if(in_chain(*slots
, *checker
)) break;
1461 } while(++checker
!= sorted_slots_end
);
1463 checker
= std::move_backward(checker
, sorted_slots_end
, sorted_slots_end
+1);
1464 *--checker
= *slots
;
1468 std::for_each(sorted_slots
, sorted_slots_end
,
1469 [SamplesToDo
](const ALeffectslot
*slot
) -> void
1471 EffectState
*state
{slot
->Params
.mEffectState
};
1472 state
->process(SamplesToDo
, slot
->Wet
.Buffer
, state
->mOutTarget
);
1478 void ApplyStablizer(FrontStablizer
*Stablizer
, const al::span
<FloatBufferLine
> Buffer
,
1479 const ALuint lidx
, const ALuint ridx
, const ALuint cidx
, const ALuint SamplesToDo
)
1481 ASSUME(SamplesToDo
> 0);
1483 /* Apply a delay to all channels, except the front-left and front-right, so
1484 * they maintain correct timing.
1486 const size_t NumChannels
{Buffer
.size()};
1487 for(size_t i
{0u};i
< NumChannels
;i
++)
1489 if(i
== lidx
|| i
== ridx
)
1492 auto &DelayBuf
= Stablizer
->DelayBuf
[i
];
1493 auto buffer_end
= Buffer
[i
].begin() + SamplesToDo
;
1494 if LIKELY(SamplesToDo
>= ALuint
{FrontStablizer::DelayLength
})
1496 auto delay_end
= std::rotate(Buffer
[i
].begin(),
1497 buffer_end
- FrontStablizer::DelayLength
, buffer_end
);
1498 std::swap_ranges(Buffer
[i
].begin(), delay_end
, std::begin(DelayBuf
));
1502 auto delay_start
= std::swap_ranges(Buffer
[i
].begin(), buffer_end
,
1503 std::begin(DelayBuf
));
1504 std::rotate(std::begin(DelayBuf
), delay_start
, std::end(DelayBuf
));
1508 ALfloat (&lsplit
)[2][BUFFERSIZE
] = Stablizer
->LSplit
;
1509 ALfloat (&rsplit
)[2][BUFFERSIZE
] = Stablizer
->RSplit
;
1510 auto &tmpbuf
= Stablizer
->TempBuf
;
1512 /* This applies the band-splitter, preserving phase at the cost of some
1513 * delay. The shorter the delay, the more error seeps into the result.
1515 auto apply_splitter
= [&tmpbuf
,SamplesToDo
](const FloatBufferLine
&InBuf
,
1516 ALfloat (&DelayBuf
)[FrontStablizer::DelayLength
], BandSplitter
&Filter
,
1517 ALfloat (&splitbuf
)[2][BUFFERSIZE
]) -> void
1519 /* Combine the delayed samples and the input samples into the temp
1520 * buffer, in reverse. Then copy the final samples back into the delay
1521 * buffer for next time. Note that the delay buffer's samples are
1522 * stored backwards here.
1524 auto tmpbuf_end
= std::begin(tmpbuf
) + SamplesToDo
;
1525 std::copy_n(std::begin(DelayBuf
), FrontStablizer::DelayLength
, tmpbuf_end
);
1526 std::reverse_copy(InBuf
.begin(), InBuf
.begin()+SamplesToDo
, std::begin(tmpbuf
));
1527 std::copy_n(std::begin(tmpbuf
), FrontStablizer::DelayLength
, std::begin(DelayBuf
));
1529 /* Apply an all-pass on the reversed signal, then reverse the samples
1530 * to get the forward signal with a reversed phase shift.
1532 Filter
.applyAllpass(tmpbuf
, SamplesToDo
+FrontStablizer::DelayLength
);
1533 std::reverse(std::begin(tmpbuf
), tmpbuf_end
+FrontStablizer::DelayLength
);
1535 /* Now apply the band-splitter, combining its phase shift with the
1536 * reversed phase shift, restoring the original phase on the split
1539 Filter
.process(splitbuf
[1], splitbuf
[0], tmpbuf
, SamplesToDo
);
1541 apply_splitter(Buffer
[lidx
], Stablizer
->DelayBuf
[lidx
], Stablizer
->LFilter
, lsplit
);
1542 apply_splitter(Buffer
[ridx
], Stablizer
->DelayBuf
[ridx
], Stablizer
->RFilter
, rsplit
);
1544 for(ALuint i
{0};i
< SamplesToDo
;i
++)
1546 ALfloat lfsum
{lsplit
[0][i
] + rsplit
[0][i
]};
1547 ALfloat hfsum
{lsplit
[1][i
] + rsplit
[1][i
]};
1548 ALfloat s
{lsplit
[0][i
] + lsplit
[1][i
] - rsplit
[0][i
] - rsplit
[1][i
]};
1550 /* This pans the separate low- and high-frequency sums between being on
1551 * the center channel and the left/right channels. The low-frequency
1552 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1553 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1554 * values can be tweaked.
