2 * An example showing how to play a stream sync'd to video, using ffmpeg.
14 #include <condition_variable>
28 #include <string_view>
34 _Pragma("GCC diagnostic push")
35 _Pragma("GCC diagnostic ignored \"-Wconversion\"")
36 _Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
39 #include "libavcodec/avcodec.h"
40 #include "libavformat/avformat.h"
41 #include "libavformat/avio.h"
42 #include "libavformat/version.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/error.h"
45 #include "libavutil/frame.h"
46 #include "libavutil/mem.h"
47 #include "libavutil/pixfmt.h"
48 #include "libavutil/rational.h"
49 #include "libavutil/samplefmt.h"
50 #include "libavutil/time.h"
51 #include "libavutil/version.h"
52 #include "libavutil/channel_layout.h"
53 #include "libswscale/swscale.h"
54 #include "libswresample/swresample.h"
56 constexpr auto AVNoPtsValue
= AV_NOPTS_VALUE
;
57 constexpr auto AVErrorEOF
= AVERROR_EOF
;
62 #define SDL_MAIN_HANDLED
65 _Pragma("GCC diagnostic pop")
73 #include "alnumbers.h"
74 #include "alnumeric.h"
76 #include "common/alhelpers.h"
81 using fixed32
= std::chrono::duration
<int64_t,std::ratio
<1,(1_i64
<<32)>>;
82 using nanoseconds
= std::chrono::nanoseconds
;
83 using microseconds
= std::chrono::microseconds
;
84 using milliseconds
= std::chrono::milliseconds
;
85 using seconds
= std::chrono::seconds
;
86 using seconds_d64
= std::chrono::duration
<double>;
87 using std::chrono::duration_cast
;
89 const std::string AppName
{"alffplay"};
91 ALenum DirectOutMode
{AL_FALSE
};
92 bool EnableWideStereo
{false};
93 bool EnableUhj
{false};
94 bool EnableSuperStereo
{false};
95 bool DisableVideo
{false};
96 LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT
;
97 LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT
;
98 LPALEVENTCONTROLSOFT alEventControlSOFT
;
99 LPALEVENTCALLBACKSOFT alEventCallbackSOFT
;
101 LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT
;
103 const seconds AVNoSyncThreshold
{10};
105 #define VIDEO_PICTURE_QUEUE_SIZE 24
107 const seconds_d64 AudioSyncThreshold
{0.03};
108 const milliseconds AudioSampleCorrectionMax
{50};
109 /* Averaging filter coefficient for audio sync. */
110 #define AUDIO_DIFF_AVG_NB 20
111 const double AudioAvgFilterCoeff
{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB
)};
112 /* Per-buffer size, in time */
113 constexpr milliseconds AudioBufferTime
{20};
114 /* Buffer total size, in time (should be divisible by the buffer time) */
115 constexpr milliseconds AudioBufferTotalTime
{800};
116 constexpr auto AudioBufferCount
= AudioBufferTotalTime
/ AudioBufferTime
;
119 FF_MOVIE_DONE_EVENT
= SDL_USEREVENT
122 enum class SyncMaster
{
131 inline microseconds
get_avtime()
132 { return microseconds
{av_gettime()}; }
134 /* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
135 struct AVIOContextDeleter
{
136 void operator()(AVIOContext
*ptr
) { avio_closep(&ptr
); }
138 using AVIOContextPtr
= std::unique_ptr
<AVIOContext
,AVIOContextDeleter
>;
140 struct AVFormatCtxDeleter
{
141 void operator()(AVFormatContext
*ptr
) { avformat_close_input(&ptr
); }
143 using AVFormatCtxPtr
= std::unique_ptr
<AVFormatContext
,AVFormatCtxDeleter
>;
145 struct AVCodecCtxDeleter
{
146 void operator()(AVCodecContext
*ptr
) { avcodec_free_context(&ptr
); }
148 using AVCodecCtxPtr
= std::unique_ptr
<AVCodecContext
,AVCodecCtxDeleter
>;
150 struct AVPacketDeleter
{
151 void operator()(AVPacket
*pkt
) { av_packet_free(&pkt
); }
153 using AVPacketPtr
= std::unique_ptr
<AVPacket
,AVPacketDeleter
>;
155 struct AVFrameDeleter
{
156 void operator()(AVFrame
*ptr
) { av_frame_free(&ptr
); }
158 using AVFramePtr
= std::unique_ptr
<AVFrame
,AVFrameDeleter
>;
160 struct SwrContextDeleter
{
161 void operator()(SwrContext
*ptr
) { swr_free(&ptr
); }
163 using SwrContextPtr
= std::unique_ptr
<SwrContext
,SwrContextDeleter
>;
165 struct SwsContextDeleter
{
166 void operator()(SwsContext
*ptr
) { sws_freeContext(ptr
); }
168 using SwsContextPtr
= std::unique_ptr
<SwsContext
,SwsContextDeleter
>;
171 struct ChannelLayout
: public AVChannelLayout
{
172 ChannelLayout() : AVChannelLayout
{} { }
173 ChannelLayout(const ChannelLayout
&rhs
) : AVChannelLayout
{}
174 { av_channel_layout_copy(this, &rhs
); }
175 ~ChannelLayout() { av_channel_layout_uninit(this); }
177 auto operator=(const ChannelLayout
&rhs
) -> ChannelLayout
&
178 { av_channel_layout_copy(this, &rhs
); return *this; }
183 const size_t mSizeLimit
;
184 std::mutex mPacketMutex
, mFrameMutex
;
185 std::condition_variable mPacketCond
;
186 std::condition_variable mInFrameCond
, mOutFrameCond
;
188 std::deque
<AVPacketPtr
> mPackets
;
189 size_t mTotalSize
{0};
190 bool mFinished
{false};
192 AVPacketPtr
getPacket()
194 std::unique_lock
<std::mutex
> plock
{mPacketMutex
};
195 while(mPackets
.empty() && !mFinished
)
196 mPacketCond
.wait(plock
);
200 auto ret
= std::move(mPackets
.front());
201 mPackets
.pop_front();
202 mTotalSize
-= static_cast<unsigned int>(ret
->size
);
207 DataQueue(size_t size_limit
) : mSizeLimit
{size_limit
} { }
209 int sendPacket(AVCodecContext
*codecctx
)
211 AVPacketPtr packet
{getPacket()};
215 std::unique_lock
<std::mutex
> flock
{mFrameMutex
};
216 while((ret
=avcodec_send_packet(codecctx
, packet
.get())) == AVERROR(EAGAIN
))
217 mInFrameCond
.wait_for(flock
, milliseconds
{50});
219 mOutFrameCond
.notify_one();
223 if(!ret
) return AVErrorEOF
;
224 std::cerr
<< "Failed to send flush packet: "<<ret
<<std::endl
;
228 std::cerr
<< "Failed to send packet: "<<ret
<<std::endl
;
232 int receiveFrame(AVCodecContext
*codecctx
, AVFrame
*frame
)
236 std::unique_lock
<std::mutex
> flock
{mFrameMutex
};
237 while((ret
=avcodec_receive_frame(codecctx
, frame
)) == AVERROR(EAGAIN
))
238 mOutFrameCond
.wait_for(flock
, milliseconds
{50});
240 mInFrameCond
.notify_one();
247 std::lock_guard
<std::mutex
> packetlock
{mPacketMutex
};
250 mPacketCond
.notify_one();
256 std::lock_guard
<std::mutex
> packetlock
{mPacketMutex
};
262 mPacketCond
.notify_one();
265 bool put(const AVPacket
*pkt
)
268 std::lock_guard
<std::mutex
> packet_lock
{mPacketMutex
};
269 if(mTotalSize
>= mSizeLimit
|| mFinished
)
272 mPackets
.push_back(AVPacketPtr
{av_packet_alloc()});
273 if(av_packet_ref(mPackets
.back().get(), pkt
) != 0)
279 mTotalSize
+= static_cast<unsigned int>(mPackets
.back()->size
);
281 mPacketCond
.notify_one();
292 AVStream
*mStream
{nullptr};
293 AVCodecCtxPtr mCodecCtx
;
295 DataQueue mQueue
{2_uz
*1024_uz
*1024_uz
};
297 /* Used for clock difference average computation */
298 seconds_d64 mClockDiffAvg
{0};
300 /* Time of the next sample to be buffered */
301 nanoseconds mCurrentPts
{0};
303 /* Device clock time that the stream started at. */
304 nanoseconds mDeviceStartTime
{nanoseconds::min()};
306 /* Decompressed sample frame, and swresample context for conversion */
307 AVFramePtr mDecodedFrame
;
308 SwrContextPtr mSwresCtx
;
310 /* Conversion format, for what gets fed to OpenAL */
311 uint64_t mDstChanLayout
{0};
312 AVSampleFormat mDstSampleFmt
{AV_SAMPLE_FMT_NONE
};
314 /* Storage of converted samples */
315 std::array
<uint8_t*,1> mSamples
{};
316 al::span
<uint8_t> mSamplesSpan
{};
317 int mSamplesLen
{0}; /* In samples */
321 std::vector
<uint8_t> mBufferData
;
322 std::atomic
<size_t> mReadPos
{0};
323 std::atomic
<size_t> mWritePos
{0};
326 ALenum mFormat
{AL_NONE
};
327 ALuint mFrameSize
{0};
329 std::mutex mSrcMutex
;
330 std::condition_variable mSrcCond
;
331 std::atomic_flag mConnected
{};
333 std::array
<ALuint
,AudioBufferCount
> mBuffers
{};
334 ALuint mBufferIdx
{0};
336 AudioState(MovieState
&movie
) : mMovie(movie
)
337 { mConnected
.test_and_set(std::memory_order_relaxed
); }
341 alDeleteSources(1, &mSource
);
343 alDeleteBuffers(static_cast<ALsizei
>(mBuffers
.size()), mBuffers
.data());
345 av_freep(mSamples
.data());
348 static void AL_APIENTRY
eventCallbackC(ALenum eventType
