2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
34 #include "alc/effects/base.h"
35 #include "alnumbers.h"
36 #include "alnumeric.h"
38 #include "core/ambidefs.h"
39 #include "core/bufferline.h"
40 #include "core/context.h"
41 #include "core/cubic_tables.h"
42 #include "core/device.h"
43 #include "core/effects/base.h"
44 #include "core/effectslot.h"
45 #include "core/filters/biquad.h"
46 #include "core/filters/splitter.h"
47 #include "core/mixer.h"
48 #include "core/mixer/defs.h"
49 #include "intrusive_ptr.h"
50 #include "opthelpers.h"
57 using uint
= unsigned int;
59 constexpr float MaxModulationTime
{4.0f
};
60 constexpr float DefaultModulationTime
{0.25f
};
62 #define MOD_FRACBITS 24
63 #define MOD_FRACONE (1<<MOD_FRACBITS)
64 #define MOD_FRACMASK (MOD_FRACONE-1)
67 /* Max samples per process iteration. Used to limit the size needed for
68 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
70 constexpr size_t MAX_UPDATE_SAMPLES
{256};
72 /* The number of spatialized lines or channels to process. Four channels allows
73 * for a 3D A-Format response. NOTE: This can't be changed without taking care
74 * of the conversion matrices, and a few places where the length arrays are
75 * assumed to have 4 elements.
77 constexpr size_t NUM_LINES
{4u};
80 /* This coefficient is used to define the maximum frequency range controlled by
81 * the modulation depth. The current value of 0.05 will allow it to swing from
82 * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
83 * to stall on the downswing, and above 1 it will cause it to sample backwards.
84 * The value 0.05 seems be nearest to Creative hardware behavior.
86 constexpr float MODULATION_DEPTH_COEFF
{0.05f
};
89 /* The B-Format to (W-normalized) A-Format conversion matrix. This produces a
90 * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to
91 * reduce the error introduced in the conversion).
93 alignas(16) constexpr std::array
<std::array
<float,NUM_LINES
>,NUM_LINES
> B2A
{{
95 {{ 0.5f
, 0.5f
, 0.5f
, 0.5f
}}, /* A0 */
96 {{ 0.5f
, -0.5f
, -0.5f
, 0.5f
}}, /* A1 */
97 {{ 0.5f
, 0.5f
, -0.5f
, -0.5f
}}, /* A2 */
98 {{ 0.5f
, -0.5f
, 0.5f
, -0.5f
}} /* A3 */
101 /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled
102 * by 1/sqrt(3) to compensate for the boost in the B2A matrix).
104 alignas(16) constexpr std::array
<std::array
<float,NUM_LINES
>,NUM_LINES
> EarlyA2B
{{
106 {{ 0.5f
, 0.5f
, 0.5f
, 0.5f
}}, /* W */
107 {{ 0.5f
, -0.5f
, 0.5f
, -0.5f
}}, /* Y */
108 {{ 0.5f
, -0.5f
, -0.5f
, 0.5f
}}, /* Z */
109 {{ 0.5f
, 0.5f
, -0.5f
, -0.5f
}} /* X */
112 /* Converts (W-normalized) A-Format to B-Format for late reverb (scaled
113 * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response
114 * is rotated around Z (ambisonic X) so that the front lines are placed
115 * horizontally in front, and the rear lines are placed vertically in back.
117 constexpr auto InvSqrt2
= static_cast<float>(1.0/al::numbers::sqrt2
);
118 alignas(16) constexpr std::array
<std::array
<float,NUM_LINES
>,NUM_LINES
> LateA2B
{{
120 {{ 0.5f
, 0.5f
, 0.5f
, 0.5f
}}, /* W */
121 {{ InvSqrt2
, -InvSqrt2
, 0.0f
, 0.0f
}}, /* Y */
122 {{ 0.0f
, 0.0f
, -InvSqrt2
, InvSqrt2
}}, /* Z */
123 {{ 0.5f
, 0.5f
, -0.5f
, -0.5f
}} /* X */
126 /* The all-pass and delay lines have a variable length dependent on the
127 * effect's density parameter, which helps alter the perceived environment
128 * size. The size-to-density conversion is a cubed scale:
130 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
132 * The line lengths scale linearly with room size, so the inverse density
133 * conversion is needed, taking the cube root of the re-scaled density to
134 * calculate the line length multiplier:
136 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
138 * The density scale below will result in a max line multiplier of 50, for an
139 * effective size range of 5m to 50m.
141 constexpr float DENSITY_SCALE
{125000.0f
};
143 /* All delay line lengths are specified in seconds.
145 * To approximate early reflections, we break them up into primary (those
146 * arriving from the same direction as the source) and secondary (those
147 * arriving from the opposite direction).
149 * The early taps decorrelate the 4-channel signal to approximate an average
150 * room response for the primary reflections after the initial early delay.
152 * Given an average room dimension (d_a) and the speed of sound (c) we can
153 * calculate the average reflection delay (r_a) regardless of listener and
154 * source positions as:
159 * This can extended to finding the average difference (r_d) between the
160 * maximum (r_1) and minimum (r_0) reflection delays:
171 * As can be determined by integrating the 1D model with a source (s) and
172 * listener (l) positioned across the dimension of length (d_a):
174 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
176 * The initial taps (T_(i=0)^N) are then specified by taking a power series
177 * that ranges between r_0 and half of r_1 less r_0:
179 * R_i = 2^(i / (2 N - 1)) r_d
180 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
183 * = (2^(i / (2 N - 1)) - 1) r_d
185 * Assuming an average of 1m, we get the following taps:
187 constexpr std::array
<float,NUM_LINES
> EARLY_TAP_LENGTHS
{{
188 0.0000000e+0f
, 2.0213520e-4f
, 4.2531060e-4f
, 6.7171600e-4f
191 /* The early all-pass filter lengths are based on the early tap lengths:
195 * Where a is the approximate maximum all-pass cycle limit (20).
197 constexpr std::array
<float,NUM_LINES
> EARLY_ALLPASS_LENGTHS
{{
198 9.7096800e-5f
, 1.0720356e-4f
, 1.1836234e-4f
, 1.3068260e-4f
201 /* The early delay lines are used to transform the primary reflections into
202 * the secondary reflections. The A-format is arranged in such a way that
203 * the channels/lines are spatially opposite:
205 * C_i is opposite C_(N-i-1)
207 * The delays of the two opposing reflections (R_i and O_i) from a source
208 * anywhere along a particular dimension always sum to twice its full delay:
212 * With that in mind we can determine the delay between the two reflections
213 * and thus specify our early line lengths (L_(i=0)^N) using:
215 * O_i = 2 r_a - R_(N-i-1)
216 * L_i = O_i - R_(N-i-1)
217 * = 2 (r_a - R_(N-i-1))
218 * = 2 (r_a - T_(N-i-1) - r_0)
219 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
221 * Using an average dimension of 1m, we get:
223 constexpr std::array
<float,NUM_LINES
> EARLY_LINE_LENGTHS
{{
224 0.0000000e+0f
, 4.9281100e-4f
, 9.3916180e-4f
, 1.3434322e-3f
227 /* The late all-pass filter lengths are based on the late line lengths:
229 * A_i = (5 / 3) L_i / r_1
231 constexpr std::array
<float,NUM_LINES
> LATE_ALLPASS_LENGTHS
{{
232 1.6182800e-4f
, 2.0389060e-4f
, 2.8159360e-4f
, 3.2365600e-4f
235 /* The late lines are used to approximate the decaying cycle of recursive
238 * Splitting the lines in half, we start with the shortest reflection paths
241 * L_i = 2^(i / (N - 1)) r_d
243 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
245 * L_i = 2 r_a - L_(i-N/2)
246 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
248 * For our 1m average room, we get:
250 constexpr std::array
<float,NUM_LINES
> LATE_LINE_LENGTHS
{{
251 1.9419362e-3f
, 2.4466860e-3f
, 3.3791220e-3f
, 3.8838720e-3f
255 using ReverbUpdateLine
= std::array
<float,MAX_UPDATE_SAMPLES
>;
258 /* The delay lines use interleaved samples, with the lengths being powers
259 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
261 al::span
<float> mLine
;
263 /* Given the allocated sample buffer, this function updates each delay line
266 void realizeLineOffset(al::span
<float> sampleBuffer
) noexcept
267 { mLine
= sampleBuffer
; }
269 /* Calculate the length of a delay line and store its mask and offset. */
271 auto calcLineLength(const float length
, const float frequency
, const uint extra
) -> size_t
273 /* All line lengths are powers of 2, calculated from their lengths in
274 * seconds, rounded up.