1556 ALfloat m
{lfsum
*std::cos(1.0f
/3.0f
* (al::MathDefs
<float>::Pi()*0.5f
)) +
1557 hfsum
*std::cos(1.0f
/4.0f
* (al::MathDefs
<float>::Pi()*0.5f
))};
1558 ALfloat c
{lfsum
*std::sin(1.0f
/3.0f
* (al::MathDefs
<float>::Pi()*0.5f
)) +
1559 hfsum
*std::sin(1.0f
/4.0f
* (al::MathDefs
<float>::Pi()*0.5f
))};
1561 /* The generated center channel signal adds to the existing signal,
1562 * while the modified left and right channels replace.
1564 Buffer
[lidx
][i
] = (m
+ s
) * 0.5f
;
1565 Buffer
[ridx
][i
] = (m
- s
) * 0.5f
;
1566 Buffer
[cidx
][i
] += c
* 0.5f
;
1570 void ApplyDistanceComp(const al::span
<FloatBufferLine
> Samples
, const ALuint SamplesToDo
,
1571 const DistanceComp::DistData
*distcomp
)
1573 ASSUME(SamplesToDo
> 0);
1575 for(auto &chanbuffer
: Samples
)
1577 const ALfloat gain
{distcomp
->Gain
};
1578 const ALuint base
{distcomp
->Length
};
1579 ALfloat
*distbuf
{al::assume_aligned
<16>(distcomp
->Buffer
)};
1585 ALfloat
*inout
{al::assume_aligned
<16>(chanbuffer
.data())};
1586 auto inout_end
= inout
+ SamplesToDo
;
1587 if LIKELY(SamplesToDo
>= base
)
1589 auto delay_end
= std::rotate(inout
, inout_end
- base
, inout_end
);
1590 std::swap_ranges(inout
, delay_end
, distbuf
);
1594 auto delay_start
= std::swap_ranges(inout
, inout_end
, distbuf
);
1595 std::rotate(distbuf
, delay_start
, distbuf
+ base
);
1597 std::transform(inout
, inout_end
, inout
, std::bind(std::multiplies
<float>{}, _1
, gain
));
1601 void ApplyDither(const al::span
<FloatBufferLine
> Samples
, ALuint
*dither_seed
,
1602 const ALfloat quant_scale
, const ALuint SamplesToDo
)
1604 /* Dithering. Generate whitenoise (uniform distribution of random values
1605 * between -1 and +1) and add it to the sample values, after scaling up to
1606 * the desired quantization depth amd before rounding.
1608 const ALfloat invscale
{1.0f
/ quant_scale
};
1609 ALuint seed
{*dither_seed
};
1610 auto dither_channel
= [&seed
,invscale
,quant_scale
,SamplesToDo
](FloatBufferLine
&input
) -> void
1612 ASSUME(SamplesToDo
> 0);
1613 auto dither_sample
= [&seed
,invscale
,quant_scale
](const ALfloat sample
) noexcept
-> ALfloat
1615 ALfloat val
{sample
* quant_scale
};
1616 ALuint rng0
{dither_rng(&seed
)};
1617 ALuint rng1
{dither_rng(&seed
)};
1618 val
+= static_cast<ALfloat
>(rng0
*(1.0/UINT_MAX
) - rng1
*(1.0/UINT_MAX
));
1619 return fast_roundf(val
) * invscale
;
1621 std::transform(input
.begin(), input
.begin()+SamplesToDo
, input
.begin(), dither_sample
);
1623 std::for_each(Samples
.begin(), Samples
.end(), dither_channel
);
1624 *dither_seed
= seed
;
1628 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1629 * chokes on that given the inline specializations.
