Check the propertyset when matching the propertyid
[openal-soft.git] / common / alnumeric.h
blob28289e1817d224fd28655a60ceb42048970100a9
1 #ifndef AL_NUMERIC_H
2 #define AL_NUMERIC_H
4 #include <algorithm>
5 #include <array>
6 #include <cmath>
7 #include <cstddef>
8 #include <cstdint>
9 #include <iterator>
10 #include <type_traits>
11 #ifdef HAVE_INTRIN_H
12 #include <intrin.h>
13 #endif
14 #ifdef HAVE_SSE_INTRINSICS
15 #include <xmmintrin.h>
16 #endif
18 #include "albit.h"
19 #include "altraits.h"
20 #include "opthelpers.h"
23 constexpr auto operator "" _i64(unsigned long long n) noexcept { return static_cast<std::int64_t>(n); }
24 constexpr auto operator "" _u64(unsigned long long n) noexcept { return static_cast<std::uint64_t>(n); }
26 constexpr auto operator "" _z(unsigned long long n) noexcept
27 { return static_cast<std::make_signed_t<std::size_t>>(n); }
28 constexpr auto operator "" _uz(unsigned long long n) noexcept { return static_cast<std::size_t>(n); }
29 constexpr auto operator "" _zu(unsigned long long n) noexcept { return static_cast<std::size_t>(n); }
32 constexpr auto GetCounterSuffix(size_t count) noexcept -> const char*
34 auto &suffix = (((count%100)/10) == 1) ? "th" :
35 ((count%10) == 1) ? "st" :
36 ((count%10) == 2) ? "nd" :
37 ((count%10) == 3) ? "rd" : "th";
38 return std::data(suffix);
42 constexpr inline float lerpf(float val1, float val2, float mu) noexcept
43 { return val1 + (val2-val1)*mu; }
44 constexpr inline double lerpd(double val1, double val2, double mu) noexcept
45 { return val1 + (val2-val1)*mu; }
48 /** Find the next power-of-2 for non-power-of-2 numbers. */
49 inline uint32_t NextPowerOf2(uint32_t value) noexcept
51 if(value > 0)
53 value--;
54 value |= value>>1;
55 value |= value>>2;
56 value |= value>>4;
57 value |= value>>8;
58 value |= value>>16;
60 return value+1;
63 /**
64 * If the value is not already a multiple of r, round down to the next
65 * multiple.
67 template<typename T>
68 constexpr T RoundDown(T value, al::type_identity_t<T> r) noexcept
69 { return value - (value%r); }
71 /**
72 * If the value is not already a multiple of r, round up to the next multiple.
74 template<typename T>
75 constexpr T RoundUp(T value, al::type_identity_t<T> r) noexcept
76 { return RoundDown(value + r-1, r); }
79 /**
80 * Fast float-to-int conversion. No particular rounding mode is assumed; the
81 * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
82 * change it on its own threads. On some systems, a truncating conversion may
83 * always be the fastest method.