, ALuint object
, ALuint param
,
349 ALsizei length
, const ALchar
*message
, void *userParam
) noexcept
350 { static_cast<AudioState
*>(userParam
)->eventCallback(eventType
, object
, param
, length
, message
); }
351 void eventCallback(ALenum eventType
, ALuint object
, ALuint param
, ALsizei length
,
352 const ALchar
*message
) noexcept
;
354 static ALsizei AL_APIENTRY
bufferCallbackC(void *userptr
, void *data
, ALsizei size
) noexcept
355 { return static_cast<AudioState
*>(userptr
)->bufferCallback(data
, size
); }
356 ALsizei
bufferCallback(void *data
, ALsizei size
) noexcept
;
358 nanoseconds
getClockNoLock();
359 nanoseconds
getClock()
361 std::lock_guard
<std::mutex
> lock
{mSrcMutex
};
362 return getClockNoLock();
365 bool startPlayback();
369 bool readAudio(al::span
<uint8_t> samples
, unsigned int length
, int &sample_skip
);
370 bool readAudio(int sample_skip
);
378 AVStream
*mStream
{nullptr};
379 AVCodecCtxPtr mCodecCtx
;
381 DataQueue mQueue
{14_uz
*1024_uz
*1024_uz
};
383 /* The pts of the currently displayed frame, and the time (av_gettime) it
384 * was last updated - used to have running video pts
386 nanoseconds mDisplayPts
{0};
387 microseconds mDisplayPtsTime
{microseconds::min()};
388 std::mutex mDispPtsMutex
;
390 /* Swscale context for format conversion */
391 SwsContextPtr mSwscaleCtx
;
395 nanoseconds mPts
{nanoseconds::min()};
397 std::array
<Picture
,VIDEO_PICTURE_QUEUE_SIZE
> mPictQ
;
398 std::atomic
<size_t> mPictQRead
{0u}, mPictQWrite
{1u};
399 std::mutex mPictQMutex
;
400 std::condition_variable mPictQCond
;
402 SDL_Texture
*mImage
{nullptr};
403 int mWidth
{0}, mHeight
{0}; /* Full texture size */
404 bool mFirstUpdate
{true};
406 std::atomic
<bool> mEOS
{false};
407 std::atomic
<bool> mFinalUpdate
{false};
409 VideoState(MovieState
&movie
) : mMovie(movie
) { }
413 SDL_DestroyTexture(mImage
);
417 nanoseconds
getClock();
419 void display(SDL_Window
*screen
, SDL_Renderer
*renderer
, AVFrame
*frame
) const;
420 void updateVideo(SDL_Window
*screen
, SDL_Renderer
*renderer
, bool redraw
);
425 AVIOContextPtr mIOContext
;
426 AVFormatCtxPtr mFormatCtx
;
428 SyncMaster mAVSyncType
{SyncMaster::Default
};
430 microseconds mClockBase
{microseconds::min()};
432 std::atomic
<bool> mQuit
{false};
437 std::mutex mStartupMutex
;
438 std::condition_variable mStartupCond
;
439 bool mStartupDone
{false};
441 std::thread mParseThread
;
442 std::thread mAudioThread
;
443 std::thread mVideoThread
;
445 std::string mFilename
;
447 MovieState(std::string_view fname
) : mAudio
{*this}, mVideo
{*this}, mFilename
{fname
}
452 if(mParseThread
.joinable())
456 static int decode_interrupt_cb(void *ctx
);
458 void setTitle(SDL_Window
*window
) const;
461 [[nodiscard
]] nanoseconds
getClock() const;
462 [[nodiscard
]] nanoseconds
getMasterClock();
463 [[nodiscard
]] nanoseconds
getDuration() const;
465 bool streamComponentOpen(AVStream
*stream
);
470 nanoseconds
AudioState::getClockNoLock()
472 // The audio clock is the timestamp of the sample currently being heard.
473 if(alcGetInteger64vSOFT
)
475 // If device start time = min, we aren't playing yet.
476 if(mDeviceStartTime
== nanoseconds::min())
477 return nanoseconds::zero();
479 // Get the current device clock time and latency.
480 auto device
= alcGetContextsDevice(alcGetCurrentContext());
481 std::array
<ALCint64SOFT
,2> devtimes
{};
482 alcGetInteger64vSOFT(device
, ALC_DEVICE_CLOCK_LATENCY_SOFT
, 2, devtimes
.data());
483 auto latency
= nanoseconds
{devtimes
[1]};
484 auto device_time
= nanoseconds
{devtimes
[0]};
486 // The clock is simply the current device time relative to the recorded
487 // start time. We can also subtract the latency to get more a accurate
488 // position of where the audio device actually is in the output stream.
489 return device_time
- mDeviceStartTime
- latency
;
492 if(!mBufferData
.empty())
494 if(mDeviceStartTime
== nanoseconds::min())
495 return nanoseconds::zero();
497 /* With a callback buffer and no device clock, mDeviceStartTime is
498 * actually the timestamp of the first sample frame played. The audio
499 * clock, then, is that plus the current source offset.
501 std::array
<ALint64SOFT
,2> offset
{};
502 if(alGetSourcei64vSOFT
)
503 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_LATENCY_SOFT
, offset
.data());
507 alGetSourcei(mSource
, AL_SAMPLE_OFFSET
, &ioffset
);
508 offset
[0] = ALint64SOFT
{ioffset
} << 32;
510 /* NOTE: The source state must be checked last, in case an underrun
511 * occurs and the source stops between getting the state and retrieving
512 * the offset+latency.
515 alGetSourcei(mSource
, AL_SOURCE_STATE
, &status
);
518 if(status
== AL_PLAYING
|| status
== AL_PAUSED
)
519 pts
= mDeviceStartTime
- nanoseconds
{offset
[1]} +
520 duration_cast
<nanoseconds
>(fixed32
{offset
[0] / mCodecCtx
->sample_rate
});
523 /* If the source is stopped, the pts of the next sample to be heard
524 * is the pts of the next sample to be buffered, minus the amount
525 * already in the buffer ready to play.
527 const size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
528 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
529 const size_t readable
{((woffset
>=roffset
) ? woffset
: (mBufferData
.size()+woffset
)) -
532 pts
= mCurrentPts
- nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
;
538 /* The source-based clock is based on 4 components:
539 * 1 - The timestamp of the next sample to buffer (mCurrentPts)
540 * 2 - The length of the source's buffer queue
541 * (AudioBufferTime*AL_BUFFERS_QUEUED)
542 * 3 - The offset OpenAL is currently at in the source (the first value
543 * from AL_SAMPLE_OFFSET_LATENCY_SOFT)
544 * 4 - The latency between OpenAL and the DAC (the second value from
545 * AL_SAMPLE_OFFSET_LATENCY_SOFT)
547 * Subtracting the length of the source queue from the next sample's
548 * timestamp gives the timestamp of the sample at the start of the source
549 * queue. Adding the source offset to that results in the timestamp for the
550 * sample at OpenAL's current position, and subtracting the source latency
551 * from that gives the timestamp of the sample currently at the DAC.
553 nanoseconds pts
{mCurrentPts
};
556 std::array
<ALint64SOFT
,2> offset
{};
557 if(alGetSourcei64vSOFT
)
558 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_LATENCY_SOFT
, offset
.data());
562 alGetSourcei(mSource
, AL_SAMPLE_OFFSET
, &ioffset
);
563 offset
[0] = ALint64SOFT
{ioffset
} << 32;
565 ALint queued
, status
;
566 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
567 alGetSourcei(mSource
, AL_SOURCE_STATE
, &status
);
569 /* If the source is AL_STOPPED, then there was an underrun and all
570 * buffers are processed, so ignore the source queue. The audio thread
571 * will put the source into an AL_INITIAL state and clear the queue
572 * when it starts recovery.
574 if(status
!= AL_STOPPED
)
576 pts
-= AudioBufferTime
*queued
;
577 pts
+= duration_cast
<nanoseconds
>(fixed32
{offset
[0] / mCodecCtx
->sample_rate
});
579 /* Don't offset by the latency if the source isn't playing. */
580 if(status
== AL_PLAYING
)
581 pts
-= nanoseconds
{offset
[1]};
584 return std::max(pts
, nanoseconds::zero());
587 bool AudioState::startPlayback()
589 const size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
590 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
591 const size_t readable
{((woffset
>= roffset
) ? woffset
: (mBufferData
.size()+woffset
)) -
594 if(!mBufferData
.empty())
598 if(!alcGetInteger64vSOFT
)
599 mDeviceStartTime
= mCurrentPts
-
600 nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
;
605 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
606 if(queued
== 0) return false;
609 alSourcePlay(mSource
);
610 if(alcGetInteger64vSOFT
)
612 /* Subtract the total buffer queue time from the current pts to get the
613 * pts of the start of the queue.
