22 #include <type_traits>
27 #include "alfstream.h"
29 #include "alnumbers.h"
30 #include "alnumeric.h"
34 #include "filters/splitter.h"
37 #include "mixer/hrtfdefs.h"
38 #include "opthelpers.h"
39 #include "polyphase_resampler.h"
44 using namespace std::string_view_literals
;
47 std::string mDispName
;
48 std::string mFilename
;
50 template<typename T
, typename U
>
51 HrtfEntry(T
&& dispname
, U
&& fname
)
52 : mDispName
{std::forward
<T
>(dispname
)}, mFilename
{std::forward
<U
>(fname
)}
54 /* GCC warns when it tries to inline this. */
57 HrtfEntry::~HrtfEntry() = default;
60 std::string mFilename
;
62 std::unique_ptr
<HrtfStore
> mEntry
;
64 template<typename T
, typename U
>
65 LoadedHrtf(T
&& name
, uint srate
, U
&& entry
)
66 : mFilename
{std::forward
<T
>(name
)}, mSampleRate
{srate
}, mEntry
{std::forward
<U
>(entry
)}
68 LoadedHrtf(LoadedHrtf
&&) = default;
69 /* GCC warns when it tries to inline this. */
72 LoadedHrtf
& operator=(LoadedHrtf
&&) = default;
74 LoadedHrtf::~LoadedHrtf() = default;
77 /* Data set limits must be the same as or more flexible than those defined in
78 * the makemhr utility.
80 constexpr uint MinFdCount
{1};
81 constexpr uint MaxFdCount
{16};
83 constexpr uint MinFdDistance
{50};
84 constexpr uint MaxFdDistance
{2500};
86 constexpr uint MinEvCount
{5};
87 constexpr uint MaxEvCount
{181};
89 constexpr uint MinAzCount
{1};
90 constexpr uint MaxAzCount
{255};
92 constexpr uint MaxHrirDelay
{HrtfHistoryLength
- 1};
94 constexpr uint HrirDelayFracBits
{2};
95 constexpr uint HrirDelayFracOne
{1 << HrirDelayFracBits
};
96 constexpr uint HrirDelayFracHalf
{HrirDelayFracOne
>> 1};
98 /* The sample rate is stored as a 24-bit integer, so 16MHz is the largest
101 constexpr uint MaxSampleRate
{0xff'ff'ff};
103 static_assert(MaxHrirDelay
*HrirDelayFracOne
< 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
106 [[nodiscard
]] constexpr auto GetMarker00Name() noexcept
{ return "MinPHR00"sv
; }
107 [[nodiscard
]] constexpr auto GetMarker01Name() noexcept
{ return "MinPHR01"sv
; }
108 [[nodiscard
]] constexpr auto GetMarker02Name() noexcept
{ return "MinPHR02"sv
; }
109 [[nodiscard
]] constexpr auto GetMarker03Name() noexcept
{ return "MinPHR03"sv
; }
112 /* First value for pass-through coefficients (remaining are 0), used for omni-
113 * directional sounds. */
114 constexpr auto PassthruCoeff
= static_cast<float>(1.0/al::numbers::sqrt2
);
116 std::mutex LoadedHrtfLock
;
117 std::vector
<LoadedHrtf
> LoadedHrtfs
;
119 std::mutex EnumeratedHrtfLock
;
120 std::vector
<HrtfEntry
> EnumeratedHrtfs
;
123 class databuf final
: public std::streambuf
{
124 int_type
underflow() override
125 { return traits_type::eof(); }
127 pos_type
seekoff(off_type offset
, std::ios_base::seekdir whence
, std::ios_base::openmode mode
) override
129 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
130 return traits_type::eof();
134 case std::ios_base::beg
:
135 if(offset
< 0 || offset
> egptr()-eback())
136 return traits_type::eof();
137 setg(eback(), eback()+offset
, egptr());
140 case std::ios_base::cur
:
141 if((offset
>= 0 && offset
> egptr()-gptr()) ||
142 (offset
< 0 && -offset
> gptr()-eback()))
143 return traits_type::eof();
144 setg(eback(), gptr()+offset
, egptr());
147 case std::ios_base::end
:
148 if(offset
> 0 || -offset
> egptr()-eback())
149 return traits_type::eof();
150 setg(eback(), egptr()+offset
, egptr());
154 return traits_type::eof();
157 return gptr() - eback();
160 pos_type
seekpos(pos_type pos
, std::ios_base::openmode mode
) override
162 // Simplified version of seekoff
163 if((mode
&std::ios_base::out
) || !(mode
&std::ios_base::in
))
164 return traits_type::eof();
166 if(pos
< 0 || pos
> egptr()-eback())
167 return traits_type::eof();
169 setg(eback(), eback()+static_cast<size_t>(pos
), egptr());
174 databuf(const char_type
*start_
, const char_type
*end_
) noexcept
176 /* NOLINTBEGIN(*-const-cast) */
177 setg(const_cast<char_type
*>(start_
), const_cast<char_type
*>(start_
),
178 const_cast<char_type
*>(end_
));
179 /* NOLINTEND(*-const-cast) */
183 class idstream final
: public std::istream
{
187 idstream(const char *start_
, const char *end_
)
188 : std::istream
{nullptr}, mStreamBuf
{start_
, end_
}
189 { init(&mStreamBuf
); }
193 struct IdxBlend
{ uint idx
; float blend
; };
194 /* Calculate the elevation index given the polar elevation in radians. This
195 * will return an index between 0 and (evcount - 1).