276 uint samples
{float2uint(std::ceil(length
*frequency
))};
277 samples
= NextPowerOf2(samples
+ extra
);
279 /* Return the sample count for accumulation. */
280 return samples
*NUM_LINES
;
285 al::span
<float> mLine
;
287 void realizeLineOffset(al::span
<float> sampleBuffer
) noexcept
289 assert(sampleBuffer
.size() > 4 && !(sampleBuffer
.size() & (sampleBuffer
.size()-1)));
290 mLine
= sampleBuffer
;
294 auto calcLineLength(const float length
, const float frequency
, const uint extra
) -> size_t
296 uint samples
{float2uint(std::ceil(length
*frequency
))};
297 samples
= NextPowerOf2(samples
+ extra
);
299 return samples
*NUM_LINES
;
303 auto get(size_t chan
) const noexcept
305 const size_t stride
{mLine
.size() / NUM_LINES
};
306 return mLine
.subspan(chan
*stride
, stride
);
309 void write(size_t offset
, const size_t c
, al::span
<const float> in
) const noexcept
311 const size_t stride
{mLine
.size() / NUM_LINES
};
312 const auto output
= mLine
.subspan(c
*stride
);
316 const size_t td
{std::min(stride
- offset
, in
.size())};
317 std::copy_n(in
.begin(), td
, output
.begin() + ptrdiff_t(offset
));
323 /* Writes the given input lines to the delay buffer, applying a geometric
324 * reflection. This effectively applies the matrix
326 * [ +1/2 -1/2 -1/2 -1/2 ]
327 * [ -1/2 +1/2 -1/2 -1/2 ]
328 * [ -1/2 -1/2 +1/2 -1/2 ]
329 * [ -1/2 -1/2 -1/2 +1/2 ]
331 * to the four input lines when writing to the delay buffer. The effect on
332 * the B-Format signal is negating W, applying a 180-degree phase shift and
333 * moving each response to its spatially opposite location.
335 void writeReflected(size_t offset
, const al::span
<const ReverbUpdateLine
,NUM_LINES
> in
,
336 const size_t count
) const noexcept
338 const size_t stride
{mLine
.size() / NUM_LINES
};
339 for(size_t i
{0u};i
< count
;)
342 size_t td
{std::min(stride
- offset
, count
- i
)};
344 const std::array src
{in
[0][i
], in
[1][i
], in
[2][i
], in
[3][i
]};
348 (src
[0] - src
[1] - src
[2] - src
[3]) * 0.5f
,
349 (src
[1] - src
[0] - src
[2] - src
[3]) * 0.5f
,
350 (src
[2] - src
[0] - src
[1] - src
[3]) * 0.5f
,
351 (src
[3] - src
[0] - src
[1] - src
[2] ) * 0.5f
353 mLine
[0*stride
+ offset
] = f
[0];
354 mLine
[1*stride
+ offset
] = f
[1];
355 mLine
[2*stride
+ offset
] = f
[2];
356 mLine
[3*stride
+ offset
] = f
[3];
366 std::array
<size_t,NUM_LINES
> Offset
{};
368 void process(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
369 const float xCoeff
, const float yCoeff
, const size_t todo
) const noexcept
;
375 std::array
<size_t,NUM_LINES
> Offset
{};
377 void process(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, const size_t offset
,
378 const size_t todo
) const noexcept
;
382 /* Two filters are used to adjust the signal. One to control the low
383 * frequencies, and one to control the high frequencies.
386 BiquadFilter HFFilter
, LFFilter
;
388 void calcCoeffs(const float length
, const float lfDecayTime
, const float mfDecayTime
,
389 const float hfDecayTime
, const float lf0norm
, const float hf0norm
);
391 /* Applies the two T60 damping filter sections. */
392 void process(const al::span
<float> samples
)
393 { DualBiquad
{HFFilter
, LFFilter
}.process(samples
, samples
); }
395 void clear() noexcept
{ HFFilter
.clear(); LFFilter
.clear(); }
398 struct EarlyReflections
{
401 /* An echo line is used to complete the second half of the early
405 std::array
<size_t,NUM_LINES
> Offset
{};
406 std::array
<float,NUM_LINES
> Coeff
{};
408 /* The gain for each output channel based on 3D panning. */
410 std::array
<float,MaxAmbiChannels
> Current
{};
411 std::array
<float,MaxAmbiChannels
> Target
{};
413 void clear() { Current
.fill(0.0f
); Target
.fill(0.0); }
415 std::array
<OutGains
,NUM_LINES
> Gains
{};
417 void updateLines(const float density_mult
, const float diffusion
, const float decayTime
,
418 const float frequency
);
422 std::for_each(Gains
.begin(), Gains
.end(), std::mem_fn(&OutGains::clear
));
428 /* The vibrato time is tracked with an index over a (MOD_FRACONE)
431 uint Index
{0u}, Step
{1u};
433 /* The depth of frequency change, in samples. */
436 std::array
<uint
,MAX_UPDATE_SAMPLES
> ModDelays
{};
438 void updateModulator(float modTime
, float modDepth
, float frequency
);
440 auto calcDelays(size_t todo
) -> al::span
<const uint
>;
442 void clear() noexcept
451 /* A recursive delay line is used fill in the reverb tail. */
453 std::array
<size_t,NUM_LINES
> Offset
{};
455 /* Attenuation to compensate for the modal density and decay rate of the
458 float DensityGain
{0.0f
};
460 /* T60 decay filters are used to simulate absorption. */
461 std::array
<T60Filter
,NUM_LINES
> T60
;
465 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
468 /* The gain for each output channel based on 3D panning. */
470 std::array
<float,MaxAmbiChannels
> Current
{};
471 std::array
<float,MaxAmbiChannels
> Target
{};
473 void clear() { Current
.fill(0.0f
); Target
.fill(0.0); }
475 std::array
<OutGains
,NUM_LINES
> Gains
{};
477 void updateLines(const float density_mult
, const float diffusion
, const float lfDecayTime
,
478 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
479 const float hf0norm
, const float frequency
);
483 std::for_each(T60
.begin(), T60
.end(), std::mem_fn(&T60Filter::clear
));
485 std::for_each(Gains
.begin(), Gains
.end(), std::mem_fn(&OutGains::clear
));
489 struct ReverbPipeline
{
490 /* Master effect filters */
494 void clear() noexcept
{ Lp
.clear(); Hp
.clear(); }
496 std::array
<FilterPair
,NUM_LINES
> mFilter
;
498 /* Late reverb input delay line (early reflections feed this, and late
499 * reverb taps from it).
501 DelayLineU mLateDelayIn
;
503 /* Tap points for early reflection input delay. */
504 std::array
<std::array
<size_t,2>,NUM_LINES
> mEarlyDelayTap
{};
505 std::array
<std::array
<float,2>,NUM_LINES
> mEarlyDelayCoeff
{};
507 /* Tap points for late reverb feed and delay. */
508 std::array
<std::array
<size_t,2>,NUM_LINES
> mLateDelayTap
{};
510 /* Coefficients for the all-pass and line scattering matrices. */
514 EarlyReflections mEarly
;
518 std::array
<std::array
<BandSplitter
,NUM_LINES
>,2> mAmbiSplitter
;
520 size_t mFadeSampleCount
{1};
522 void updateDelayLine(const float gain
, const float earlyDelay
, const float lateDelay
,
523 const float density_mult
, const float decayTime
, const float frequency
);
524 void update3DPanning(const al::span
<const float,3> ReflectionsPan
,
525 const al::span
<const float,3> LateReverbPan
, const float earlyGain
, const float lateGain
,
526 const bool doUpmix
, const MixParams
*mainMix
);
528 void processEarly(const DelayLineU
&main_delay
, size_t offset
, const size_t samplesToDo
,
529 const al::span
<ReverbUpdateLine
,NUM_LINES
> tempSamples
,
530 const al::span
<FloatBufferLine
,NUM_LINES
> outSamples
);
531 void processLate(size_t offset
, const size_t samplesToDo
,
532 const al::span
<ReverbUpdateLine
,NUM_LINES
> tempSamples
,
533 const al::span
<FloatBufferLine
,NUM_LINES
> outSamples
);
535 void clear() noexcept
537 std::for_each(mFilter
.begin(), mFilter
.end(), std::mem_fn(&FilterPair::clear
));
539 mEarlyDelayCoeff
= {};
543 auto clear_filters
= [](const al::span
<BandSplitter
,NUM_LINES
> filters
)
544 { std::for_each(filters
.begin(), filters
.end(), std::mem_fn(&BandSplitter::clear
)); };
545 std::for_each(mAmbiSplitter
.begin(), mAmbiSplitter
.end(), clear_filters
);
549 struct ReverbState final
: public EffectState
{
550 /* All delay lines are allocated as a single buffer to reduce memory
551 * fragmentation and management code.