615 std::array
<int64_t,2> srctimes
{};
616 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_CLOCK_SOFT
, srctimes
.data());
617 auto device_time
= nanoseconds
{srctimes
[1]};
618 auto src_offset
= duration_cast
<nanoseconds
>(fixed32
{srctimes
[0]}) /
619 mCodecCtx
->sample_rate
;
621 /* The mixer may have ticked and incremented the device time and sample
622 * offset, so subtract the source offset from the device time to get
623 * the device time the source started at. Also subtract startpts to get
624 * the device time the stream would have started at to reach where it
627 if(!mBufferData
.empty())
629 nanoseconds startpts
{mCurrentPts
-
630 nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
};
631 mDeviceStartTime
= device_time
- src_offset
- startpts
;
635 nanoseconds startpts
{mCurrentPts
- AudioBufferTotalTime
};
636 mDeviceStartTime
= device_time
- src_offset
- startpts
;
642 int AudioState::getSync()
644 if(mMovie
.mAVSyncType
== SyncMaster::Audio
)
647 auto ref_clock
= mMovie
.getMasterClock();
648 auto diff
= ref_clock
- getClockNoLock();
650 if(!(diff
< AVNoSyncThreshold
&& diff
> -AVNoSyncThreshold
))
652 /* Difference is TOO big; reset accumulated average */
653 mClockDiffAvg
= seconds_d64::zero();
657 /* Accumulate the diffs */
658 mClockDiffAvg
= mClockDiffAvg
*AudioAvgFilterCoeff
+ diff
;
659 auto avg_diff
= mClockDiffAvg
*(1.0 - AudioAvgFilterCoeff
);
660 if(avg_diff
< AudioSyncThreshold
/2.0 && avg_diff
> -AudioSyncThreshold
)
663 /* Constrain the per-update difference to avoid exceedingly large skips */
664 diff
= std::min
<nanoseconds
>(diff
, AudioSampleCorrectionMax
);
665 return static_cast<int>(duration_cast
<seconds
>(diff
*mCodecCtx
->sample_rate
).count());
668 int AudioState::decodeFrame()
671 while(int ret
{mQueue
.receiveFrame(mCodecCtx
.get(), mDecodedFrame
.get())})
673 if(ret
== AVErrorEOF
) return 0;
674 std::cerr
<< "Failed to receive frame: "<<ret
<<std::endl
;
676 } while(mDecodedFrame
->nb_samples
<= 0);
678 /* If provided, update w/ pts */
679 if(mDecodedFrame
->best_effort_timestamp
!= AVNoPtsValue
)
680 mCurrentPts
= duration_cast
<nanoseconds
>(seconds_d64
{av_q2d(mStream
->time_base
) *
681 static_cast<double>(mDecodedFrame
->best_effort_timestamp
)});
683 if(mDecodedFrame
->nb_samples
> mSamplesMax
)
685 av_freep(mSamples
.data());
686 av_samples_alloc(mSamples
.data(), nullptr, mCodecCtx
->ch_layout
.nb_channels
,
687 mDecodedFrame
->nb_samples
, mDstSampleFmt
, 0);
688 mSamplesMax
= mDecodedFrame
->nb_samples
;
689 mSamplesSpan
= {mSamples
[0], static_cast<size_t>(mSamplesMax
)*mFrameSize
};
691 /* Copy to a local to mark const. Don't know why this can't be implicit. */
692 using data_t
= decltype(decltype(mDecodedFrame
)::element_type::data
);
693 std::array
<const uint8_t*,std::extent_v
<data_t
>> cdata
{};
694 std::copy(std::begin(mDecodedFrame
->data
), std::end(mDecodedFrame
->data
), cdata
.begin());
695 /* Return the amount of sample frames converted */
696 const int data_size
{swr_convert(mSwresCtx
.get(), mSamples
.data(), mDecodedFrame
->nb_samples
,
697 cdata
.data(), mDecodedFrame
->nb_samples
)};
699 av_frame_unref(mDecodedFrame
.get());
703 /* Duplicates the sample at in to out, count times. The frame size is a
704 * multiple of the template type size.
707 void sample_dup(al::span
<uint8_t> out
, al::span
<const uint8_t> in
, size_t count
, size_t frame_size
)
709 auto sample
= al::span
{reinterpret_cast<const T
*>(in
.data()), in
.size()/sizeof(T
)};
710 auto dst
= al::span
{reinterpret_cast<T
*>(out
.data()), out
.size()/sizeof(T
)};
712 /* NOTE: frame_size is a multiple of sizeof(T). */
713 const size_t type_mult
{frame_size
/ sizeof(T
)};
715 std::fill_n(dst
.begin(), count
, sample
.front());
716 else for(size_t i
{0};i
< count
;++i
)
718 for(size_t j
{0};j
< type_mult
;++j
)
719 dst
[i
*type_mult
+ j
] = sample
[j
];
723 void sample_dup(al::span
<uint8_t> out
, al::span
<const uint8_t> in
, size_t count
, size_t frame_size
)
725 if((frame_size
&7) == 0)
726 sample_dup
<uint64_t>(out
, in
, count
, frame_size
);
727 else if((frame_size
&3) == 0)
728 sample_dup
<uint32_t>(out
, in
, count
, frame_size
);
729 else if((frame_size
&1) == 0)
730 sample_dup
<uint16_t>(out
, in
, count
, frame_size
);
732 sample_dup
<uint8_t>(out
, in
, count
, frame_size
);
735 bool AudioState::readAudio(al::span
<uint8_t> samples
, unsigned int length
, int &sample_skip
)
737 unsigned int audio_size
{0};
739 /* Read the next chunk of data, refill the buffer, and queue it
741 length
/= mFrameSize
;
742 while(mSamplesLen
> 0 && audio_size
< length
)
744 unsigned int rem
{length
- audio_size
};
747 const auto len
= static_cast<unsigned int>(mSamplesLen
- mSamplesPos
);
748 if(rem
> len
) rem
= len
;
749 const size_t boffset
{static_cast<ALuint
>(mSamplesPos
) * size_t{mFrameSize
}};
750 std::copy_n(mSamplesSpan
.cbegin()+ptrdiff_t(boffset
), rem
*size_t{mFrameSize
},
755 rem
= std::min(rem
, static_cast<unsigned int>(-mSamplesPos
));
757 /* Add samples by copying the first sample */
758 sample_dup(samples
, mSamplesSpan
, rem
, mFrameSize
);
761 mSamplesPos
+= static_cast<int>(rem
);
762 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
763 samples
= samples
.subspan(rem
*size_t{mFrameSize
});
766 while(mSamplesPos
>= mSamplesLen
)
768 mSamplesLen
= decodeFrame();
769 mSamplesPos
= std::min(mSamplesLen
, sample_skip
);
770 if(mSamplesLen
<= 0) break;
772 sample_skip
-= mSamplesPos
;
774 // Adjust the device start time and current pts by the amount we're
775 // skipping/duplicating, so that the clock remains correct for the
776 // current stream position.
777 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
778 mDeviceStartTime
-= skip
;
785 if(audio_size
< length
)
787 const unsigned int rem
{length
- audio_size
};
788 std::fill_n(samples
.begin(), rem
*mFrameSize
,
789 (mDstSampleFmt
== AV_SAMPLE_FMT_U8
) ? 0x80 : 0x00);
790 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
795 bool AudioState::readAudio(int sample_skip
)
797 size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
798 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
799 while(mSamplesLen
> 0)
801 const size_t nsamples
{((roffset
> woffset
) ? roffset
-woffset
-1
802 : (roffset
== 0) ? (mBufferData
.size()-woffset
-1)
803 : (mBufferData
.size()-woffset
)) / mFrameSize
};
808 const size_t rem
{std::min
<size_t>(nsamples
, static_cast<ALuint
>(-mSamplesPos
))};
810 sample_dup(al::span
{mBufferData
}.subspan(woffset
), mSamplesSpan
, rem
, mFrameSize
);
811 woffset
+= rem
* mFrameSize
;
812 if(woffset
== mBufferData
.size()) woffset
= 0;
813 mWritePos
.store(woffset
, std::memory_order_release
);
815 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
816 mSamplesPos
+= static_cast<int>(rem
);
820 const size_t rem
{std::min
<size_t>(nsamples
, static_cast<ALuint
>(mSamplesLen
-mSamplesPos
))};
821 const size_t boffset
{static_cast<ALuint
>(mSamplesPos
) * size_t{mFrameSize
}};
822 const size_t nbytes
{rem
* mFrameSize
};
824 std::copy_n(mSamplesSpan
.cbegin()+ptrdiff_t(boffset
), nbytes
,
825 mBufferData
.begin()+ptrdiff_t(woffset
));
827 if(woffset
== mBufferData
.size()) woffset
= 0;
828 mWritePos
.store(woffset
, std::memory_order_release
);
830 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
831 mSamplesPos
+= static_cast<int>(rem
);
833 while(mSamplesPos
>= mSamplesLen
)
835 mSamplesLen
= decodeFrame();
836 mSamplesPos
= std::min(mSamplesLen
, sample_skip
);
837 if(mSamplesLen
<= 0) return false;
839 sample_skip
-= mSamplesPos
;
841 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
842 mDeviceStartTime
-= skip
;
851 void AL_APIENTRY
AudioState::eventCallback(ALenum eventType
, ALuint object
, ALuint param
,
852 ALsizei length
, const ALchar
*message
) noexcept
854 if(eventType
== AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
)
856 /* Temporarily lock the source mutex to ensure it's not between
857 * checking the processed count and going to sleep.