197 IdxBlend
CalcEvIndex(uint evcount
, float ev
)
199 ev
= (al::numbers::pi_v
<float>*0.5f
+ ev
) * static_cast<float>(evcount
-1) *
200 al::numbers::inv_pi_v
<float>;
201 uint idx
{float2uint(ev
)};
203 return IdxBlend
{std::min(idx
, evcount
-1u), ev
-static_cast<float>(idx
)};
206 /* Calculate the azimuth index given the polar azimuth in radians. This will
207 * return an index between 0 and (azcount - 1).
209 IdxBlend
CalcAzIndex(uint azcount
, float az
)
211 az
= (al::numbers::pi_v
<float>*2.0f
+ az
) * static_cast<float>(azcount
) *
212 (al::numbers::inv_pi_v
<float>*0.5f
);
213 uint idx
{float2uint(az
)};
215 return IdxBlend
{idx
%azcount
, az
-static_cast<float>(idx
)};
221 /* Calculates static HRIR coefficients and delays for the given polar elevation
222 * and azimuth in radians. The coefficients are normalized.
224 void HrtfStore::getCoeffs(float elevation
, float azimuth
, float distance
, float spread
,
225 HrirArray
&coeffs
, const al::span
<uint
,2> delays
) const
227 const float dirfact
{1.0f
- (al::numbers::inv_pi_v
<float>/2.0f
* spread
)};
230 auto match_field
= [&ebase
,distance
](const Field
&field
) noexcept
-> bool
232 if(distance
>= field
.distance
)
234 ebase
+= field
.evCount
;
237 auto field
= std::find_if(mFields
.begin(), mFields
.end()-1, match_field
);
239 /* Calculate the elevation indices. */
240 const auto elev0
= CalcEvIndex(field
->evCount
, elevation
);
241 const size_t elev1_idx
{std::min(elev0
.idx
+1u, field
->evCount
-1u)};
242 const size_t ir0offset
{mElev
[ebase
+ elev0
.idx
].irOffset
};
243 const size_t ir1offset
{mElev
[ebase
+ elev1_idx
].irOffset
};
245 /* Calculate azimuth indices. */
246 const auto az0
= CalcAzIndex(mElev
[ebase
+ elev0
.idx
].azCount
, azimuth
);
247 const auto az1
= CalcAzIndex(mElev
[ebase
+ elev1_idx
].azCount
, azimuth
);
249 /* Calculate the HRIR indices to blend. */
250 const std::array
<size_t,4> idx
{{
252 ir0offset
+ ((az0
.idx
+1) % mElev
[ebase
+ elev0
.idx
].azCount
),
254 ir1offset
+ ((az1
.idx
+1) % mElev
[ebase
+ elev1_idx
].azCount
)
257 /* Calculate bilinear blending weights, attenuated according to the
258 * directional panning factor.
