Separate declaring a lambda from calling it
[openal-soft.git] / common / phase_shifter.h
blobf76e42497f4d2aa373265a1b4bb862629846da3a
1 #ifndef PHASE_SHIFTER_H
2 #define PHASE_SHIFTER_H
4 #ifdef HAVE_SSE_INTRINSICS
5 #include <xmmintrin.h>
6 #elif defined(HAVE_NEON)
7 #include <arm_neon.h>
8 #endif
10 #include <array>
11 #include <cmath>
12 #include <cstddef>
14 #include "alnumbers.h"
15 #include "alspan.h"
16 #include "opthelpers.h"
19 /* Implements a wide-band +90 degree phase-shift. Note that this should be
20 * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
21 * signal delay (FilterSize/2) to properly align.
23 template<std::size_t FilterSize>
24 struct SIMDALIGN PhaseShifterT {
25 static_assert(FilterSize >= 16, "FilterSize needs to be at least 16");
26 static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");
28 alignas(16) std::array<float,FilterSize/2> mCoeffs{};
30 PhaseShifterT()
32 /* Every other coefficient is 0, so we only need to calculate and store
33 * the non-0 terms and double-step over the input to apply it. The
34 * calculated coefficients are in reverse to make applying in the time-
35 * domain more efficient.
37 for(std::size_t i{0};i < FilterSize/2;++i)
39 const int k{static_cast<int>(i*2 + 1) - int{FilterSize/2}};
41 /* Calculate the Blackman window value for this coefficient. */
42 const double w{2.0*al::numbers::pi * static_cast<double>(i*2 + 1)
43 / double{FilterSize}};
44 const double window{0.3635819 - 0.4891775*std::cos(w) + 0.1365995*std::cos(2.0*w)
45 - 0.0106411*std::cos(3.0*w)};
47 const double pk{al::numbers::pi * static_cast<double>(k)};
48 mCoeffs[i] = static_cast<float>(window * (1.0-std::cos(pk)) / pk);
52 void process(const al::span<float> dst, const al::span<const float> src) const;
54 private:
55 #if defined(HAVE_NEON)
56 static auto unpacklo(float32x4_t a, float32x4_t b)
58 float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
59 return vcombine_f32(result.val[0], result.val[1]);
61 static auto unpackhi(float32x4_t a, float32x4_t b)
63 float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
64 return vcombine_f32(result.val[0], result.val[1]);
66 static auto load4(float32_t a, float32_t b, float32_t c, float32_t d)
68 float32x4_t ret{vmovq_n_f32(a)};
69 ret = vsetq_lane_f32(b, ret, 1);
70 ret = vsetq_lane_f32(c, ret, 2);
71 ret = vsetq_lane_f32(d, ret, 3);
72 return ret;
74 static void vtranspose4(float32x4_t &x0, float32x4_t &x1, float32x4_t &x2, float32x4_t &x3)
76 float32x4x2_t t0_{vzipq_f32(x0, x2)};
77 float32x4x2_t t1_{vzipq_f32(x1, x3)};
78 float32x4x2_t u0_{vzipq_f32(t0_.val[0], t1_.val[0])};
79 float32x4x2_t u1_{vzipq_f32(t0_.val[1], t1_.val[1])};
80 x0 = u0_.val[0];
81 x1 = u0_.val[1];
82 x2 = u1_.val[0];
83 x3 = u1_.val[1];
85 #endif
88 template<std::size_t S>
89 NOINLINE inline
90 void PhaseShifterT<S>::process(const al::span<float> dst, const al::span<const float> src) const
92 auto in = src.begin();
93 #ifdef HAVE_SSE_INTRINSICS
94 if(const std::size_t todo{dst.size()>>2})
96 auto out = al::span{reinterpret_cast<__m128*>(dst.data()), todo};
97 std::generate(out.begin(), out.end(), [&in,this]
99 __m128 r0{_mm_setzero_ps()};
100 __m128 r1{_mm_setzero_ps()};
101 __m128 r2{_mm_setzero_ps()};
102 __m128 r3{_mm_setzero_ps()};
103 for(std::size_t j{0};j < mCoeffs.size();j+=4)