553 al::vector
<float,16> mSampleBuffer
;
556 /* Calculated parameters which indicate if cross-fading is needed after
560 float Diffusion
{1.0f
};
561 float DecayTime
{1.49f
};
562 float HFDecayTime
{0.83f
* 1.49f
};
563 float LFDecayTime
{1.0f
* 1.49f
};
564 float ModulationTime
{0.25f
};
565 float ModulationDepth
{0.0f
};
566 float HFReference
{5000.0f
};
567 float LFReference
{250.0f
};
571 enum PipelineState
: uint8_t {
578 PipelineState mPipelineState
{DeviceClear
};
579 bool mCurrentPipeline
{false};
581 /* Core delay line (early reflections tap from this). */
582 DelayLineU mMainDelay
;
584 std::array
<ReverbPipeline
,2> mPipelines
;
586 /* The current write offset for all delay lines. */
589 /* Temporary storage used when processing. */
590 alignas(16) FloatBufferLine mTempLine
{};
591 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mTempSamples
{};
593 alignas(16) std::array
<FloatBufferLine
,NUM_LINES
> mEarlySamples
{};
594 alignas(16) std::array
<FloatBufferLine
,NUM_LINES
> mLateSamples
{};
596 std::array
<float,MaxAmbiOrder
+1> mOrderScales
{};
598 bool mUpmixOutput
{false};
601 void MixOutPlain(ReverbPipeline
&pipeline
, const al::span
<FloatBufferLine
> samplesOut
,
602 const size_t todo
) const
604 /* When not upsampling, the panning gains convert to B-Format and pan
607 auto inBuffer
= mEarlySamples
.cbegin();
608 for(auto &gains
: pipeline
.mEarly
.Gains
)
610 MixSamples(al::span
{*inBuffer
++}.first(todo
), samplesOut
, gains
.Current
, gains
.Target
,
613 inBuffer
= mLateSamples
.cbegin();
614 for(auto &gains
: pipeline
.mLate
.Gains
)
616 MixSamples(al::span
{*inBuffer
++}.first(todo
), samplesOut
, gains
.Current
, gains
.Target
,
621 void MixOutAmbiUp(ReverbPipeline
&pipeline
, const al::span
<FloatBufferLine
> samplesOut
,
624 auto DoMixRow
= [](const al::span
<float> OutBuffer
, const al::span
<const float,4> Gains
,
625 const al::span
<const FloatBufferLine
,4> InSamples
)
627 auto inBuffer
= InSamples
.cbegin();
628 std::fill(OutBuffer
.begin(), OutBuffer
.end(), 0.0f
);
629 for(const float gain
: Gains
)
631 if(std::fabs(gain
) > GainSilenceThreshold
)
633 auto mix_sample
= [gain
](const float sample
, const float in
) noexcept
-> float
634 { return sample
+ in
*gain
; };
635 std::transform(OutBuffer
.begin(), OutBuffer
.end(), inBuffer
->cbegin(),
636 OutBuffer
.begin(), mix_sample
);
642 /* When upsampling, the B-Format conversion needs to be done separately
643 * so the proper HF scaling can be applied to each B-Format channel.
644 * The panning gains then pan and upsample the B-Format channels.
646 const auto tmpspan
= al::span
{mTempLine
}.first(todo
);
647 auto hfscale
= float{mOrderScales
[0]};
648 auto splitter
= pipeline
.mAmbiSplitter
[0].begin();
649 auto a2bcoeffs
= EarlyA2B
.cbegin();
650 for(auto &gains
: pipeline
.mEarly
.Gains
)
652 DoMixRow(tmpspan
, *(a2bcoeffs
++), mEarlySamples
);
654 /* Apply scaling to the B-Format's HF response to "upsample" it to
655 * higher-order output.
657 (splitter
++)->processHfScale(tmpspan
, hfscale
);
658 hfscale
= mOrderScales
[1];
660 MixSamples(tmpspan
, samplesOut
, gains
.Current
, gains
.Target
, todo
, 0);
662 hfscale
= mOrderScales
[0];
663 splitter
= pipeline
.mAmbiSplitter
[1].begin();
664 a2bcoeffs
= LateA2B
.cbegin();
665 for(auto &gains
: pipeline
.mLate
.Gains
)
667 DoMixRow(tmpspan
, *(a2bcoeffs
++), mLateSamples
);
669 (splitter
++)->processHfScale(tmpspan
, hfscale
);
670 hfscale
= mOrderScales
[1];
672 MixSamples(tmpspan
, samplesOut
, gains
.Current
, gains
.Target
, todo
, 0);
676 void mixOut(ReverbPipeline
&pipeline
, const al::span
<FloatBufferLine
> samplesOut
, const size_t todo
)
679 MixOutAmbiUp(pipeline
, samplesOut
, todo
);
681 MixOutPlain(pipeline
, samplesOut
, todo
);
684 void allocLines(const float frequency
);
686 void deviceUpdate(const DeviceBase
*device
, const BufferStorage
*buffer
) override
;
687 void update(const ContextBase
*context
, const EffectSlot
*slot
, const EffectProps
*props
,
688 const EffectTarget target
) override
;
689 void process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
,
690 const al::span
<FloatBufferLine
> samplesOut
) override
;
693 /**************************************
695 **************************************/
697 inline float CalcDelayLengthMult(float density
)
698 { return std::max(5.0f
, std::cbrt(density
*DENSITY_SCALE
)); }
700 /* Calculates the delay line metrics and allocates the shared sample buffer
701 * for all lines given the sample rate (frequency).
703 void ReverbState::allocLines(const float frequency
)
705 /* Multiplier for the maximum density value, i.e. density=1, which is
706 * actually the least density...
708 const float multiplier
{CalcDelayLengthMult(1.0f
)};
710 /* The modulator's line length is calculated from the maximum modulation
711 * time and depth coefficient, and halfed for the low-to-high frequency
714 static constexpr float max_mod_delay
{MaxModulationTime
*MODULATION_DEPTH_COEFF
/ 2.0f
};
716 std::array
<size_t,11> linelengths
{};
719 size_t totalSamples
{0u};
720 /* The main delay length includes the maximum early reflection delay and
721 * the largest early tap width. It must also be extended by the update size
722 * (BufferLineSize) for block processing.
724 float length
{ReverbMaxReflectionsDelay
+ EARLY_TAP_LENGTHS
.back()*multiplier
};
725 size_t count
{mMainDelay
.calcLineLength(length
, frequency
, BufferLineSize
)};
726 linelengths
[oidx
++] = count
;
727 totalSamples
+= count
;
728 for(auto &pipeline
: mPipelines
)
730 static constexpr float LateDiffAvg
{(LATE_LINE_LENGTHS
.back()-LATE_LINE_LENGTHS
.front()) /
732 length
= ReverbMaxLateReverbDelay
+ LateDiffAvg
*multiplier
;
733 count
= pipeline
.mLateDelayIn
.calcLineLength(length
, frequency
, BufferLineSize
);
734 linelengths
[oidx
++] = count
;
735 totalSamples
+= count
;
737 /* The early vector all-pass line. */
738 length
= EARLY_ALLPASS_LENGTHS
.back() * multiplier
;
739 count
= pipeline
.mEarly
.VecAp
.Delay
.calcLineLength(length
, frequency
, 0);
740 linelengths
[oidx
++] = count
;
741 totalSamples
+= count
;
743 /* The early reflection line. */
744 length
= EARLY_LINE_LENGTHS
.back() * multiplier
;
745 count
= pipeline
.mEarly
.Delay
.calcLineLength(length
, frequency
, MAX_UPDATE_SAMPLES
);
746 linelengths
[oidx
++] = count
;
747 totalSamples
+= count
;
749 /* The late vector all-pass line. */
750 length
= LATE_ALLPASS_LENGTHS
.back() * multiplier
;
751 count
= pipeline
.mLate
.VecAp
.Delay
.calcLineLength(length
, frequency
, 0);
752 linelengths
[oidx
++] = count
;
753 totalSamples
+= count
;
755 /* The late delay lines are calculated from the largest maximum density
756 * line length, and the maximum modulation delay. Four additional
757 * samples are needed for resampling the modulator delay.