859 std::unique_lock
<std::mutex
>{mSrcMutex
}.unlock();
860 mSrcCond
.notify_one();
864 std::cout
<< "\n---- AL Event on AudioState "<<this<<" ----\nEvent: ";
867 case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
: std::cout
<< "Buffer completed"; break;
868 case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
: std::cout
<< "Source state changed"; break;
869 case AL_EVENT_TYPE_DISCONNECTED_SOFT
: std::cout
<< "Disconnected"; break;
871 std::cout
<< "0x"<<std::hex
<<std::setw(4)<<std::setfill('0')<<eventType
<<std::dec
<<
872 std::setw(0)<<std::setfill(' '); break;
875 "Object ID: "<<object
<<"\n"
876 "Parameter: "<<param
<<"\n"
877 "Message: "<<std::string
{message
, static_cast<ALuint
>(length
)}<<"\n----"<<
880 if(eventType
== AL_EVENT_TYPE_DISCONNECTED_SOFT
)
883 std::lock_guard
<std::mutex
> lock
{mSrcMutex
};
884 mConnected
.clear(std::memory_order_release
);
886 mSrcCond
.notify_one();
890 ALsizei
AudioState::bufferCallback(void *data
, ALsizei size
) noexcept
892 auto dst
= al::span
{static_cast<ALbyte
*>(data
), static_cast<ALuint
>(size
)};
895 size_t roffset
{mReadPos
.load(std::memory_order_acquire
)};
898 const size_t woffset
{mWritePos
.load(std::memory_order_relaxed
)};
899 if(woffset
== roffset
) break;
901 size_t todo
{((woffset
< roffset
) ? mBufferData
.size() : woffset
) - roffset
};
902 todo
= std::min(todo
, dst
.size());
904 std::copy_n(mBufferData
.cbegin()+ptrdiff_t(roffset
), todo
, dst
.begin());
905 dst
= dst
.subspan(todo
);
906 got
+= static_cast<ALsizei
>(todo
);
909 if(roffset
== mBufferData
.size())
912 mReadPos
.store(roffset
, std::memory_order_release
);
917 int AudioState::handler()
919 std::unique_lock
<std::mutex
> srclock
{mSrcMutex
, std::defer_lock
};
920 milliseconds sleep_time
{AudioBufferTime
/ 3};
922 struct EventControlManager
{
923 const std::array
<ALenum
,3> evt_types
{{
924 AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
,
925 AL_EVENT_TYPE_DISCONNECTED_SOFT
}};
927 EventControlManager(milliseconds
&sleep_time
)
929 if(alEventControlSOFT
)
931 alEventControlSOFT(static_cast<ALsizei
>(evt_types
.size()), evt_types
.data(),
933 alEventCallbackSOFT(&AudioState::eventCallbackC
, this);
934 sleep_time
= AudioBufferTotalTime
;
937 ~EventControlManager()
939 if(alEventControlSOFT
)
941 alEventControlSOFT(static_cast<ALsizei
>(evt_types
.size()), evt_types
.data(),
943 alEventCallbackSOFT(nullptr, nullptr);
947 EventControlManager event_controller
{sleep_time
};
949 std::vector
<uint8_t> samples
;
950 ALsizei buffer_len
{0};
952 /* Find a suitable format for OpenAL. */
953 const auto layoutmask
= mCodecCtx
->ch_layout
.u
.mask
; /* NOLINT(*-union-access) */
956 if((mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_FLT
|| mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_FLTP
957 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_DBL
958 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_DBLP
959 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S32
960 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S32P
961 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S64
962 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S64P
)
963 && alIsExtensionPresent("AL_EXT_FLOAT32"))
965 mDstSampleFmt
= AV_SAMPLE_FMT_FLT
;
967 if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_NATIVE
)
969 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
971 if(layoutmask
== AV_CH_LAYOUT_7POINT1
)
973 mDstChanLayout
= layoutmask
;
975 mFormat
= alGetEnumValue("AL_FORMAT_71CHN32");
977 if(layoutmask
== AV_CH_LAYOUT_5POINT1
|| layoutmask
== AV_CH_LAYOUT_5POINT1_BACK
)
979 mDstChanLayout
= layoutmask
;
981 mFormat
= alGetEnumValue("AL_FORMAT_51CHN32");
983 if(layoutmask
== AV_CH_LAYOUT_QUAD
)
985 mDstChanLayout
= layoutmask
;
987 mFormat
= EnableUhj
? AL_FORMAT_UHJ4CHN_FLOAT32_SOFT
988 : alGetEnumValue("AL_FORMAT_QUAD32");
991 if(layoutmask
== AV_CH_LAYOUT_MONO
)
993 mDstChanLayout
= layoutmask
;
995 mFormat
= AL_FORMAT_MONO_FLOAT32
;
998 else if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_AMBISONIC
999 && alIsExtensionPresent("AL_EXT_BFORMAT"))
1001 /* Calculate what should be the ambisonic order from the number of
1002 * channels, and confirm that's the number of channels. Opus allows
1003 * an optional non-diegetic stereo stream with the B-Format stream,
1004 * which we can ignore, so check for that too.
1006 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->ch_layout
.nb_channels
)) - 1;
1007 int channels
{(order
+1) * (order
+1)};
1008 if(channels
== mCodecCtx
->ch_layout
.nb_channels
1009 || channels
+2 == mCodecCtx
->ch_layout
.nb_channels
)
1011 /* OpenAL only supports first-order with AL_EXT_BFORMAT, which
1012 * is 4 channels for 3D buffers.
1015 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32");
1018 if(!mFormat
|| mFormat
== -1)
1020 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1022 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN_FLOAT32_SOFT
: AL_FORMAT_STEREO_FLOAT32
;
1025 if(mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_U8
|| mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_U8P
)
1027 mDstSampleFmt
= AV_SAMPLE_FMT_U8
;
1029 if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_NATIVE
)
1031 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
1033 if(layoutmask
== AV_CH_LAYOUT_7POINT1
)
1035 mDstChanLayout
= layoutmask
;
1037 mFormat
= alGetEnumValue("AL_FORMAT_71CHN8");
1039 if(layoutmask
== AV_CH_LAYOUT_5POINT1
|| layoutmask
== AV_CH_LAYOUT_5POINT1_BACK
)
1041 mDstChanLayout
= layoutmask
;
1043 mFormat
= alGetEnumValue("AL_FORMAT_51CHN8");
1045 if(layoutmask
== AV_CH_LAYOUT_QUAD
)
1047 mDstChanLayout
= layoutmask
;
1049 mFormat
= EnableUhj
? AL_FORMAT_UHJ4CHN8_SOFT
1050 : alGetEnumValue("AL_FORMAT_QUAD8");
1053 if(layoutmask
== AV_CH_LAYOUT_MONO
)
1055 mDstChanLayout
= layoutmask
;
1057 mFormat
= AL_FORMAT_MONO8
;
1060 else if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_AMBISONIC
1061 && alIsExtensionPresent("AL_EXT_BFORMAT"))
1063 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->ch_layout
.nb_channels
)) - 1;
1064 int channels
{(order
+1) * (order
+1)};
1065 if(channels
== mCodecCtx
->ch_layout
.nb_channels
1066 || channels
+2 == mCodecCtx
->ch_layout
.nb_channels
)
1069 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_8");
1072 if(!mFormat
|| mFormat
== -1)
1074 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1076 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN8_SOFT
: AL_FORMAT_STEREO8
;
1079 if(!mFormat
|| mFormat
== -1)
1081 mDstSampleFmt
= AV_SAMPLE_FMT_S16
;
1083 if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_NATIVE
)
1085 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
1087 if(layoutmask
== AV_CH_LAYOUT_7POINT1
)
1089 mDstChanLayout
= layoutmask
;
1091 mFormat
= alGetEnumValue("AL_FORMAT_71CHN16");
1093 if(layoutmask
== AV_CH_LAYOUT_5POINT1
|| layoutmask
== AV_CH_LAYOUT_5POINT1_BACK
)
1095 mDstChanLayout
= layoutmask
;
1097 mFormat
= alGetEnumValue("AL_FORMAT_51CHN16");
1099 if(layoutmask
== AV_CH_LAYOUT_QUAD
)
1101 mDstChanLayout
= layoutmask
;
1103 mFormat
= EnableUhj
? AL_FORMAT_UHJ4CHN16_SOFT
1104 : alGetEnumValue("AL_FORMAT_QUAD16");
1107 if(layoutmask
== AV_CH_LAYOUT_MONO
)
1109 mDstChanLayout
= layoutmask
;
1111 mFormat
= AL_FORMAT_MONO16
;
1114 else if(mCodecCtx
->ch_layout
.order
== AV_CHANNEL_ORDER_AMBISONIC
1115 && alIsExtensionPresent("AL_EXT_BFORMAT"))
1117 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->ch_layout
.nb_channels
)) - 1;
1118 int channels
{(order
+1) * (order
+1)};
1119 if(channels
== mCodecCtx
->ch_layout
.nb_channels
1120 || channels
+2 == mCodecCtx
->ch_layout
.nb_channels
)
1123 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_16");
1126 if(!mFormat
|| mFormat
== -1)
1128 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1130 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN16_SOFT
: AL_FORMAT_STEREO16
;
1134 mSamples
.fill(nullptr);
1140 mDecodedFrame
.reset(av_frame_alloc());
1143 std::cerr
<< "Failed to allocate audio frame" <<std::endl
;
1147 /* Note that ffmpeg assumes AmbiX (ACN layout, SN3D normalization). */
1148 const bool has_bfmt_ex
{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE
};
1149 const ALenum ambi_layout
{AL_ACN_SOFT
};
1150 const ALenum ambi_scale
{AL_SN3D_SOFT
};
1154 /* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
1155 * we have to drop any extra channels.
