1 /* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com )
3 Based on original fortran 77 code from FFTPACKv4 from NETLIB,
4 authored by Dr Paul Swarztrauber of NCAR, in 1985.
6 As confirmed by the NCAR fftpack software curators, the following
7 FFTPACKv5 license applies to FFTPACKv4 sources. My changes are
8 released under the same terms.
12 http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
14 Copyright (c) 2004 the University Corporation for Atmospheric
15 Research ("UCAR"). All rights reserved. Developed by NCAR's
16 Computational and Information Systems Laboratory, UCAR,
19 Redistribution and use of the Software in source and binary forms,
20 with or without modification, is permitted provided that the
21 following conditions are met:
23 - Neither the names of NCAR's Computational and Information Systems
24 Laboratory, the University Corporation for Atmospheric Research,
25 nor the names of its sponsors or contributors may be used to
26 endorse or promote products derived from this Software without
27 specific prior written permission.
29 - Redistributions of source code must retain the above copyright
30 notices, this list of conditions, and the disclaimer below.
32 - Redistributions in binary form must reproduce the above copyright
33 notice, this list of conditions, and the disclaimer below in the
34 documentation and/or other materials provided with the
37 THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
38 EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
39 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
40 NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
41 HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
42 EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
43 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
44 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
48 /* PFFFT : a Pretty Fast FFT.
50 * This is basically an adaptation of the single precision fftpack (v4) as
51 * found on netlib taking advantage of SIMD instructions found on CPUs such as
52 * Intel x86 (SSE1), PowerPC (Altivec), and Arm (NEON).
54 * For architectures where SIMD instructions aren't available, the code falls
55 * back to a scalar version.
59 * - 1D transforms only, with 32-bit single precision.
61 * - supports only transforms for inputs of length N of the form
62 * N=(2^a)*(3^b)*(5^c), given a >= 5, b >=0, c >= 0 (32, 48, 64, 96, 128, 144,
63 * 160, etc are all acceptable lengths). Performance is best for 128<=N<=8192.
65 * - all (float*) pointers for the functions below are expected to have a
66 * "SIMD-compatible" alignment, that is 16 bytes.
68 * You can allocate such buffers with the pffft_aligned_malloc function, and
69 * deallocate them with pffft_aligned_free (or with stuff like posix_memalign,
70 * aligned_alloc, etc).
72 * Note that for the z-domain data of real transforms, when in the canonical
73 * order (as interleaved complex numbers) both 0-frequency and half-frequency
74 * components, which are real, are assembled in the first entry as
75 * F(0)+i*F(n/2+1). The original fftpack placed F(n/2+1) at the end of the
88 /* opaque struct holding internal stuff (precomputed twiddle factors) this
89 * struct can be shared by many threads as it contains only read-only data.
93 /* direction of the transform */
94 enum pffft_direction_t
{ PFFFT_FORWARD
, PFFFT_BACKWARD
};
96 /* type of transform */
97 enum pffft_transform_t
{ PFFFT_REAL
, PFFFT_COMPLEX
};
99 void pffft_destroy_setup(gsl::owner
<PFFFT_Setup
*> setup
) noexcept
;
100 struct PFFFTSetupDeleter
{
101 void operator()(gsl::owner
<PFFFT_Setup
*> setup
) const noexcept
{ pffft_destroy_setup(setup
); }
103 using PFFFTSetupPtr
= std::unique_ptr
<PFFFT_Setup
,PFFFTSetupDeleter
>;
106 * Prepare for performing transforms of size N -- the returned PFFFT_Setup
107 * structure is read-only so it can safely be shared by multiple concurrent
110 PFFFTSetupPtr
pffft_new_setup(unsigned int N
, pffft_transform_t transform
);
113 * Perform a Fourier transform. The z-domain data is stored in the most
114 * efficient order for transforming back or using for convolution, and as
115 * such, there's no guarantee to the order of the values. If you need to have
116 * its content sorted in the usual way, that is as an array of interleaved
117 * complex numbers, either use pffft_transform_ordered, or call pffft_zreorder
118 * after the forward fft and before the backward fft.
120 * Transforms are not scaled: PFFFT_BACKWARD(PFFFT_FORWARD(x)) = N*x. Typically
121 * you will want to scale the backward transform by 1/N.
123 * The 'work' pointer must point to an area of N (2*N for complex fft) floats,
124 * properly aligned. It cannot be NULL.