759 length
= LATE_LINE_LENGTHS
.back()*multiplier
+ max_mod_delay
;
760 count
= pipeline
.mLate
.Delay
.calcLineLength(length
, frequency
, 4);
761 linelengths
[oidx
++] = count
;
762 totalSamples
+= count
;
764 assert(oidx
== linelengths
.size());
766 if(totalSamples
!= mSampleBuffer
.size())
767 decltype(mSampleBuffer
)(totalSamples
).swap(mSampleBuffer
);
769 /* Clear the sample buffer. */
770 std::fill(mSampleBuffer
.begin(), mSampleBuffer
.end(), 0.0f
);
772 /* Update all delays to reflect the new sample buffer. */
773 auto bufferspan
= al::span
{mSampleBuffer
};
775 mMainDelay
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
776 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
777 for(auto &pipeline
: mPipelines
)
779 pipeline
.mLateDelayIn
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
780 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
781 pipeline
.mEarly
.VecAp
.Delay
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
782 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
783 pipeline
.mEarly
.Delay
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
784 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
785 pipeline
.mLate
.VecAp
.Delay
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
786 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
787 pipeline
.mLate
.Delay
.realizeLineOffset(bufferspan
.first(linelengths
[oidx
]));
788 bufferspan
= bufferspan
.subspan(linelengths
[oidx
++]);
790 assert(oidx
== linelengths
.size());
793 void ReverbState::deviceUpdate(const DeviceBase
*device
, const BufferStorage
*)
795 const auto frequency
= static_cast<float>(device
->Frequency
);
797 /* Allocate the delay lines. */
798 allocLines(frequency
);
800 std::for_each(mPipelines
.begin(), mPipelines
.end(), std::mem_fn(&ReverbPipeline::clear
));
801 mPipelineState
= DeviceClear
;
803 /* Reset offset base. */
806 if(device
->mAmbiOrder
> 1)
809 mOrderScales
= AmbiScale::GetHFOrderScales(1, device
->mAmbiOrder
, device
->m2DMixing
);
813 mUpmixOutput
= false;
814 mOrderScales
.fill(1.0f
);
817 auto splitter
= BandSplitter
{device
->mXOverFreq
/ frequency
};
818 auto set_splitters
= [&splitter
](ReverbPipeline
&pipeline
)
820 std::fill(pipeline
.mAmbiSplitter
[0].begin(), pipeline
.mAmbiSplitter
[0].end(), splitter
);
821 std::fill(pipeline
.mAmbiSplitter
[1].begin(), pipeline
.mAmbiSplitter
[1].end(), splitter
);
823 std::for_each(mPipelines
.begin(), mPipelines
.end(), set_splitters
);
826 /**************************************
828 **************************************/
830 /* Calculate a decay coefficient given the length of each cycle and the time
831 * until the decay reaches -60 dB.
833 inline float CalcDecayCoeff(const float length
, const float decayTime
)
834 { return std::pow(ReverbDecayGain
, length
/decayTime
); }
836 /* Calculate a decay length from a coefficient and the time until the decay
839 inline float CalcDecayLength(const float coeff
, const float decayTime
)
841 constexpr float log10_decaygain
{-3.0f
/*std::log10(ReverbDecayGain)*/};
842 return std::log10(coeff
) * decayTime
/ log10_decaygain
;
845 /* Calculate an attenuation to be applied to the input of any echo models to
846 * compensate for modal density and decay time.
848 inline float CalcDensityGain(const float a
)
850 /* The energy of a signal can be obtained by finding the area under the
851 * squared signal. This takes the form of Sum(x_n^2), where x is the
852 * amplitude for the sample n.
854 * Decaying feedback matches exponential decay of the form Sum(a^n),
855 * where a is the attenuation coefficient, and n is the sample. The area
856 * under this decay curve can be calculated as: 1 / (1 - a).
858 * Modifying the above equation to find the area under the squared curve
859 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
860 * calculated by inverting the square root of this approximation,
861 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
863 return std::sqrt(1.0f
- a
*a
);
866 /* Calculate the scattering matrix coefficients given a diffusion factor. */
867 inline void CalcMatrixCoeffs(const float diffusion
, float *x
, float *y
)
869 /* The matrix is of order 4, so n is sqrt(4 - 1). */
870 constexpr float n
{al::numbers::sqrt3_v
<float>};
871 const float t
{diffusion
* std::atan(n
)};
873 /* Calculate the first mixing matrix coefficient. */
875 /* Calculate the second mixing matrix coefficient. */
876 *y
= std::sin(t
) / n
;
879 /* Calculate the limited HF ratio for use with the late reverb low-pass
882 float CalcLimitedHfRatio(const float hfRatio
, const float airAbsorptionGainHF
,
883 const float decayTime
)
885 /* Find the attenuation due to air absorption in dB (converting delay
886 * time to meters using the speed of sound). Then reversing the decay
887 * equation, solve for HF ratio. The delay length is cancelled out of
888 * the equation, so it can be calculated once for all lines.
890 float limitRatio
{1.0f
/ SpeedOfSoundMetersPerSec
/
891 CalcDecayLength(airAbsorptionGainHF
, decayTime
)};
893 /* Using the limit calculated above, apply the upper bound to the HF ratio. */
894 return std::min(limitRatio
, hfRatio
);
898 /* Calculates the 3-band T60 damping coefficients for a particular delay line
899 * of specified length, using a combination of two shelf filter sections given
900 * decay times for each band split at two reference frequencies.
902 void T60Filter::calcCoeffs(const float length
, const float lfDecayTime
,
903 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
906 const float mfGain
{CalcDecayCoeff(length
, mfDecayTime
)};
907 const float lfGain
{CalcDecayCoeff(length
, lfDecayTime
) / mfGain
};
908 const float hfGain
{CalcDecayCoeff(length
, hfDecayTime
) / mfGain
};
911 LFFilter
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, lfGain
, 1.0f
);
912 HFFilter
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, hfGain
, 1.0f
);
915 /* Update the early reflection line lengths and gain coefficients. */
916 void EarlyReflections::updateLines(const float density_mult
, const float diffusion
,
917 const float decayTime
, const float frequency
)
919 /* Calculate the all-pass feed-back/forward coefficient. */
920 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
922 for(size_t i
{0u};i
< NUM_LINES
;i
++)
924 /* Calculate the delay length of each all-pass line. */
925 float length
{EARLY_ALLPASS_LENGTHS
[i
] * density_mult
};
926 VecAp
.Offset
[i
] = float2uint(length
* frequency
);
928 /* Calculate the delay length of each delay line. */
929 length
= EARLY_LINE_LENGTHS
[i
] * density_mult
;
930 Offset
[i
] = float2uint(length
* frequency
);
932 /* Calculate the gain (coefficient) for each line. */
933 Coeff
[i
] = CalcDecayCoeff(length
, decayTime
);
937 /* Update the EAX modulation step and depth. Keep in mind that this kind of
938 * vibrato is additive and not multiplicative as one may expect. The downswing
939 * will sound stronger than the upswing.
941 void Modulation::updateModulator(float modTime
, float modDepth
, float frequency
)
943 /* Modulation is calculated in two parts.
945 * The modulation time effects the sinus rate, altering the speed of
946 * frequency changes. An index is incremented for each sample with an
947 * appropriate step size to generate an LFO, which will vary the feedback
950 Step
= std::max(fastf2u(MOD_FRACONE
/ (frequency
* modTime
)), 1u);
952 /* The modulation depth effects the amount of frequency change over the
953 * range of the sinus. It needs to be scaled by the modulation time so that
954 * a given depth produces a consistent change in frequency over all ranges
955 * of time. Since the depth is applied to a sinus value, it needs to be
956 * halved once for the sinus range and again for the sinus swing in time
957 * (half of it is spent decreasing the frequency, half is spent increasing
960 if(modTime
>= DefaultModulationTime
)
962 /* To cancel the effects of a long period modulation on the late
963 * reverberation, the amount of pitch should be varied (decreased)
964 * according to the modulation time. The natural form is varying
965 * inversely, in fact resulting in an invariant.
967 Depth
= MODULATION_DEPTH_COEFF
/ 4.0f
* DefaultModulationTime
* modDepth
* frequency
;
970 Depth
= MODULATION_DEPTH_COEFF
/ 4.0f
* modTime
* modDepth
* frequency
;
973 /* Update the late reverb line lengths and T60 coefficients. */
974 void LateReverb::updateLines(const float density_mult
, const float diffusion
,
975 const float lfDecayTime
, const float mfDecayTime
, const float hfDecayTime
,
976 const float lf0norm
, const float hf0norm
, const float frequency
)
978 /* Scaling factor to convert the normalized reference frequencies from
979 * representing 0...freq to 0...max_reference.
981 constexpr float MaxHFReference
{20000.0f
};
982 const float norm_weight_factor
{frequency
/ MaxHFReference
};
984 const float late_allpass_avg
{
985 std::accumulate(LATE_ALLPASS_LENGTHS
.begin(), LATE_ALLPASS_LENGTHS
.end(), 0.0f
) /
988 /* To compensate for changes in modal density and decay time of the late
989 * reverb signal, the input is attenuated based on the maximal energy of
990 * the outgoing signal. This approximation is used to keep the apparent
991 * energy of the signal equal for all ranges of density and decay time.
993 * The average length of the delay lines is used to calculate the
994 * attenuation coefficient.
996 float length
{std::accumulate(LATE_LINE_LENGTHS
.begin(), LATE_LINE_LENGTHS
.end(), 0.0f
) /
997 float{NUM_LINES
} + late_allpass_avg
};
998 length
*= density_mult
;
999 /* The density gain calculation uses an average decay time weighted by
1000 * approximate bandwidth. This attempts to compensate for losses of energy
1001 * that reduce decay time due to scattering into highly attenuated bands.