1157 ChannelLayout layout
{};
1158 av_channel_layout_from_string(&layout
, "ambisonic 1");
1160 int err
{swr_alloc_set_opts2(al::out_ptr(mSwresCtx
), &layout
, mDstSampleFmt
,
1161 mCodecCtx
->sample_rate
, &mCodecCtx
->ch_layout
, mCodecCtx
->sample_fmt
,
1162 mCodecCtx
->sample_rate
, 0, nullptr)};
1165 std::array
<char,AV_ERROR_MAX_STRING_SIZE
> errstr
{};
1166 std::cerr
<< "Failed to allocate SwrContext: "
1167 <<av_make_error_string(errstr
.data(), AV_ERROR_MAX_STRING_SIZE
, err
) <<std::endl
;
1172 std::cout
<< "Found AL_SOFT_bformat_ex" <<std::endl
;
1175 std::cout
<< "Found AL_EXT_BFORMAT" <<std::endl
;
1176 /* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
1177 * ordering and normalization, so a custom matrix is needed to
1178 * scale and reorder the source from AmbiX.
1180 std::vector
<double> mtx(64_uz
*64_uz
, 0.0);
1181 mtx
[0 + 0*64] = std::sqrt(0.5);
1182 mtx
[3 + 1*64] = 1.0;
1183 mtx
[1 + 2*64] = 1.0;
1184 mtx
[2 + 3*64] = 1.0;
1185 swr_set_matrix(mSwresCtx
.get(), mtx
.data(), 64);
1190 ChannelLayout layout
{};
1191 av_channel_layout_from_mask(&layout
, mDstChanLayout
);
1193 int err
{swr_alloc_set_opts2(al::out_ptr(mSwresCtx
), &layout
, mDstSampleFmt
,
1194 mCodecCtx
->sample_rate
, &mCodecCtx
->ch_layout
, mCodecCtx
->sample_fmt
,
1195 mCodecCtx
->sample_rate
, 0, nullptr)};
1198 std::array
<char,AV_ERROR_MAX_STRING_SIZE
> errstr
{};
1199 std::cerr
<< "Failed to allocate SwrContext: "
1200 <<av_make_error_string(errstr
.data(), AV_ERROR_MAX_STRING_SIZE
, err
) <<std::endl
;
1204 if(int err
{swr_init(mSwresCtx
.get())})
1206 std::array
<char,AV_ERROR_MAX_STRING_SIZE
> errstr
{};
1207 std::cerr
<< "Failed to initialize audio converter: "
1208 <<av_make_error_string(errstr
.data(), AV_ERROR_MAX_STRING_SIZE
, err
) <<std::endl
;
1212 alGenBuffers(static_cast<ALsizei
>(mBuffers
.size()), mBuffers
.data());
1213 alGenSources(1, &mSource
);
1216 alSourcei(mSource
, AL_DIRECT_CHANNELS_SOFT
, DirectOutMode
);
1217 if(EnableWideStereo
)
1219 static constexpr std::array angles
{static_cast<float>(al::numbers::pi
/ 3.0),
1220 static_cast<float>(-al::numbers::pi
/ 3.0)};
1221 alSourcefv(mSource
, AL_STEREO_ANGLES
, angles
.data());
1225 for(ALuint bufid
: mBuffers
)
1227 alBufferi(bufid
, AL_AMBISONIC_LAYOUT_SOFT
, ambi_layout
);
1228 alBufferi(bufid
, AL_AMBISONIC_SCALING_SOFT
, ambi_scale
);
1232 if(EnableSuperStereo
)
1233 alSourcei(mSource
, AL_STEREO_MODE_SOFT
, AL_SUPER_STEREO_SOFT
);
1236 if(alGetError() != AL_NO_ERROR
)
1239 bool callback_ok
{false};
1240 if(alBufferCallbackSOFT
)
1242 alBufferCallbackSOFT(mBuffers
[0], mFormat
, mCodecCtx
->sample_rate
, bufferCallbackC
, this);
1243 alSourcei(mSource
, AL_BUFFER
, static_cast<ALint
>(mBuffers
[0]));
1244 if(alGetError() != AL_NO_ERROR
)
1246 fprintf(stderr
, "Failed to set buffer callback\n");
1247 alSourcei(mSource
, AL_BUFFER
, 0);
1251 mBufferData
.resize(static_cast<size_t>(duration_cast
<seconds
>(mCodecCtx
->sample_rate
*
1252 AudioBufferTotalTime
).count()) * mFrameSize
);
1253 std::fill(mBufferData
.begin(), mBufferData
.end(), uint8_t{});
1255 mReadPos
.store(0, std::memory_order_relaxed
);
1256 mWritePos
.store(mBufferData
.size()/mFrameSize
/2*mFrameSize
, std::memory_order_relaxed
);
1259 alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH
, 1, &refresh
);
1260 sleep_time
= milliseconds
{seconds
{1}} / refresh
;
1265 buffer_len
= static_cast<int>(duration_cast
<seconds
>(mCodecCtx
->sample_rate
*
1266 AudioBufferTime
).count() * mFrameSize
);
1268 samples
.resize(static_cast<ALuint
>(buffer_len
));
1270 /* Prefill the codec buffer. */
1271 auto packet_sender
= [this]()
1275 const int ret
{mQueue
.sendPacket(mCodecCtx
.get())};
1276 if(ret
== AVErrorEOF
) break;
1279 auto sender
= std::async(std::launch::async
, packet_sender
);
1282 if(alcGetInteger64vSOFT
)
1285 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT
,
1287 mDeviceStartTime
= nanoseconds
{devtime
} - mCurrentPts
;
1290 mSamplesLen
= decodeFrame();
1293 mSamplesPos
= std::min(mSamplesLen
, getSync());
1295 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
1296 mDeviceStartTime
-= skip
;
1297 mCurrentPts
+= skip
;
1302 if(mMovie
.mQuit
.load(std::memory_order_relaxed
))
1304 /* If mQuit is set, drain frames until we can't get more audio,
1305 * indicating we've reached the flush packet and the packet sender
1309 mSamplesLen
= decodeFrame();
1310 mSamplesPos
= mSamplesLen
;
1311 } while(mSamplesLen
> 0);
1316 if(!mBufferData
.empty())
1318 alGetSourcei(mSource
, AL_SOURCE_STATE
, &state
);
1320 /* If mQuit is not set, don't quit even if there's no more audio,
1321 * so what's buffered has a chance to play to the real end.
1323 readAudio(getSync());
1327 ALint processed
, queued
;
1329 /* First remove any processed buffers. */
1330 alGetSourcei(mSource
, AL_BUFFERS_PROCESSED
, &processed
);
1331 while(processed
> 0)
1334 alSourceUnqueueBuffers(mSource
, 1, &bid
);
1338 /* Refill the buffer queue. */
1339 int sync_skip
{getSync()};
1340 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
1341 while(static_cast<ALuint
>(queued
) < mBuffers
.size())
1343 /* Read the next chunk of data, filling the buffer, and queue
1346 if(!readAudio(samples
, static_cast<ALuint
>(buffer_len
), sync_skip
))
1349 const ALuint bufid
{mBuffers
[mBufferIdx
]};
1350 mBufferIdx
= static_cast<ALuint
>((mBufferIdx
+1) % mBuffers
.size());
1352 alBufferData(bufid
, mFormat
, samples
.data(), buffer_len
, mCodecCtx
->sample_rate
);
1353 alSourceQueueBuffers(mSource
, 1, &bufid
);
1357 /* Check that the source is playing. */
1358 alGetSourcei(mSource
, AL_SOURCE_STATE
, &state
);
1359 if(state
== AL_STOPPED
)
1361 /* AL_STOPPED means there was an underrun. Clear the buffer
1362 * queue since this likely means we're late, and rewind the
1363 * source to get it back into an AL_INITIAL state.
1365 alSourceRewind(mSource
);
1366 alSourcei(mSource
, AL_BUFFER
, 0);
1367 if(alcGetInteger64vSOFT
)
1369 /* Also update the device start time with the current
1370 * device clock, so the decoder knows we're running behind.