1631 template<typename T
>
1632 inline T
SampleConv(ALfloat
) noexcept
;
1634 template<> inline ALfloat
SampleConv(ALfloat val
) noexcept
1636 template<> inline ALint
SampleConv(ALfloat val
) noexcept
1638 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1639 * This means a normalized float has at most 25 bits of signed precision.
1640 * When scaling and clamping for a signed 32-bit integer, these following
1641 * values are the best a float can give.
1643 return fastf2i(clampf(val
*2147483648.0f
, -2147483648.0f
, 2147483520.0f
));
1645 template<> inline ALshort
SampleConv(ALfloat val
) noexcept
1646 { return static_cast<ALshort
>(fastf2i(clampf(val
*32768.0f
, -32768.0f
, 32767.0f
))); }
1647 template<> inline ALbyte
SampleConv(ALfloat val
) noexcept
1648 { return static_cast<ALbyte
>(fastf2i(clampf(val
*128.0f
, -128.0f
, 127.0f
))); }
1650 /* Define unsigned output variations. */
1651 template<> inline ALuint
SampleConv(ALfloat val
) noexcept
1652 { return static_cast<ALuint
>(SampleConv
<ALint
>(val
)) + 2147483648u; }
1653 template<> inline ALushort
SampleConv(ALfloat val
) noexcept
1654 { return static_cast<ALushort
>(SampleConv
<ALshort
>(val
) + 32768); }
1655 template<> inline ALubyte
SampleConv(ALfloat val
) noexcept
1656 { return static_cast<ALubyte
>(SampleConv
<ALbyte
>(val
) + 128); }
1658 template<DevFmtType T
>
1659 void Write(const al::span
<const FloatBufferLine
> InBuffer
, ALvoid
*OutBuffer
, const size_t Offset
,
1660 const ALuint SamplesToDo
)
1662 using SampleType
= typename DevFmtTypeTraits
<T
>::Type
;
1664 const size_t numchans
{InBuffer
.size()};
1665 ASSUME(numchans
> 0);
1667 SampleType
*outbase
= static_cast<SampleType
*>(OutBuffer
) + Offset
*numchans
;
1668 auto conv_channel
= [&outbase
,SamplesToDo
,numchans
](const FloatBufferLine
&inbuf
) -> void
1670 ASSUME(SamplesToDo
> 0);
1671 SampleType
*out
{outbase
++};
1672 auto conv_sample
= [numchans
,&out
](const ALfloat s
) noexcept
-> void
1674 *out
= SampleConv
<SampleType
>(s
);
1677 std::for_each(inbuf
.begin(), inbuf
.begin()+SamplesToDo
, conv_sample
);
1679 std::for_each(InBuffer
.cbegin(), InBuffer
.cend(), conv_channel
);
1684 void aluMixData(ALCdevice
*device
, ALvoid
*OutBuffer
, const ALuint NumSamples
)
1686 FPUCtl mixer_mode
{};
1687 for(ALuint SamplesDone
{0u};SamplesDone
< NumSamples
;)
1689 const ALuint SamplesToDo
{minu(NumSamples
-SamplesDone
, BUFFERSIZE
)};
1691 /* Clear main mixing buffers. */
1692 std::for_each(device
->MixBuffer
.begin(), device
->MixBuffer
.end(),
1693 [SamplesToDo
](std::array
<ALfloat
,BUFFERSIZE
> &buffer
) -> void
1694 { std::fill_n(buffer
.begin(), SamplesToDo
, 0.0f
); }
1697 /* Increment the mix count at the start (lsb should now be 1). */
1698 IncrementRef(device
->MixCount
);
1700 /* For each context on this device, process and mix its sources and
1703 for(ALCcontext
*ctx
: *device
->mContexts
.load(std::memory_order_acquire
))
1704 ProcessContext(ctx
, SamplesToDo
);
1706 /* Increment the clock time. Every second's worth of samples is
1707 * converted and added to clock base so that large sample counts don't
1708 * overflow during conversion. This also guarantees a stable
1711 device
->SamplesDone
+= SamplesToDo
;
1712 device
->ClockBase
+= std::chrono::seconds
{device
->SamplesDone
/ device
->Frequency
};
1713 device
->SamplesDone
%= device
->Frequency
;
1715 /* Increment the mix count at the end (lsb should now be 0). */
1716 IncrementRef(device
->MixCount
);
1718 /* Apply any needed post-process for finalizing the Dry mix to the
1719 * RealOut (Ambisonic decode, UHJ encode, etc).