1003 const float decayTimeWeighted
{
1004 lf0norm
*norm_weight_factor
*lfDecayTime
+
1005 (hf0norm
- lf0norm
)*norm_weight_factor
*mfDecayTime
+
1006 (1.0f
- hf0norm
*norm_weight_factor
)*hfDecayTime
};
1007 DensityGain
= CalcDensityGain(CalcDecayCoeff(length
, decayTimeWeighted
));
1009 /* Calculate the all-pass feed-back/forward coefficient. */
1010 VecAp
.Coeff
= diffusion
*diffusion
* InvSqrt2
;
1012 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1014 /* Calculate the delay length of each all-pass line. */
1015 length
= LATE_ALLPASS_LENGTHS
[i
] * density_mult
;
1016 VecAp
.Offset
[i
] = float2uint(length
* frequency
);
1018 /* Calculate the delay length of each feedback delay line. A cubic
1019 * resampler is used for modulation on the feedback delay, which
1020 * includes one sample of delay. Reduce by one to compensate.
1022 length
= LATE_LINE_LENGTHS
[i
] * density_mult
;
1023 Offset
[i
] = std::max(float2uint(length
*frequency
+ 0.5f
), 1u) - 1u;
1025 /* Approximate the absorption that the vector all-pass would exhibit
1026 * given the current diffusion so we don't have to process a full T60
1027 * filter for each of its four lines. Also include the average
1028 * modulation delay (depth is half the max delay in samples).
1030 length
+= lerpf(LATE_ALLPASS_LENGTHS
[i
], late_allpass_avg
, diffusion
)*density_mult
+
1031 Mod
.Depth
/frequency
;
1033 /* Calculate the T60 damping coefficients for each line. */
1034 T60
[i
].calcCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
, lf0norm
, hf0norm
);
1039 /* Update the offsets for the main effect delay line. */
1040 void ReverbPipeline::updateDelayLine(const float gain
, const float earlyDelay
,
1041 const float lateDelay
, const float density_mult
, const float decayTime
, const float frequency
)
1043 /* Early reflection taps are decorrelated by means of an average room
1044 * reflection approximation described above the definition of the taps.
1045 * This approximation is linear and so the above density multiplier can
1046 * be applied to adjust the width of the taps. A single-band decay
1047 * coefficient is applied to simulate initial attenuation and absorption.
1049 * Late reverb taps are based on the late line lengths to allow a zero-
1050 * delay path and offsets that would continue the propagation naturally
1051 * into the late lines.
1053 for(size_t i
{0u};i
< NUM_LINES
;i
++)
1055 float length
{EARLY_TAP_LENGTHS
[i
]*density_mult
};
1056 mEarlyDelayTap
[i
][1] = float2uint((earlyDelay
+length
) * frequency
);
1057 mEarlyDelayCoeff
[i
][1] = CalcDecayCoeff(length
, decayTime
) * gain
;
1059 /* Reduce the late delay tap by the shortest early delay line length to
1060 * compensate for the late line input being fed by the delayed early
1063 length
= (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*density_mult
+
1065 mLateDelayTap
[i
][1] = float2uint(length
* frequency
);
1069 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
1070 * reflections toward the given direction, using its magnitude (up to 1) as a
1071 * focal strength. This function results in a B-Format transformation matrix
1072 * that spatially focuses the signal in the desired direction.
1074 std::array
<std::array
<float,4>,4> GetTransformFromVector(const al::span
<const float,3> vec
)
1076 /* Normalize the panning vector according to the N3D scale, which has an
1077 * extra sqrt(3) term on the directional components. Converting from OpenAL
1078 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
1079 * that the reverb panning vectors use left-handed coordinates, unlike the
1080 * rest of OpenAL which use right-handed. This is fixed by negating Z,
1081 * which cancels out with the B-Format Z negation.
1083 std::array
<float,3> norm
{{vec
[0], vec
[1], vec
[2]}};
1084 float mag
{std::sqrt(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2])};
1087 const float scale
{al::numbers::sqrt3_v
<float> / mag
};
1095 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
1096 * term. There's no need to renormalize the magnitude since it would
1097 * just be reapplied in the matrix.
1099 norm
[0] *= -al::numbers::sqrt3_v
<float>;
1100 norm
[1] *= al::numbers::sqrt3_v
<float>;
1101 norm
[2] *= al::numbers::sqrt3_v
<float>;
1104 return std::array
<std::array
<float,4>,4>{{
1105 {{1.0f
, 0.0f
, 0.0f
, 0.0f
}},
1106 {{norm
[0], 1.0f
-mag
, 0.0f
, 0.0f
}},
1107 {{norm
[1], 0.0f
, 1.0f
-mag
, 0.0f
}},
1108 {{norm
[2], 0.0f
, 0.0f
, 1.0f
-mag
}}
1112 /* Update the early and late 3D panning gains. */
1113 void ReverbPipeline::update3DPanning(const al::span
<const float,3> ReflectionsPan
,
1114 const al::span
<const float,3> LateReverbPan
, const float earlyGain
, const float lateGain
,
1115 const bool doUpmix
, const MixParams
*mainMix
)
1117 /* Create matrices that transform a B-Format signal according to the
1120 const auto earlymat
= GetTransformFromVector(ReflectionsPan
);
1121 const auto latemat
= GetTransformFromVector(LateReverbPan
);
1123 const auto get_coeffs
= [&]
1127 /* When upsampling, combine the early and late transforms with the
1128 * first-order upsample matrix. This results in panning gains that
1129 * apply the panning transform to first-order B-Format, which is
1132 auto mult_matrix
= [](const al::span
<const std::array
<float,4>,4> mtx1
)
1134 std::array
<std::array
<float,MaxAmbiChannels
>,NUM_LINES
> res
{};
1135 const auto mtx2
= al::span
{AmbiScale::FirstOrderUp
};
1137 for(size_t i
{0};i
< mtx1
[0].size();++i
)
1139 const al::span dst
{res
[i
]};
1140 static_assert(dst
.size() >= std::tuple_size_v
<decltype(mtx2
)::element_type
>);
1141 for(size_t k
{0};k
< mtx1
.size();++k
)
1143 const float a
{mtx1
[k
][i
]};
1144 std::transform(mtx2
[k
].begin(), mtx2
[k
].end(), dst
.begin(), dst
.begin(),
1145 [a
](const float in
, const float out
) noexcept
-> float
1146 { return a
*in
+ out
; });
1152 return std::array
{mult_matrix(earlymat
), mult_matrix(latemat
)};
1155 /* When not upsampling, combine the early and late A-to-B-Format
1156 * conversions with their respective transform. This results panning
1157 * gains that convert A-Format to B-Format, which is then panned.
1159 auto mult_matrix
= [](const al::span
<const std::array
<float,NUM_LINES
>,4> mtx1
,
1160 const al::span
<const std::array
<float,4>,4> mtx2
)
1162 std::array
<std::array
<float,MaxAmbiChannels
>,NUM_LINES
> res
{};
1164 for(size_t i
{0};i
< mtx1
[0].size();++i
)
1166 const al::span dst
{res
[i
]};
1167 static_assert(dst
.size() >= std::tuple_size_v
<decltype(mtx2
)::element_type
>);
1168 for(size_t k
{0};k
< mtx1
.size();++k
)
1170 const float a
{mtx1
[k
][i
]};
1171 std::transform(mtx2
[k
].begin(), mtx2
[k
].end(), dst
.begin(), dst
.begin(),
1172 [a
](const float in
, const float out
) noexcept
-> float
1173 { return a
*in
+ out
; });
1179 return std::array
{mult_matrix(EarlyA2B
, earlymat
), mult_matrix(LateA2B
, latemat
)};
1181 const auto [earlycoeffs
, latecoeffs
] = get_coeffs();
1183 auto earlygains
= mEarly
.Gains
.begin();
1184 for(auto &coeffs
: earlycoeffs
)
1185 ComputePanGains(mainMix
, coeffs
, earlyGain
, (earlygains
++)->Target
);
1186 auto lategains
= mLate
.Gains
.begin();
1187 for(auto &coeffs
: latecoeffs
)
1188 ComputePanGains(mainMix
, coeffs
, lateGain
, (lategains
++)->Target
);
1191 void ReverbState::update(const ContextBase
*Context
, const EffectSlot
*Slot
,
1192 const EffectProps
*props_
, const EffectTarget target
)
1194 auto &props
= std::get
<ReverbProps
>(*props_
);
1195 const DeviceBase
*Device
{Context
->mDevice
};
1196 const auto frequency
= static_cast<float>(Device
->Frequency
);
1198 /* If the HF limit parameter is flagged, calculate an appropriate limit
1199 * based on the air absorption parameter.
1201 float hfRatio
{props
.DecayHFRatio
};
1202 if(props
.DecayHFLimit
&& props
.AirAbsorptionGainHF
< 1.0f
)
1203 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
.AirAbsorptionGainHF
, props
.DecayTime
);
1205 /* Calculate the LF/HF decay times. */
1206 constexpr float MinDecayTime
{0.1f
}, MaxDecayTime
{20.0f
};
1207 const float lfDecayTime
{std::clamp(props
.DecayTime
*props
.DecayLFRatio
, MinDecayTime
,
1209 const float hfDecayTime
{std::clamp(props
.DecayTime
*hfRatio
, MinDecayTime
, MaxDecayTime
)};
1211 /* Determine if a full update is required. */
1212 const bool fullUpdate
{mPipelineState
== DeviceClear
||
1213 /* Density is essentially a master control for the feedback delays, so
1214 * changes the offsets of many delay lines.