1373 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
1374 ALC_DEVICE_CLOCK_SOFT
, 1, &devtime
);
1375 mDeviceStartTime
= nanoseconds
{devtime
} - mCurrentPts
;
1381 /* (re)start the source if needed, and wait for a buffer to finish */
1382 if(state
!= AL_PLAYING
&& state
!= AL_PAUSED
)
1384 if(!startPlayback())
1387 if(ALenum err
{alGetError()})
1388 std::cerr
<< "Got AL error: 0x"<<std::hex
<<err
<<std::dec
1389 << " ("<<alGetString(err
)<<")" <<std::endl
;
1391 mSrcCond
.wait_for(srclock
, sleep_time
);
1394 alSourceRewind(mSource
);
1395 alSourcei(mSource
, AL_BUFFER
, 0);
1402 nanoseconds
VideoState::getClock()
1404 /* NOTE: This returns incorrect times while not playing. */
1405 std::lock_guard
<std::mutex
> displock
{mDispPtsMutex
};
1406 if(mDisplayPtsTime
== microseconds::min())
1407 return nanoseconds::zero();
1408 auto delta
= get_avtime() - mDisplayPtsTime
;
1409 return mDisplayPts
+ delta
;
1412 /* Called by VideoState::updateVideo to display the next video frame. */
1413 void VideoState::display(SDL_Window
*screen
, SDL_Renderer
*renderer
, AVFrame
*frame
) const
1418 double aspect_ratio
;
1422 int frame_width
{frame
->width
- static_cast<int>(frame
->crop_left
+ frame
->crop_right
)};
1423 int frame_height
{frame
->height
- static_cast<int>(frame
->crop_top
+ frame
->crop_bottom
)};
1424 if(frame
->sample_aspect_ratio
.num
== 0)
1428 aspect_ratio
= av_q2d(frame
->sample_aspect_ratio
) * frame_width
/
1431 if(aspect_ratio
<= 0.0)
1432 aspect_ratio
= static_cast<double>(frame_width
) / frame_height
;
1434 SDL_GetWindowSize(screen
, &win_w
, &win_h
);
1436 w
= (static_cast<int>(std::rint(h
* aspect_ratio
)) + 3) & ~3;
1440 h
= (static_cast<int>(std::rint(w
/ aspect_ratio
)) + 3) & ~3;
1442 x
= (win_w
- w
) / 2;
1443 y
= (win_h
- h
) / 2;
1445 SDL_Rect src_rect
{ static_cast<int>(frame
->crop_left
), static_cast<int>(frame
->crop_top
),
1446 frame_width
, frame_height
};
1447 SDL_Rect dst_rect
{ x
, y
, w
, h
};
1448 SDL_RenderCopy(renderer
, mImage
, &src_rect
, &dst_rect
);
1449 SDL_RenderPresent(renderer
);
1452 /* Called regularly on the main thread where the SDL_Renderer was created. It
1453 * handles updating the textures of decoded frames and displaying the latest
1456 void VideoState::updateVideo(SDL_Window
*screen
, SDL_Renderer
*renderer
, bool redraw
)
1458 size_t read_idx
{mPictQRead
.load(std::memory_order_relaxed
)};
1459 Picture
*vp
{&mPictQ
[read_idx
]};
1461 auto clocktime
= mMovie
.getMasterClock();
1462 bool updated
{false};
1465 size_t next_idx
{(read_idx
+1)%mPictQ
.size()};
1466 if(next_idx
== mPictQWrite
.load(std::memory_order_acquire
))
1468 Picture
*nextvp
{&mPictQ
[next_idx
]};
1469 if(clocktime
< nextvp
->mPts
&& !mMovie
.mQuit
.load(std::memory_order_relaxed
))
1471 /* For the first update, ensure the first frame gets shown. */
1472 if(!mFirstUpdate
|| updated
)
1478 read_idx
= next_idx
;
1480 if(mMovie
.mQuit
.load(std::memory_order_relaxed
))
1483 mFinalUpdate
= true;
1484 mPictQRead
.store(read_idx
, std::memory_order_release
);
1485 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1486 mPictQCond
.notify_one();
1490 AVFrame
*frame
{vp
->mFrame
.get()};
1493 mPictQRead
.store(read_idx
, std::memory_order_release
);
1494 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1495 mPictQCond
.notify_one();
1497 /* allocate or resize the buffer! */
1498 bool fmt_updated
{false};
1499 if(!mImage
|| mWidth
!= frame
->width
|| mHeight
!= frame
->height
)
1503 SDL_DestroyTexture(mImage
);
1504 mImage
= SDL_CreateTexture(renderer
, SDL_PIXELFORMAT_IYUV
, SDL_TEXTUREACCESS_STREAMING
,
1505 frame
->width
, frame
->height
);
1507 std::cerr
<< "Failed to create YV12 texture!" <<std::endl
;
1508 mWidth
= frame
->width
;
1509 mHeight
= frame
->height
;
1512 int frame_width
{frame
->width
- static_cast<int>(frame
->crop_left
+ frame
->crop_right
)};
1513 int frame_height
{frame
->height
- static_cast<int>(frame
->crop_top
+ frame
->crop_bottom
)};
1514 if(mFirstUpdate
&& frame_width
> 0 && frame_height
> 0)
1516 /* For the first update, set the window size to the video size. */
1517 mFirstUpdate
= false;
1519 if(frame
->sample_aspect_ratio
.den
!= 0)
1521 double aspect_ratio
= av_q2d(frame
->sample_aspect_ratio
);
1522 if(aspect_ratio
>= 1.0)
1523 frame_width
= static_cast<int>(std::lround(frame_width
* aspect_ratio
));
1524 else if(aspect_ratio
> 0.0)
1525 frame_height
= static_cast<int>(std::lround(frame_height
/ aspect_ratio
));
1527 SDL_SetWindowSize(screen
, frame_width
, frame_height
);
1532 void *pixels
{nullptr};
1535 if(mCodecCtx
->pix_fmt
== AV_PIX_FMT_YUV420P
)
1536 SDL_UpdateYUVTexture(mImage
, nullptr,
1537 frame
->data
[0], frame
->linesize
[0],
1538 frame
->data
[1], frame
->linesize
[1],
1539 frame
->data
[2], frame
->linesize
[2]
1541 else if(SDL_LockTexture(mImage
, nullptr, &pixels
, &pitch
) != 0)
1542 std::cerr
<< "Failed to lock texture" <<std::endl
;
1545 // Convert the image into YUV format that SDL uses
1546 int w
{frame
->width
};
1547 int h
{frame
->height
};
1548 if(!mSwscaleCtx
|| fmt_updated
)
1550 mSwscaleCtx
.reset(sws_getContext(
1551 w
, h
, mCodecCtx
->pix_fmt
,
1552 w
, h
, AV_PIX_FMT_YUV420P
, 0,
1553 nullptr, nullptr, nullptr
1557 /* point pict at the queue */
1558 const auto framesize
= static_cast<size_t>(w
)*static_cast<size_t>(h
);
1559 const auto pixelspan
= al::span
{static_cast<uint8_t*>(pixels
), framesize
*3/2};
1560 const std::array pict_data
{
1561 al::to_address(pixelspan
.begin()),
1562 al::to_address(pixelspan
.begin() + ptrdiff_t{w
}*h
),
1563 al::to_address(pixelspan
.begin() + ptrdiff_t{w
}*h
+ ptrdiff_t{w
}*h
/4)
1565 const std::array pict_linesize
{pitch
, pitch
/2, pitch
/2};
1567 sws_scale(mSwscaleCtx
.get(), std::data(frame
->data
), std::data(frame
->linesize
),
1568 0, h
, pict_data
.data(), pict_linesize
.data());
1569 SDL_UnlockTexture(mImage
);
1578 /* Show the picture! */
1579 display(screen
, renderer
, frame
);
1584 auto disp_time
= get_avtime();
1586 std::lock_guard
<std::mutex
> displock
{mDispPtsMutex
};
1587 mDisplayPts
= vp
->mPts
;
1588 mDisplayPtsTime
= disp_time
;
1590 if(mEOS
.load(std::memory_order_acquire
))
1592 if((read_idx
+1)%mPictQ
.size() == mPictQWrite
.load(std::memory_order_acquire
))
1594 mFinalUpdate
= true;
1595 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1596 mPictQCond
.notify_one();
1601 int VideoState::handler()
1603 std::for_each(mPictQ
.begin(), mPictQ
.end(),
1604 [](Picture
&pict
) -> void
1605 { pict
.mFrame
= AVFramePtr
{av_frame_alloc()}; });
1607 /* Prefill the codec buffer. */
1608 auto packet_sender
= [this]()
1612 const int ret
{mQueue
.sendPacket(mCodecCtx
.get())};
1613 if(ret
== AVErrorEOF
) break;
1616 auto sender
= std::async(std::launch::async
, packet_sender
);
1619 std::lock_guard
<std::mutex
> displock
{mDispPtsMutex
};
1620 mDisplayPtsTime
= get_avtime();
1623 auto current_pts
= nanoseconds::zero();
1626 size_t write_idx
{mPictQWrite
.load(std::memory_order_relaxed
)};
1627 Picture
*vp
{&mPictQ
[write_idx
]};
1629 /* Retrieve video frame. */
1630 AVFrame
*decoded_frame
{vp
->mFrame
.get()};
1631 while(int ret
{mQueue
.receiveFrame(mCodecCtx
.get(), decoded_frame
)})
1633 if(ret
== AVErrorEOF
) goto finish
;
1634 std::cerr
<< "Failed to receive frame: "<<ret
<<std::endl
;
1637 /* Get the PTS for this frame. */
1638 if(decoded_frame
->best_effort_timestamp
!= AVNoPtsValue
)
1639 current_pts
= duration_cast
<nanoseconds
>(seconds_d64
{av_q2d(mStream
->time_base
) *
1640 static_cast<double>(decoded_frame
->best_effort_timestamp
)});
1641 vp
->mPts
= current_pts
;
1643 /* Update the video clock to the next expected PTS. */
1644 auto frame_delay
= av_q2d(mCodecCtx
->time_base
);
1645 frame_delay
+= decoded_frame
->repeat_pict
* (frame_delay
* 0.5);
1646 current_pts
+= duration_cast
<nanoseconds
>(seconds_d64
{frame_delay
});
1648 /* Put the frame in the queue to be loaded into a texture and displayed
1649 * by the rendering thread.