1721 device
->postProcess(SamplesToDo
);
1723 const al::span
<FloatBufferLine
> RealOut
{device
->RealOut
.Buffer
};
1725 /* Apply front image stablization for surround sound, if applicable. */
1726 if(device
->Stablizer
)
1728 const ALuint lidx
{GetChannelIdxByName(device
->RealOut
, FrontLeft
)};
1729 const ALuint ridx
{GetChannelIdxByName(device
->RealOut
, FrontRight
)};
1730 const ALuint cidx
{GetChannelIdxByName(device
->RealOut
, FrontCenter
)};
1732 ApplyStablizer(device
->Stablizer
.get(), RealOut
, lidx
, ridx
, cidx
, SamplesToDo
);
1735 /* Apply compression, limiting sample amplitude if needed or desired. */
1736 if(Compressor
*comp
{device
->Limiter
.get()})
1737 comp
->process(SamplesToDo
, RealOut
.data());
1739 /* Apply delays and attenuation for mismatched speaker distances. */
1740 ApplyDistanceComp(RealOut
, SamplesToDo
, device
->ChannelDelay
.as_span().cbegin());
1742 /* Apply dithering. The compressor should have left enough headroom for
1743 * the dither noise to not saturate.
1745 if(device
->DitherDepth
> 0.0f
)
1746 ApplyDither(RealOut
, &device
->DitherSeed
, device
->DitherDepth
, SamplesToDo
);
1748 if LIKELY(OutBuffer
)
1750 /* Finally, interleave and convert samples, writing to the device's
1753 switch(device
->FmtType
)
1755 #define HANDLE_WRITE(T) case T: \
1756 Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break;
1757 HANDLE_WRITE(DevFmtByte
)
1758 HANDLE_WRITE(DevFmtUByte
)
1759 HANDLE_WRITE(DevFmtShort
)
1760 HANDLE_WRITE(DevFmtUShort
)
1761 HANDLE_WRITE(DevFmtInt
)
1762 HANDLE_WRITE(DevFmtUInt
)
1763 HANDLE_WRITE(DevFmtFloat
)
1768 SamplesDone
+= SamplesToDo
;
1773 void aluHandleDisconnect(ALCdevice
*device
, const char *msg
, ...)
1775 if(!device
->Connected
.exchange(false, std::memory_order_acq_rel
))
1778 AsyncEvent evt
{EventType_Disconnected
};
1779 evt
.u
.user
.type
= AL_EVENT_TYPE_DISCONNECTED_SOFT
;
1781 evt
.u
.user
.param
= 0;
1784 va_start(args
, msg
);
1785 int msglen
{vsnprintf(evt
.u
.user
.msg
, sizeof(evt
.u
.user
.msg
), msg
, args
)};
1788 if(msglen
< 0 || static_cast<size_t>(msglen
) >= sizeof(evt
.u
.user
.msg
))
1789 evt
.u
.user
.msg
[sizeof(evt
.u
.user
.msg
)-1] = 0;
1791 IncrementRef(device
->MixCount
);
1792 for(ALCcontext
*ctx
: *device
->mContexts
.load())
1794 const ALbitfieldSOFT enabledevt
{ctx
->mEnabledEvts
.load(std::memory_order_acquire
)};
1795 if((enabledevt
&EventType_Disconnected
))
1797 RingBuffer
*ring
{ctx
->mAsyncEvents
.get()};
1798 auto evt_data
= ring
->getWriteVector().first
;
1799 if(evt_data
.len
> 0)
1801 ::new (evt_data
.buf
) AsyncEvent
{evt
};
1802 ring
->writeAdvance(1);
1803 ctx
->mEventSem
.post();
1807 auto stop_voice
= [](ALvoice
&voice
) -> void
1809 voice
.mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
1810 voice
.mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
1811 voice
.mSourceID
.store(0u, std::memory_order_relaxed
);
1812 voice
.mPlayState
.store(ALvoice::Stopped
, std::memory_order_release
);
1814 std::for_each(ctx
->mVoices
.begin(), ctx
->mVoices
.end(), stop_voice
);
1816 IncrementRef(device
->MixCount
);