1216 mParams
.Density
!= props
.Density
||
1217 /* Diffusion and decay times influences the decay rate (gain) of the
1218 * late reverb T60 filter.
1220 mParams
.Diffusion
!= props
.Diffusion
||
1221 mParams
.DecayTime
!= props
.DecayTime
||
1222 mParams
.HFDecayTime
!= hfDecayTime
||
1223 mParams
.LFDecayTime
!= lfDecayTime
||
1224 /* Modulation time and depth both require fading the modulation delay. */
1225 mParams
.ModulationTime
!= props
.ModulationTime
||
1226 mParams
.ModulationDepth
!= props
.ModulationDepth
||
1227 /* HF/LF References control the weighting used to calculate the density
1230 mParams
.HFReference
!= props
.HFReference
||
1231 mParams
.LFReference
!= props
.LFReference
};
1234 mParams
.Density
= props
.Density
;
1235 mParams
.Diffusion
= props
.Diffusion
;
1236 mParams
.DecayTime
= props
.DecayTime
;
1237 mParams
.HFDecayTime
= hfDecayTime
;
1238 mParams
.LFDecayTime
= lfDecayTime
;
1239 mParams
.ModulationTime
= props
.ModulationTime
;
1240 mParams
.ModulationDepth
= props
.ModulationDepth
;
1241 mParams
.HFReference
= props
.HFReference
;
1242 mParams
.LFReference
= props
.LFReference
;
1244 mPipelineState
= (mPipelineState
!= DeviceClear
) ? StartFade
: Normal
;
1245 mCurrentPipeline
= !mCurrentPipeline
;
1247 auto &oldpipeline
= mPipelines
[!mCurrentPipeline
];
1248 for(size_t j
{0};j
< NUM_LINES
;++j
)
1249 oldpipeline
.mEarlyDelayCoeff
[j
][1] = 0.0f
;
1251 auto &pipeline
= mPipelines
[mCurrentPipeline
];
1253 /* The density-based room size (delay length) multiplier. */
1254 const float density_mult
{CalcDelayLengthMult(props
.Density
)};
1256 /* Update the main effect delay and associated taps. */
1257 pipeline
.updateDelayLine(props
.Gain
, props
.ReflectionsDelay
, props
.LateReverbDelay
,
1258 density_mult
, props
.DecayTime
, frequency
);
1260 /* Update early and late 3D panning. */
1261 mOutTarget
= target
.Main
->Buffer
;
1262 const float gain
{Slot
->Gain
* ReverbBoost
};
1263 pipeline
.update3DPanning(props
.ReflectionsPan
, props
.LateReverbPan
, props
.ReflectionsGain
*gain
,
1264 props
.LateReverbGain
*gain
, mUpmixOutput
, target
.Main
);
1266 /* Calculate the master filters */
1267 float hf0norm
{std::min(props
.HFReference
/frequency
, 0.49f
)};
1268 pipeline
.mFilter
[0].Lp
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, props
.GainHF
, 1.0f
);
1269 float lf0norm
{std::min(props
.LFReference
/frequency
, 0.49f
)};
1270 pipeline
.mFilter
[0].Hp
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, props
.GainLF
, 1.0f
);
1271 for(size_t i
{1u};i
< NUM_LINES
;i
++)
1273 pipeline
.mFilter
[i
].Lp
.copyParamsFrom(pipeline
.mFilter
[0].Lp
);
1274 pipeline
.mFilter
[i
].Hp
.copyParamsFrom(pipeline
.mFilter
[0].Hp
);
1279 /* Update the early lines. */
1280 pipeline
.mEarly
.updateLines(density_mult
, props
.Diffusion
, props
.DecayTime
, frequency
);
1282 /* Get the mixing matrix coefficients. */
1283 CalcMatrixCoeffs(props
.Diffusion
, &pipeline
.mMixX
, &pipeline
.mMixY
);
1285 /* Update the modulator rate and depth. */
1286 pipeline
.mLate
.Mod
.updateModulator(props
.ModulationTime
, props
.ModulationDepth
, frequency
);
1288 /* Update the late lines. */
1289 pipeline
.mLate
.updateLines(density_mult
, props
.Diffusion
, lfDecayTime
, props
.DecayTime
,
1290 hfDecayTime
, lf0norm
, hf0norm
, frequency
);
1293 /* Calculate the gain at the start of the late reverb stage, and the gain
1294 * difference from the decay target (0.001, or -60dB).
1296 const float decayBase
{props
.ReflectionsGain
* props
.LateReverbGain
};
1297 const float decayDiff
{ReverbDecayGain
/ decayBase
};
1299 /* Given the DecayTime (the amount of time for the late reverb to decay by
1300 * -60dB), calculate the time to decay to -60dB from the start of the late
1303 * Otherwise, if the late reverb already starts at -60dB or less, only
1304 * include the time to get to the late reverb.
1306 const float diffTime
{!(decayDiff
< 1.0f
) ? 0.0f
1307 : (std::log10(decayDiff
)*(20.0f
/ -60.0f
) * props
.DecayTime
)};
1309 const float decaySamples
{(props
.ReflectionsDelay
+props
.LateReverbDelay
+diffTime
)
1311 /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to avoid
1312 * excessive double-processing.
1314 pipeline
.mFadeSampleCount
= static_cast<size_t>(std::min(decaySamples
, 100'000.0f
));
1318 /**************************************
1319 * Effect Processing *
1320 **************************************/
1322 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1323 * for both the below vector all-pass model and to perform modal feed-back
1324 * delay network (FDN) mixing.
1326 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1327 * matrix with a single unitary rotational parameter:
1329 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1334 * The rotation is constructed from the effect's diffusion parameter,
1339 * Where a, b, and c are the coefficient y with differing signs, and d is the
1340 * coefficient x. The final matrix is thus:
1342 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1343 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1344 * [ y, -y, x, y ] x = cos(t)
1345 * [ -y, -y, -y, x ] y = sin(t) / n
1347 * Any square orthogonal matrix with an order that is a power of two will
1348 * work (where ^T is transpose, ^-1 is inverse):
1352 * Using that knowledge, finding an appropriate matrix can be accomplished
1353 * naively by searching all combinations of:
1357 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1358 * whose combination of signs are being iterated.
1360 inline auto VectorPartialScatter(const std::array
<float,NUM_LINES
> &in
, const float xCoeff
,
1361 const float yCoeff
) noexcept
-> std::array
<float,NUM_LINES
>
1364 xCoeff
*in
[0] + yCoeff
*( in
[1] + -in
[2] + in
[3]),
1365 xCoeff
*in
[1] + yCoeff
*(-in
[0] + in
[2] + in
[3]),
1366 xCoeff
*in
[2] + yCoeff
*( in
[0] + -in
[1] + in
[3]),
1367 xCoeff
*in
[3] + yCoeff
*(-in
[0] + -in
[1] + -in
[2] )
1371 /* Utilizes the above, but also applies a line-based reflection on the input
1372 * channels (swapping 0<->3 and 1<->2).
1374 void VectorScatterRev(const float xCoeff
, const float yCoeff
,
1375 const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, const size_t count
) noexcept
1379 for(size_t i
{0u};i
< count
;++i
)
1381 std::array src
{samples
[0][i
], samples
[1][i
], samples
[2][i
], samples
[3][i
]};
1383 src
= VectorPartialScatter(std::array
{src
[3], src
[2], src
[1], src
[0]}, xCoeff
, yCoeff
);
1384 samples
[0][i
] = src
[0];
1385 samples
[1][i
] = src
[1];
1386 samples
[2][i
] = src
[2];
1387 samples
[3][i
] = src
[3];
1391 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1392 * filter to the 4-line input.
1394 * It works by vectorizing a regular all-pass filter and replacing the delay
1395 * element with a scattering matrix (like the one above) and a diagonal
1396 * matrix of delay elements.