1651 write_idx
= (write_idx
+1)%mPictQ
.size();
1652 mPictQWrite
.store(write_idx
, std::memory_order_release
);
1654 if(write_idx
== mPictQRead
.load(std::memory_order_acquire
))
1656 /* Wait until we have space for a new pic */
1657 std::unique_lock
<std::mutex
> lock
{mPictQMutex
};
1658 while(write_idx
== mPictQRead
.load(std::memory_order_acquire
))
1659 mPictQCond
.wait(lock
);
1665 std::unique_lock
<std::mutex
> lock
{mPictQMutex
};
1666 while(!mFinalUpdate
) mPictQCond
.wait(lock
);
1672 int MovieState::decode_interrupt_cb(void *ctx
)
1674 return static_cast<MovieState
*>(ctx
)->mQuit
.load(std::memory_order_relaxed
);
1677 bool MovieState::prepare()
1679 AVIOContext
*avioctx
{nullptr};
1680 AVIOInterruptCB intcb
{decode_interrupt_cb
, this};
1681 if(avio_open2(&avioctx
, mFilename
.c_str(), AVIO_FLAG_READ
, &intcb
, nullptr))
1683 std::cerr
<< "Failed to open "<<mFilename
<<std::endl
;
1686 mIOContext
.reset(avioctx
);
1688 /* Open movie file. If avformat_open_input fails it will automatically free
1689 * this context, so don't set it onto a smart pointer yet.
1691 AVFormatContext
*fmtctx
{avformat_alloc_context()};
1692 fmtctx
->pb
= mIOContext
.get();
1693 fmtctx
->interrupt_callback
= intcb
;
1694 if(avformat_open_input(&fmtctx
, mFilename
.c_str(), nullptr, nullptr) != 0)
1696 std::cerr
<< "Failed to open "<<mFilename
<<std::endl
;
1699 mFormatCtx
.reset(fmtctx
);
1701 /* Retrieve stream information */
1702 if(avformat_find_stream_info(mFormatCtx
.get(), nullptr) < 0)
1704 std::cerr
<< mFilename
<<": failed to find stream info" <<std::endl
;
1708 /* Dump information about file onto standard error */
1709 av_dump_format(mFormatCtx
.get(), 0, mFilename
.c_str(), 0);
1711 mParseThread
= std::thread
{std::mem_fn(&MovieState::parse_handler
), this};
1713 std::unique_lock
<std::mutex
> slock
{mStartupMutex
};
1714 while(!mStartupDone
) mStartupCond
.wait(slock
);
1718 void MovieState::setTitle(SDL_Window
*window
) const
1720 auto pos1
= mFilename
.rfind('/');
1721 auto pos2
= mFilename
.rfind('\\');
1722 auto fpos
= ((pos1
== std::string::npos
) ? pos2
:
1723 (pos2
== std::string::npos
) ? pos1
:
1724 std::max(pos1
, pos2
)) + 1;
1725 SDL_SetWindowTitle(window
, (mFilename
.substr(fpos
)+" - "+AppName
).c_str());
1728 nanoseconds
MovieState::getClock() const
1730 if(mClockBase
== microseconds::min())
1731 return nanoseconds::zero();
1732 return get_avtime() - mClockBase
;
1735 nanoseconds
MovieState::getMasterClock()
1737 if(mAVSyncType
== SyncMaster::Video
&& mVideo
.mStream
)
1738 return mVideo
.getClock();
1739 if(mAVSyncType
== SyncMaster::Audio
&& mAudio
.mStream
)
1740 return mAudio
.getClock();
1744 nanoseconds
MovieState::getDuration() const
1745 { return std::chrono::duration
<int64_t,std::ratio
<1,AV_TIME_BASE
>>(mFormatCtx
->duration
); }
1747 bool MovieState::streamComponentOpen(AVStream
*stream
)
1749 /* Get a pointer to the codec context for the stream, and open the
1752 AVCodecCtxPtr avctx
{avcodec_alloc_context3(nullptr)};
1753 if(!avctx
) return false;
1755 if(avcodec_parameters_to_context(avctx
.get(), stream
->codecpar
))
1758 const AVCodec
*codec
{avcodec_find_decoder(avctx
->codec_id
)};
1759 if(!codec
|| avcodec_open2(avctx
.get(), codec
, nullptr) < 0)
1761 std::cerr
<< "Unsupported codec: "<<avcodec_get_name(avctx
->codec_id
)
1762 << " (0x"<<std::hex
<<avctx
->codec_id
<<std::dec
<<")" <<std::endl
;
1766 /* Initialize and start the media type handler */
1767 switch(avctx
->codec_type
)
1769 case AVMEDIA_TYPE_AUDIO
:
1770 mAudio
.mStream
= stream
;
1771 mAudio
.mCodecCtx
= std::move(avctx
);
1774 case AVMEDIA_TYPE_VIDEO
:
1775 mVideo
.mStream
= stream
;
1776 mVideo
.mCodecCtx
= std::move(avctx
);
1786 int MovieState::parse_handler()
1788 auto &audio_queue
= mAudio
.mQueue
;
1789 auto &video_queue
= mVideo
.mQueue
;
1791 int video_index
{-1};
1792 int audio_index
{-1};
1794 /* Find the first video and audio streams */
1795 const auto ctxstreams
= al::span
{mFormatCtx
->streams
, mFormatCtx
->nb_streams
};
1796 for(size_t i
{0};i
< ctxstreams
.size();++i
)
1798 auto codecpar
= ctxstreams
[i
]->codecpar
;
1799 if(codecpar
->codec_type
== AVMEDIA_TYPE_VIDEO
&& !DisableVideo
&& video_index
< 0
1800 && streamComponentOpen(ctxstreams
[i
]))
1801 video_index
= static_cast<int>(i
);
1802 else if(codecpar
->codec_type
== AVMEDIA_TYPE_AUDIO
&& audio_index
< 0
1803 && streamComponentOpen(ctxstreams
[i
]))
1804 audio_index
= static_cast<int>(i
);
1808 std::unique_lock
<std::mutex
> slock
{mStartupMutex
};
1809 mStartupDone
= true;
1811 mStartupCond
.notify_all();
1813 if(video_index
< 0 && audio_index
< 0)
1815 std::cerr
<< mFilename
<<": could not open codecs" <<std::endl
;
1819 /* Set the base time 750ms ahead of the current av time. */
1820 mClockBase
= get_avtime() + milliseconds
{750};
1822 if(audio_index
>= 0)
1823 mAudioThread
= std::thread
{std::mem_fn(&AudioState::handler
), &mAudio
};
1824 if(video_index
>= 0)
1825 mVideoThread
= std::thread
{std::mem_fn(&VideoState::handler
), &mVideo
};
1827 /* Main packet reading/dispatching loop */
1828 AVPacketPtr packet
{av_packet_alloc()};
1829 while(!mQuit
.load(std::memory_order_relaxed
))
1831 if(av_read_frame(mFormatCtx
.get(), packet
.get()) < 0)
1834 /* Copy the packet into the queue it's meant for. */
1835 if(packet
->stream_index
== video_index
)
1837 while(!mQuit
.load(std::memory_order_acquire
) && !video_queue
.put(packet
.get()))
1838 std::this_thread::sleep_for(milliseconds
{100});
1840 else if(packet
->stream_index
== audio_index
)
1842 while(!mQuit
.load(std::memory_order_acquire
) && !audio_queue
.put(packet
.get()))
1843 std::this_thread::sleep_for(milliseconds
{100});
1846 av_packet_unref(packet
.get());
1848 /* Finish the queues so the receivers know nothing more is coming. */
1849 video_queue
.setFinished();
1850 audio_queue
.setFinished();
1852 /* all done - wait for it */
1853 if(mVideoThread
.joinable())
1854 mVideoThread
.join();
1855 if(mAudioThread
.joinable())
1856 mAudioThread
.join();
1859 std::unique_lock
<std::mutex
> lock
{mVideo
.mPictQMutex
};
1860 while(!mVideo
.mFinalUpdate
)
1861 mVideo
.mPictQCond
.wait(lock
);
1865 evt
.user
.type
= FF_MOVIE_DONE_EVENT
;
1866 SDL_PushEvent(&evt
);
1871 void MovieState::stop()
1874 mAudio
.mQueue
.flush();
1875 mVideo
.mQueue
.flush();
1879 // Helper class+method to print the time with human-readable formatting.