126 * The input and output parameters may alias.
128 void pffft_transform(const PFFFT_Setup
*setup
, const float *input
, float *output
, float *work
, pffft_direction_t direction
);
131 * Similar to pffft_transform, but handles the complex values in the usual form
132 * (interleaved complex numbers). This is similar to calling
133 * pffft_transform(..., PFFFT_FORWARD) followed by
134 * pffft_zreorder(..., PFFFT_FORWARD), or
135 * pffft_zreorder(..., PFFFT_BACKWARD) followed by
136 * pffft_transform(..., PFFFT_BACKWARD), for the given direction.
138 * The input and output parameters may alias.
140 void pffft_transform_ordered(const PFFFT_Setup
*setup
, const float *input
, float *output
, float *work
, pffft_direction_t direction
);
143 * Reorder the z-domain data. For PFFFT_FORWARD, it reorders from the internal
144 * representation to the "canonical" order (as interleaved complex numbers).
145 * For PFFFT_BACKWARD, it reorders from the canonical order to the internal
146 * order suitable for pffft_transform(..., PFFFT_BACKWARD) or
147 * pffft_zconvolve_accumulate.
149 * The input and output parameters should not alias.
151 void pffft_zreorder(const PFFFT_Setup
*setup
, const float *input
, float *output
, pffft_direction_t direction
);
154 * Perform a multiplication of the z-domain data in dft_a and dft_b, and scale
155 * and accumulate into dft_ab. The arrays should have been obtained with
156 * pffft_transform(..., PFFFT_FORWARD) or pffft_zreorder(..., PFFFT_BACKWARD)
157 * and should *not* be in the usual order (otherwise just perform the operation
158 * yourself as the dft coeffs are stored as interleaved complex numbers).
160 * The operation performed is: dft_ab += (dft_a * dft_b)*scaling
162 * The dft_a, dft_b, and dft_ab parameters may alias.
164 void pffft_zconvolve_scale_accumulate(const PFFFT_Setup
*setup
, const float *dft_a
, const float *dft_b
, float *dft_ab
, float scaling
);
167 * Perform a multiplication of the z-domain data in dft_a and dft_b, and
168 * accumulate into dft_ab.
170 * The operation performed is: dft_ab += dft_a * dft_b
172 * The dft_a, dft_b, and dft_ab parameters may alias.
174 void pffft_zconvolve_accumulate(const PFFFT_Setup
*setup
, const float *dft_a
, const float *dft_b
, float *dft_ab
);
178 PFFFTSetupPtr mSetup
{};
180 PFFFTSetup() = default;
181 PFFFTSetup(const PFFFTSetup
&) = delete;
182 PFFFTSetup(PFFFTSetup
&& rhs
) noexcept
= default;
183 explicit PFFFTSetup(std::nullptr_t
) noexcept
{ }
184 explicit PFFFTSetup(unsigned int n
, pffft_transform_t transform
)
185 : mSetup
{pffft_new_setup(n
, transform
)}
187 ~PFFFTSetup() = default;
189 PFFFTSetup
& operator=(const PFFFTSetup
&) = delete;
190 PFFFTSetup
& operator=(PFFFTSetup
&& rhs
) noexcept
= default;
192 [[nodiscard
]] explicit operator bool() const noexcept
{ return mSetup
!= nullptr; }
194 void transform(const float *input
, float *output
, float *work
, pffft_direction_t direction
) const
195 { pffft_transform(mSetup
.get(), input
, output
, work
, direction
); }
197 void transform_ordered(const float *input
, float *output
, float *work
,
198 pffft_direction_t direction
) const
199 { pffft_transform_ordered(mSetup
.get(), input
, output
, work
, direction
); }
201 void zreorder(const float *input
, float *output
, pffft_direction_t direction
) const
202 { pffft_zreorder(mSetup
.get(), input
, output
, direction
); }
204 void zconvolve_scale_accumulate(const float *dft_a
, const float *dft_b
, float *dft_ab
,
206 { pffft_zconvolve_scale_accumulate(mSetup
.get(), dft_a
, dft_b
, dft_ab
, scaling
); }
208 void zconvolve_accumulate(const float *dft_a
, const float *dft_b
, float *dft_ab
) const
209 { pffft_zconvolve_accumulate(mSetup
.get(), dft_a
, dft_b
, dft_ab
); }