1398 void VecAllpass::process(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t main_offset
,
1399 const float xCoeff
, const float yCoeff
, const size_t todo
) const noexcept
1401 const auto linelen
= size_t{Delay
.mLine
.size()/NUM_LINES
};
1402 const float feedCoeff
{Coeff
};
1406 for(size_t i
{0u};i
< todo
;)
1408 std::array
<size_t,NUM_LINES
> vap_offset
{};
1409 std::transform(Offset
.cbegin(), Offset
.cend(), vap_offset
.begin(),
1410 [main_offset
,mask
=linelen
-1](const size_t delay
) noexcept
-> size_t
1411 { return (main_offset
-delay
) & mask
; });
1412 main_offset
&= linelen
-1;
1414 const auto maxoff
= std::accumulate(vap_offset
.cbegin(), vap_offset
.cend(), main_offset
,
1415 [](const size_t offset
, const size_t apoffset
) { return std::max(offset
, apoffset
); });
1416 size_t td
{std::min(linelen
- maxoff
, todo
- i
)};
1418 auto delayIn
= Delay
.mLine
.begin();
1419 auto delayOut
= Delay
.mLine
.begin() + ptrdiff_t(main_offset
*NUM_LINES
);
1423 std::array
<float,NUM_LINES
> f
{};
1424 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1426 const float input
{samples
[j
][i
]};
1427 const float out
{delayIn
[vap_offset
[j
]*NUM_LINES
+ j
] - feedCoeff
*input
};
1428 f
[j
] = input
+ feedCoeff
*out
;
1430 samples
[j
][i
] = out
;
1432 delayIn
+= NUM_LINES
;
1435 f
= VectorPartialScatter(f
, xCoeff
, yCoeff
);
1436 delayOut
= std::copy_n(f
.cbegin(), f
.size(), delayOut
);
1441 /* This applies a more typical all-pass to each line, without the scattering
1444 void Allpass4::process(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, const size_t offset
,
1445 const size_t todo
) const noexcept
1447 const DelayLineU delay
{Delay
};
1448 const float feedCoeff
{Coeff
};
1452 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1454 auto smpiter
= samples
[j
].begin();
1455 const auto buffer
= delay
.get(j
);
1456 size_t dstoffset
{offset
};
1457 size_t vap_offset
{offset
- Offset
[j
]};
1458 for(size_t i
{0u};i
< todo
;)
1460 vap_offset
&= buffer
.size()-1;
1461 dstoffset
&= buffer
.size()-1;
1463 const size_t maxoff
{std::max(dstoffset
, vap_offset
)};
1464 const size_t td
{std::min(buffer
.size() - maxoff
, todo
- i
)};
1466 auto proc_sample
= [buffer
,feedCoeff
,&vap_offset
,&dstoffset
](const float x
) -> float
1468 const float y
{buffer
[vap_offset
++] - feedCoeff
*x
};
1469 buffer
[dstoffset
++] = x
+ feedCoeff
*y
;
1472 smpiter
= std::transform(smpiter
, smpiter
+td
, smpiter
, proc_sample
);
1479 /* This generates early reflections.
1481 * This is done by obtaining the primary reflections (those arriving from the
1482 * same direction as the source) from the main delay line. These are
1483 * attenuated and all-pass filtered (based on the diffusion parameter).
1485 * The early lines are then reflected about the origin to create the secondary
1486 * reflections (those arriving from the opposite direction as the source).
1488 * The early response is then completed by combining the primary reflections
1489 * with the delayed and attenuated output from the early lines.
1491 * Finally, the early response is reflected, scattered (based on diffusion),
1492 * and fed into the late reverb section of the main delay line.
1494 void ReverbPipeline::processEarly(const DelayLineU
&main_delay
, size_t offset
,
1495 const size_t samplesToDo
, const al::span
<ReverbUpdateLine
, NUM_LINES
> tempSamples
,
1496 const al::span
<FloatBufferLine
, NUM_LINES
> outSamples
)
1498 const DelayLineU early_delay
{mEarly
.Delay
};
1499 const DelayLineU in_delay
{main_delay
};
1500 const float mixX
{mMixX
};
1501 const float mixY
{mMixY
};
1503 ASSUME(samplesToDo
<= BufferLineSize
);
1505 for(size_t base
{0};base
< samplesToDo
;)
1507 const size_t todo
{std::min(samplesToDo
-base
, MAX_UPDATE_SAMPLES
)};
1509 /* First, load decorrelated samples from the main delay line as the
1510 * primary reflections.
1512 const auto fadeStep
= float{1.0f
/ static_cast<float>(todo
)};
1513 for(size_t j
{0_uz
};j
< NUM_LINES
;j
++)
1515 const auto input
= in_delay
.get(j
);
1516 auto early_delay_tap0
= size_t{offset
- mEarlyDelayTap
[j
][0]};
1517 auto early_delay_tap1
= size_t{offset
- mEarlyDelayTap
[j
][1]};
1518 mEarlyDelayTap
[j
][0] = mEarlyDelayTap
[j
][1];
1519 const auto coeff0
= float{mEarlyDelayCoeff
[j
][0]};
1520 const auto coeff1
= float{mEarlyDelayCoeff
[j
][1]};
1521 mEarlyDelayCoeff
[j
][0] = mEarlyDelayCoeff
[j
][1];
1522 auto fadeCount
= float{0.0f
};
1524 auto tmp
= tempSamples
[j
].begin();
1525 for(size_t i
{0_uz
};i
< todo
;)
1527 early_delay_tap0
&= input
.size()-1;
1528 early_delay_tap1
&= input
.size()-1;
1529 const auto max_tap
= size_t{std::max(early_delay_tap0
, early_delay_tap1
)};
1530 const auto td
= size_t{std::min(input
.size()-max_tap
, todo
-i
)};
1531 const auto intap0
= input
.subspan(early_delay_tap0
, td
);
1532 const auto intap1
= input
.subspan(early_delay_tap1
, td
);
1534 auto do_blend
= [coeff0
,coeff1
,fadeStep
,&fadeCount
](const float in0
,
1535 const float in1
) noexcept
-> float
1537 const auto ret
= lerpf(in0
*coeff0
, in1
*coeff1
, fadeStep
*fadeCount
);
1541 tmp
= std::transform(intap0
.begin(), intap0
.end(), intap1
.begin(), tmp
, do_blend
);
1542 early_delay_tap0
+= td
;
1543 early_delay_tap1
+= td
;
1547 /* Band-pass the incoming samples. */
1548 auto&& filter
= DualBiquad
{mFilter
[j
].Lp
, mFilter
[j
].Hp
};
1549 filter
.process(al::span
{tempSamples
[j
]}.first(todo
), tempSamples
[j
]);
1552 /* Apply an all-pass, to help color the initial reflections. */
1553 mEarly
.VecAp
.process(tempSamples
, offset
, todo
);
1555 /* Apply a delay and bounce to generate secondary reflections. */
1556 early_delay
.writeReflected(offset
, tempSamples
, todo
);
1557 for(size_t j
{0_uz
};j
< NUM_LINES
;j
++)
1559 const auto input
= early_delay
.get(j
);
1560 auto feedb_tap
= size_t{offset
- mEarly
.Offset
[j
]};
1561 const auto feedb_coeff
= float{mEarly
.Coeff
[j
]};
1562 auto out
= outSamples
[j
].begin() + base
;
1563 auto tmp
= tempSamples
[j
].begin();
1565 for(size_t i
{0_uz
};i
< todo
;)
1567 feedb_tap
&= input
.size()-1;
1569 const auto td
= size_t{std::min(input
.size() - feedb_tap
, todo
- i
)};
1570 const auto delaySrc
= input
.subspan(feedb_tap
, td
);
1572 /* Combine the main input with the attenuated delayed echo for
1575 out
= std::transform(delaySrc
.begin(), delaySrc
.end(), tmp
, out
,
1576 [feedb_coeff
](const float delayspl
, const float mainspl
) noexcept
-> float
1577 { return delayspl
*feedb_coeff
+ mainspl
; });
1579 /* Move the (non-attenuated) delayed echo to the temp buffer
1580 * for feeding the late reverb.
1582 tmp
= std::copy_n(delaySrc
.begin(), delaySrc
.size(), tmp
);
1588 /* Finally, apply a scatter and bounce to improve the initial diffusion
1589 * in the late reverb, writing the result to the late delay line input.
1591 VectorScatterRev(mixX
, mixY
, tempSamples
, todo
);
1592 for(size_t j
{0_uz
};j
< NUM_LINES
;j
++)
1593 mLateDelayIn
.write(offset
, j
, al::span
{tempSamples
[j
]}.first(todo
));
1600 auto Modulation::calcDelays(size_t todo
) -> al::span
<const uint
>
1602 auto idx
= uint
{Index
};
1603 const auto step
= uint
{Step
};
1604 const auto depth
= float{Depth
* float{gCubicTable
.sTableSteps
}};
1605 const auto delays
= al::span
{ModDelays
}.first(todo
);
1606 std::generate(delays
.begin(), delays
.end(), [step
,depth
,&idx
]
1609 const auto x
= float{static_cast<float>(idx
&MOD_FRACMASK
) * (1.0f
/MOD_FRACONE
)};
1610 /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
1611 * and stays within [-1...+1], it needn't be perfect.
1613 const auto lfo
= float{!(idx
&(MOD_FRACONE
>>1))
1614 ? ((-16.0f
* x
* x
) + (8.0f
* x
))
1615 : ((16.0f
* x
* x
) + (-8.0f
* x
) + (-16.0f
* x
) + 8.0f
)};
1616 return float2uint((lfo
+1.0f
) * depth
);
1623 /* This generates the reverb tail using a modified feed-back delay network
1626 * Results from the early reflections are mixed with the output from the
1627 * modulated late delay lines.