1883 std::ostream
&operator<<(std::ostream
&os
, const PrettyTime
&rhs
)
1885 using hours
= std::chrono::hours
;
1886 using minutes
= std::chrono::minutes
;
1888 seconds t
{rhs
.mTime
};
1895 // Only handle up to hour formatting
1897 os
<< duration_cast
<hours
>(t
).count() << 'h' << std::setfill('0') << std::setw(2)
1898 << (duration_cast
<minutes
>(t
).count() % 60) << 'm';
1900 os
<< duration_cast
<minutes
>(t
).count() << 'm' << std::setfill('0');
1901 os
<< std::setw(2) << (duration_cast
<seconds
>(t
).count() % 60) << 's' << std::setw(0)
1902 << std::setfill(' ');
1907 int main(al::span
<std::string_view
> args
)
1911 std::unique_ptr
<MovieState
> movState
;
1915 std::cerr
<< "Usage: "<<args
[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl
;
1918 /* Register all formats and codecs */
1919 #if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
1922 /* Initialize networking protocols */
1923 avformat_network_init();
1925 if(SDL_Init(SDL_INIT_VIDEO
| SDL_INIT_EVENTS
))
1927 std::cerr
<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl
;
1931 /* Make a window to put our video */
1932 SDL_Window
*screen
{SDL_CreateWindow(AppName
.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE
)};
1935 std::cerr
<< "SDL: could not set video mode - exiting" <<std::endl
;
1938 /* Make a renderer to handle the texture image surface and rendering. */
1939 Uint32 render_flags
{SDL_RENDERER_ACCELERATED
| SDL_RENDERER_PRESENTVSYNC
};
1940 SDL_Renderer
*renderer
{SDL_CreateRenderer(screen
, -1, render_flags
)};
1943 SDL_RendererInfo rinf
{};
1946 /* Make sure the renderer supports IYUV textures. If not, fallback to a
1947 * software renderer. */
1948 if(SDL_GetRendererInfo(renderer
, &rinf
) == 0)
1950 for(Uint32 i
{0u};!ok
&& i
< rinf
.num_texture_formats
;i
++)
1951 ok
= (rinf
.texture_formats
[i
] == SDL_PIXELFORMAT_IYUV
);
1955 std::cerr
<< "IYUV pixelformat textures not supported on renderer "<<rinf
.name
<<std::endl
;
1956 SDL_DestroyRenderer(renderer
);
1962 render_flags
= SDL_RENDERER_SOFTWARE
| SDL_RENDERER_PRESENTVSYNC
;
1963 renderer
= SDL_CreateRenderer(screen
, -1, render_flags
);
1967 std::cerr
<< "SDL: could not create renderer - exiting" <<std::endl
;
1970 SDL_SetRenderDrawColor(renderer
, 0, 0, 0, 255);
1971 SDL_RenderFillRect(renderer
, nullptr);
1972 SDL_RenderPresent(renderer
);
1974 /* Open an audio device */
1975 args
= args
.subspan(1);
1976 if(InitAL(args
) != 0)
1980 ALCdevice
*device
{alcGetContextsDevice(alcGetCurrentContext())};
1981 if(alcIsExtensionPresent(device
,"ALC_SOFT_device_clock"))
1983 std::cout
<< "Found ALC_SOFT_device_clock" <<std::endl
;
1984 alcGetInteger64vSOFT
= reinterpret_cast<LPALCGETINTEGER64VSOFT
>(
1985 alcGetProcAddress(device
, "alcGetInteger64vSOFT"));
1989 if(alIsExtensionPresent("AL_SOFT_source_latency"))
1991 std::cout
<< "Found AL_SOFT_source_latency" <<std::endl
;
1992 alGetSourcei64vSOFT
= reinterpret_cast<LPALGETSOURCEI64VSOFT
>(
1993 alGetProcAddress("alGetSourcei64vSOFT"));
1995 if(alIsExtensionPresent("AL_SOFT_events"))
1997 std::cout
<< "Found AL_SOFT_events" <<std::endl
;
1998 alEventControlSOFT
= reinterpret_cast<LPALEVENTCONTROLSOFT
>(
1999 alGetProcAddress("alEventControlSOFT"));
2000 alEventCallbackSOFT
= reinterpret_cast<LPALEVENTCALLBACKSOFT
>(
2001 alGetProcAddress("alEventCallbackSOFT"));
2003 if(alIsExtensionPresent("AL_SOFT_callback_buffer"))
2005 std::cout
<< "Found AL_SOFT_callback_buffer" <<std::endl
;
2006 alBufferCallbackSOFT
= reinterpret_cast<LPALBUFFERCALLBACKSOFT
>(
2007 alGetProcAddress("alBufferCallbackSOFT"));
2011 for(;fileidx
< args
.size();++fileidx
)
2013 if(args
[fileidx
] == "-direct")
2015 if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
2017 std::cout
<< "Found AL_SOFT_direct_channels_remix" <<std::endl
;
2018 DirectOutMode
= AL_REMIX_UNMATCHED_SOFT
;
2020 else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
2022 std::cout
<< "Found AL_SOFT_direct_channels" <<std::endl
;
2023 DirectOutMode
= AL_DROP_UNMATCHED_SOFT
;
2026 std::cerr
<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl
;
2028 else if(args
[fileidx
] == "-wide")
2030 if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
2031 std::cerr
<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl
;
2034 std::cout
<< "Found AL_EXT_STEREO_ANGLES" <<std::endl
;
2035 EnableWideStereo
= true;
2038 else if(args
[fileidx
] == "-uhj")
2040 if(!alIsExtensionPresent("AL_SOFT_UHJ"))
2041 std::cerr
<< "AL_SOFT_UHJ not supported for UHJ decoding" <<std::endl
;
2044 std::cout
<< "Found AL_SOFT_UHJ" <<std::endl
;
2048 else if(args
[fileidx
] == "-superstereo")
2050 if(!alIsExtensionPresent("AL_SOFT_UHJ"))
2051 std::cerr
<< "AL_SOFT_UHJ not supported for Super Stereo decoding" <<std::endl
;
2054 std::cout
<< "Found AL_SOFT_UHJ (Super Stereo)" <<std::endl
;
2055 EnableSuperStereo
= true;
2058 else if(args
[fileidx
] == "-novideo")
2059 DisableVideo
= true;
2064 while(fileidx
< args
.size() && !movState
)
2066 movState
= std::make_unique
<MovieState
>(args
[fileidx
++]);
2067 if(!movState
->prepare()) movState
= nullptr;
2071 std::cerr
<< "Could not start a video" <<std::endl
;
2074 movState
->setTitle(screen
);
2076 /* Default to going to the next movie at the end of one. */
2077 enum class EomAction
{
2079 } eom_action
{EomAction::Next
};
2080 seconds last_time
{seconds::min()};
2083 /* SDL_WaitEventTimeout is broken, just force a 10ms sleep. */
2084 std::this_thread::sleep_for(milliseconds
{10});
2086 auto cur_time
= std::chrono::duration_cast
<seconds
>(movState
->getMasterClock());
2087 if(cur_time
!= last_time
)
2089 auto end_time
= std::chrono::duration_cast
<seconds
>(movState
->getDuration());
2090 std::cout
<< " \r "<<PrettyTime
{cur_time
}<<" / "<<PrettyTime
{end_time
} <<std::flush
;
2091 last_time
= cur_time
;
2094 bool force_redraw
{false};
2096 while(SDL_PollEvent(&event
) != 0)
2101 switch(event
.key
.keysym
.sym
)
2105 eom_action
= EomAction::Quit
;
2110 eom_action
= EomAction::Next
;
2118 case SDL_WINDOWEVENT
:
2119 switch(event
.window
.event
)
2121 case SDL_WINDOWEVENT_RESIZED
:
2122 SDL_SetRenderDrawColor(renderer
, 0, 0, 0, 255);
2123 SDL_RenderFillRect(renderer
, nullptr);
2124 force_redraw
= true;
2127 case SDL_WINDOWEVENT_EXPOSED
:
2128 force_redraw
= true;
2138 eom_action
= EomAction::Quit
;
2141 case FF_MOVIE_DONE_EVENT
:
2143 last_time
= seconds::min();
2144 if(eom_action
!= EomAction::Quit
)
2147 while(fileidx
< args
.size() && !movState
)
2149 movState
= std::make_unique
<MovieState
>(args
[fileidx
++]);
2150 if(!movState
->prepare()) movState
= nullptr;
2154 movState
->setTitle(screen
);
2159 /* Nothing more to play. Shut everything down and quit. */
2164 SDL_DestroyRenderer(renderer
);
2166 SDL_DestroyWindow(screen
);
2177 movState
->mVideo
.updateVideo(screen
, renderer
, force_redraw
);
2180 std::cerr
<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl
;
2186 int main(int argc
, char *argv
[])
2189 auto args
= std::vector
<std::string_view
>(static_cast<unsigned int>(argc
));
2190 std::copy_n(argv
, args
.size(), args
.begin());
2191 return main(al::span
{args
});