105 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
106 const __m128 s0{_mm_loadu_ps(&in[j*2])};
107 const __m128 s1{_mm_loadu_ps(&in[j*2 + 4])};
108 const __m128 s2{_mm_movehl_ps(_mm_movelh_ps(s1, s1), s0)};
109 const __m128 s3{_mm_loadh_pi(_mm_movehl_ps(s1, s1),
110 reinterpret_cast<const __m64*>(&in[j*2 + 8]))};
112 __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
113 r0 = _mm_add_ps(r0, _mm_mul_ps(s, coeffs));
115 s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
116 r1 = _mm_add_ps(r1, _mm_mul_ps(s, coeffs));
118 s = _mm_shuffle_ps(s2, s3, _MM_SHUFFLE(2, 0, 2, 0));
119 r2 = _mm_add_ps(r2, _mm_mul_ps(s, coeffs));
121 s = _mm_shuffle_ps(s2, s3, _MM_SHUFFLE(3, 1, 3, 1));
122 r3 = _mm_add_ps(r3, _mm_mul_ps(s, coeffs));
124 in += 4;
126 _MM_TRANSPOSE4_PS(r0, r1, r2, r3);
127 return _mm_add_ps(_mm_add_ps(r0, r1), _mm_add_ps(r2, r3));
130 if(const std::size_t todo{dst.size()&3})
132 auto out = dst.last(todo);
133 std::generate(out.begin(), out.end(), [&in,this]
135 __m128 r4{_mm_setzero_ps()};
136 for(std::size_t j{0};j < mCoeffs.size();j+=4)
138 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
139 const __m128 s{_mm_setr_ps(in[j*2], in[j*2 + 2], in[j*2 + 4], in[j*2 + 6])};
140 r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
142 ++in;
143 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
144 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
145 return _mm_cvtss_f32(r4);
149 #elif defined(HAVE_NEON)
151 if(const std::size_t todo{dst.size()>>2})
153 auto out = al::span{reinterpret_cast<float32x4_t*>(dst.data()), todo};
154 std::generate(out.begin(), out.end(), [&in,this]
156 float32x4_t r0{vdupq_n_f32(0.0f)};
157 float32x4_t r1{vdupq_n_f32(0.0f)};
158 float32x4_t r2{vdupq_n_f32(0.0f)};
159 float32x4_t r3{vdupq_n_f32(0.0f)};
160 for(std::size_t j{0};j < mCoeffs.size();j+=4)
162 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
163 const float32x4_t s0{vld1q_f32(&in[j*2])};
164 const float32x4_t s1{vld1q_f32(&in[j*2 + 4])};
165 const float32x4_t s2{vcombine_f32(vget_high_f32(s0), vget_low_f32(s1))};
166 const float32x4_t s3{vcombine_f32(vget_high_f32(s1), vld1_f32(&in[j*2 + 8]))};
167 const float32x4x2_t values0{vuzpq_f32(s0, s1)};
168 const float32x4x2_t values1{vuzpq_f32(s2, s3)};
170 r0 = vmlaq_f32(r0, values0.val[0], coeffs);
171 r1 = vmlaq_f32(r1, values0.val[1], coeffs);
172 r2 = vmlaq_f32(r2, values1.val[0], coeffs);
173 r3 = vmlaq_f32(r3, values1.val[1], coeffs);
175 in += 4;
177 vtranspose4(r0, r1, r2, r3);
178 return vaddq_f32(vaddq_f32(r0, r1), vaddq_f32(r2, r3));
181 if(const std::size_t todo{dst.size()&3})
183 auto out = dst.last(todo);
184 std::generate(out.begin(), out.end(), [&in,this]
186 float32x4_t r4{vdupq_n_f32(0.0f)};
187 for(std::size_t j{0};j < mCoeffs.size();j+=4)
189 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
190 const float32x4_t s{load4(in[j*2], in[j*2 + 2], in[j*2 + 4], in[j*2 + 6])};
191 r4 = vmlaq_f32(r4, s, coeffs);
193 ++in;
194 r4 = vaddq_f32(r4, vrev64q_f32(r4));
195 return vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
199 #else
201 std::generate(dst.begin(), dst.end(), [&in,this]
203 float ret{0.0f};
204 for(std::size_t j{0};j < mCoeffs.size();++j)
205 ret += in[j*2] * mCoeffs[j];
206 ++in;
207 return ret;
209 #endif
212 #endif /* PHASE_SHIFTER_H */