85 inline int fastf2i(float f) noexcept
87 #if defined(HAVE_SSE_INTRINSICS)
88 return _mm_cvt_ss2si(_mm_set_ss(f));
90 #elif defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0
92 int i;
93 __asm fld f
94 __asm fistp i
95 return i;
97 #elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
98 && !defined(__SSE_MATH__)
100 int i;
101 __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
102 return i;
104 #else
106 return static_cast<int>(f);
107 #endif
109 inline unsigned int fastf2u(float f) noexcept
110 { return static_cast<unsigned int>(fastf2i(f)); }
112 /** Converts float-to-int using standard behavior (truncation). */
113 inline int float2int(float f) noexcept
115 #if defined(HAVE_SSE_INTRINSICS)
116 return _mm_cvtt_ss2si(_mm_set_ss(f));
118 #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
119 || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
120 && !defined(__SSE_MATH__))
121 const int conv_i{al::bit_cast<int>(f)};
123 const int sign{(conv_i>>31) | 1};
124 const int shift{((conv_i>>23)&0xff) - (127+23)};
126 /* Over/underflow */
127 if(shift >= 31 || shift < -23) UNLIKELY
128 return 0;
130 const int mant{(conv_i&0x7fffff) | 0x800000};
131 if(shift < 0) LIKELY
132 return (mant >> -shift) * sign;
133 return (mant << shift) * sign;
135 #else
137 return static_cast<int>(f);
138 #endif
140 inline unsigned int float2uint(float f) noexcept
141 { return static_cast<unsigned int>(float2int(f)); }
143 /** Converts double-to-int using standard behavior (truncation). */
144 inline int double2int(double d) noexcept
146 #if defined(HAVE_SSE_INTRINSICS)
147 return _mm_cvttsd_si32(_mm_set_sd(d));
149 #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
150 || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
151 && !defined(__SSE2_MATH__))
152 const int64_t conv_i64{al::bit_cast<int64_t>(d)};
154 const int sign{static_cast<int>(conv_i64 >> 63) | 1};
155 const int shift{(static_cast<int>(conv_i64 >> 52) & 0x7ff) - (1023 + 52)};
157 /* Over/underflow */
158 if(shift >= 63 || shift < -52) UNLIKELY
159 return 0;
161 const int64_t mant{(conv_i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64};
162 if(shift < 0) LIKELY
163 return static_cast<int>(mant >> -shift) * sign;
164 return static_cast<int>(mant << shift) * sign;
166 #else
168 return static_cast<int>(d);
169 #endif
173 * Rounds a float to the nearest integral value, according to the current
174 * rounding mode. This is essentially an inlined version of rintf, although
175 * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
177 inline float fast_roundf(float f) noexcept
179 #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
180 && !defined(__SSE_MATH__)
182 float out;
183 __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
184 return out;
186 #elif (defined(__GNUC__) || defined(__clang__)) && defined(__aarch64__)
188 float out;
189 __asm__ volatile("frintx %s0, %s1" : "=w"(out) : "w"(f));
190 return out;
192 #else
194 /* Integral limit, where sub-integral precision is not available for
195 * floats.
197 static constexpr std::array ilim{
198 8388608.0f /* 0x1.0p+23 */,
199 -8388608.0f /* -0x1.0p+23 */
201 const unsigned int conv_i{al::bit_cast<unsigned int>(f)};
203 const unsigned int sign{(conv_i>>31)&0x01};
204 const unsigned int expo{(conv_i>>23)&0xff};
206 if(expo >= 150/*+23*/) UNLIKELY
208 /* An exponent (base-2) of 23 or higher is incapable of sub-integral
209 * precision, so it's already an integral value. We don't need to worry
210 * about infinity or NaN here.
212 return f;
214 /* Adding the integral limit to the value (with a matching sign) forces a
215 * result that has no sub-integral precision, and is consequently forced to
216 * round to an integral value. Removing the integral limit then restores
217 * the initial value rounded to the integral. The compiler should not
218 * optimize this out because of non-associative rules on floating-point
219 * math (as long as you don't use -fassociative-math,
220 * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
221 * may break without __builtin_assoc_barrier support).
223 #if HAS_BUILTIN(__builtin_assoc_barrier)
224 return __builtin_assoc_barrier(f + ilim[sign]) - ilim[sign];
225 #else
226 f += ilim[sign];
227 return f - ilim[sign];
228 #endif
229 #endif
233 // Converts level (mB) to gain.
234 inline float level_mb_to_gain(float x)
236 if(x <= -10'000.0f)
237 return 0.0f;
238 return std::pow(10.0f, x / 2'000.0f);
241 // Converts gain to level (mB).
242 inline float gain_to_level_mb(float x)
244 if(x <= 1e-05f)
245 return -10'000.0f;
246 return std::max(std::log10(x) * 2'000.0f, -10'000.0f);
249 #endif /* AL_NUMERIC_H */