1629 * The late response is then completed by T60 and all-pass filtering the mix.
1631 * Finally, the lines are reversed (so they feed their opposite directions)
1632 * and scattered with the FDN matrix before re-feeding the delay lines.
1634 void ReverbPipeline::processLate(size_t offset
, const size_t samplesToDo
,
1635 const al::span
<ReverbUpdateLine
, NUM_LINES
> tempSamples
,
1636 const al::span
<FloatBufferLine
, NUM_LINES
> outSamples
)
1638 const DelayLineU late_delay
{mLate
.Delay
};
1639 const DelayLineU in_delay
{mLateDelayIn
};
1640 const float mixX
{mMixX
};
1641 const float mixY
{mMixY
};
1643 ASSUME(samplesToDo
<= BufferLineSize
);
1645 for(size_t base
{0};base
< samplesToDo
;)
1647 const size_t todo
{std::min(std::min(mLate
.Offset
[0], MAX_UPDATE_SAMPLES
),
1651 /* First, calculate the modulated delays for the late feedback. */
1652 const auto delays
= mLate
.Mod
.calcDelays(todo
);
1654 /* Now load samples from the feedback delay lines. Filter the signal to
1655 * apply its frequency-dependent decay.
1657 for(size_t j
{0_uz
};j
< NUM_LINES
;++j
)
1659 const auto input
= late_delay
.get(j
);
1660 const auto midGain
= float{mLate
.T60
[j
].MidGain
};
1661 auto late_feedb_tap
= size_t{offset
- mLate
.Offset
[j
]};
1663 auto proc_sample
= [input
,midGain
,&late_feedb_tap
](const size_t idelay
) -> float
1665 /* Calculate the read sample offset and sub-sample offset
1666 * between it and the next sample.
1668 const auto delay
= size_t{late_feedb_tap
- (idelay
>>gCubicTable
.sTableBits
)};
1669 const auto delayoffset
= size_t{idelay
& gCubicTable
.sTableMask
};
1672 /* Get the samples around the delayed offset, interpolated for
1675 const auto out0
= float{input
[(delay
) & (input
.size()-1)]};
1676 const auto out1
= float{input
[(delay
-1) & (input
.size()-1)]};
1677 const auto out2
= float{input
[(delay
-2) & (input
.size()-1)]};
1678 const auto out3
= float{input
[(delay
-3) & (input
.size()-1)]};
1680 const auto out
= float{out0
*gCubicTable
.getCoeff0(delayoffset
)
1681 + out1
*gCubicTable
.getCoeff1(delayoffset
)
1682 + out2
*gCubicTable
.getCoeff2(delayoffset
)
1683 + out3
*gCubicTable
.getCoeff3(delayoffset
)};
1684 return out
* midGain
;
1686 std::transform(delays
.begin(), delays
.end(), tempSamples
[j
].begin(), proc_sample
);
1688 mLate
.T60
[j
].process(al::span
{tempSamples
[j
]}.first(todo
));
1691 /* Next load decorrelated samples from the main delay lines. */
1692 const float fadeStep
{1.0f
/ static_cast<float>(todo
)};
1693 for(size_t j
{0_uz
};j
< NUM_LINES
;++j
)
1695 const auto input
= in_delay
.get(j
);
1696 auto late_delay_tap0
= size_t{offset
- mLateDelayTap
[j
][0]};
1697 auto late_delay_tap1
= size_t{offset
- mLateDelayTap
[j
][1]};
1698 mLateDelayTap
[j
][0] = mLateDelayTap
[j
][1];
1699 const auto densityGain
= float{mLate
.DensityGain
};
1700 const auto densityStep
= float{late_delay_tap0
!= late_delay_tap1
1701 ? densityGain
*fadeStep
: 0.0f
};
1702 auto fadeCount
= float{0.0f
};
1704 auto samples
= tempSamples
[j
].begin();
1705 for(size_t i
{0u};i
< todo
;)
1707 late_delay_tap0
&= input
.size()-1;
1708 late_delay_tap1
&= input
.size()-1;
1709 const auto td
= size_t{std::min(todo
- i
,
1710 input
.size() - std::max(late_delay_tap0
, late_delay_tap1
))};
1712 auto proc_sample
= [input
,densityGain
,densityStep
,&late_delay_tap0
,
1713 &late_delay_tap1
,&fadeCount
](const float sample
) noexcept
-> float
1715 const auto fade0
= float{densityGain
- densityStep
*fadeCount
};
1716 const auto fade1
= float{densityStep
*fadeCount
};
1718 return input
[late_delay_tap0
++]*fade0
+ input
[late_delay_tap1
++]*fade1
1721 samples
= std::transform(samples
, samples
+ptrdiff_t(td
), samples
, proc_sample
);
1726 /* Apply a vector all-pass to improve micro-surface diffusion, and
1727 * write out the results for mixing.
1729 mLate
.VecAp
.process(tempSamples
, offset
, mixX
, mixY
, todo
);
1730 for(size_t j
{0_uz
};j
< NUM_LINES
;++j
)
1731 std::copy_n(tempSamples
[j
].begin(), todo
, outSamples
[j
].begin()+base
);
1733 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1734 VectorScatterRev(mixX
, mixY
, tempSamples
, todo
);
1735 for(size_t j
{0_uz
};j
< NUM_LINES
;++j
)
1736 late_delay
.write(offset
, j
, al::span
{tempSamples
[j
]}.first(todo
));
1743 void ReverbState::process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
)
1745 const size_t offset
{mOffset
};
1747 ASSUME(samplesToDo
<= BufferLineSize
);
1749 auto &oldpipeline
= mPipelines
[!mCurrentPipeline
];
1750 auto &pipeline
= mPipelines
[mCurrentPipeline
];
1752 /* Convert B-Format to A-Format for processing. */
1753 const size_t numInput
{std::min(samplesIn
.size(), NUM_LINES
)};
1754 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), samplesToDo
};
1755 for(size_t c
{0u};c
< NUM_LINES
;++c
)
1757 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
1758 for(size_t i
{0};i
< numInput
;++i
)
1760 const float gain
{B2A
[c
][i
]};
1762 auto mix_sample
= [gain
](const float sample
, const float in
) noexcept
-> float
1763 { return sample
+ in
*gain
; };
1764 std::transform(tmpspan
.begin(), tmpspan
.end(), samplesIn
[i
].begin(), tmpspan
.begin(),
1768 mMainDelay
.write(offset
, c
, tmpspan
);
1771 if(mPipelineState
< Fading
)
1772 mPipelineState
= Fading
;
1774 /* Process reverb for these samples. and mix them to the output. */
1775 pipeline
.processEarly(mMainDelay
, offset
, samplesToDo
, mTempSamples
, mEarlySamples
);
1776 pipeline
.processLate(offset
, samplesToDo
, mTempSamples
, mLateSamples
);
1777 mixOut(pipeline
, samplesOut
, samplesToDo
);
1779 if(mPipelineState
!= Normal
)
1781 if(mPipelineState
== Cleanup
)
1783 size_t numSamples
{mSampleBuffer
.size()/2};
1784 const auto bufferspan
= al::span
{mSampleBuffer
}.subspan(numSamples
* !mCurrentPipeline
,
1786 std::fill_n(bufferspan
.begin(), bufferspan
.size(), 0.0f
);
1788 oldpipeline
.clear();
1789 mPipelineState
= Normal
;
1793 /* If this is the final mix for this old pipeline, set the target
1794 * gains to 0 to ensure a complete fade out, and set the state to
1795 * Cleanup so the next invocation cleans up the delay buffers and
1798 if(samplesToDo
>= oldpipeline
.mFadeSampleCount
)
1800 for(auto &gains
: oldpipeline
.mEarly
.Gains
)
1801 std::fill(gains
.Target
.begin(), gains
.Target
.end(), 0.0f
);
1802 for(auto &gains
: oldpipeline
.mLate
.Gains
)
1803 std::fill(gains
.Target
.begin(), gains
.Target
.end(), 0.0f
);
1804 oldpipeline
.mFadeSampleCount
= 0;
1805 mPipelineState
= Cleanup
;
1808 oldpipeline
.mFadeSampleCount
-= samplesToDo
;
1810 /* Process the old reverb for these samples. */
1811 oldpipeline
.processEarly(mMainDelay
, offset
, samplesToDo
, mTempSamples
, mEarlySamples
);
1812 oldpipeline
.processLate(offset
, samplesToDo
, mTempSamples
, mLateSamples
);
1813 mixOut(oldpipeline
, samplesOut
, samplesToDo
);
1817 mOffset
= offset
+ samplesToDo
;
1821 struct ReverbStateFactory final
: public EffectStateFactory
{
1822 al::intrusive_ptr
<EffectState
> create() override
1823 { return al::intrusive_ptr
<EffectState
>{new ReverbState
{}}; }
1828 EffectStateFactory
*ReverbStateFactory_getFactory()
1830 static ReverbStateFactory ReverbFactory
{};
1831 return &ReverbFactory
;