260 const std::array
<float,4> blend
{{
261 (1.0f
-elev0
.blend
) * (1.0f
-az0
.blend
) * dirfact
,
262 (1.0f
-elev0
.blend
) * ( az0
.blend
) * dirfact
,
263 ( elev0
.blend
) * (1.0f
-az1
.blend
) * dirfact
,
264 ( elev0
.blend
) * ( az1
.blend
) * dirfact
267 /* Calculate the blended HRIR delays. */
268 float d
{float(mDelays
[idx
[0]][0])*blend
[0] + float(mDelays
[idx
[1]][0])*blend
[1]
269 + float(mDelays
[idx
[2]][0])*blend
[2] + float(mDelays
[idx
[3]][0])*blend
[3]};
270 delays
[0] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
271 d
= float(mDelays
[idx
[0]][1])*blend
[0] + float(mDelays
[idx
[1]][1])*blend
[1]
272 + float(mDelays
[idx
[2]][1])*blend
[2] + float(mDelays
[idx
[3]][1])*blend
[3];
273 delays
[1] = fastf2u(d
* float{1.0f
/HrirDelayFracOne
});
275 /* Calculate the blended HRIR coefficients. */
276 float *coeffout
{al::assume_aligned
<16>(coeffs
[0].data())};
277 coeffout
[0] = PassthruCoeff
* (1.0f
-dirfact
);
278 coeffout
[1] = PassthruCoeff
* (1.0f
-dirfact
);
279 std::fill_n(coeffout
+2, size_t{HrirLength
-1}*2, 0.0f
);
280 for(size_t c
{0};c
< 4;c
++)
282 const float *srccoeffs
{al::assume_aligned
<16>(mCoeffs
[idx
[c
]][0].data())};
283 const float mult
{blend
[c
]};
284 auto blend_coeffs
= [mult
](const float src
, const float coeff
) noexcept
-> float
285 { return src
*mult
+ coeff
; };
286 std::transform(srccoeffs
, srccoeffs
+ HrirLength
*2_uz
, coeffout
, coeffout
, blend_coeffs
);
291 std::unique_ptr
<DirectHrtfState
> DirectHrtfState::Create(size_t num_chans
)
292 { return std::unique_ptr
<DirectHrtfState
>{new(FamCount(num_chans
)) DirectHrtfState
{num_chans
}}; }
294 void DirectHrtfState::build(const HrtfStore
*Hrtf
, const uint irSize
, const bool perHrirMin
,
295 const al::span
<const AngularPoint
> AmbiPoints
,
296 const al::span
<const std::array
<float,MaxAmbiChannels
>> AmbiMatrix
,
297 const float XOverFreq
, const al::span
<const float,MaxAmbiOrder
+1> AmbiOrderHFGain
)
299 using double2
= std::array
<double,2>;
300 struct ImpulseResponse
{
301 const ConstHrirSpan hrir
;
305 const double xover_norm
{double{XOverFreq
} / Hrtf
->mSampleRate
};
306 mChannels
[0].mSplitter
.init(static_cast<float>(xover_norm
));
307 mChannels
[0].mHfScale
= AmbiOrderHFGain
[0];
308 for(size_t i
{1};i
< mChannels
.size();++i
)
310 const size_t order
{AmbiIndex::OrderFromChannel
[i
]};
311 mChannels
[i
].mSplitter
= mChannels
[0].mSplitter
;
312 mChannels
[i
].mHfScale
= AmbiOrderHFGain
[order
];
315 uint min_delay
{HrtfHistoryLength
*HrirDelayFracOne
}, max_delay
{0};
316 std::vector
<ImpulseResponse
> impres
; impres
.reserve(AmbiPoints
.size());
317 auto calc_res
= [Hrtf
,&max_delay
,&min_delay
](const AngularPoint
&pt
) -> ImpulseResponse
319 auto &field
= Hrtf
->mFields
[0];
320 const auto elev0
= CalcEvIndex(field
.evCount
, pt
.Elev
.value
);
321 const size_t elev1_idx
{std::min(elev0
.idx
+1u, field
.evCount
-1u)};
322 const size_t ir0offset
{Hrtf
->mElev
[elev0
.idx
].irOffset
};
323 const size_t ir1offset
{Hrtf
->mElev
[elev1_idx
].irOffset
};
325 const auto az0
= CalcAzIndex(Hrtf
->mElev
[elev0
.idx
].azCount
, pt
.Azim
.value
);
326 const auto az1
= CalcAzIndex(Hrtf
->mElev
[elev1_idx
].azCount
, pt
.Azim
.value
);
328 const std::array
<size_t,4> idx
{
330 ir0offset
+ ((az0
.idx
+1) % Hrtf
->mElev
[elev0
.idx
].azCount
),
332 ir1offset
+ ((az1
.idx
+1) % Hrtf
->mElev
[elev1_idx
].azCount
)
335 /* The largest blend factor serves as the closest HRIR. */
336 const size_t irOffset
{idx
[(elev0
.blend
>= 0.5f
)*2 + (az1
.blend
>= 0.5f
)]};
337 ImpulseResponse res
{Hrtf
->mCoeffs
[irOffset
],
338 Hrtf
->mDelays
[irOffset
][0], Hrtf
->mDelays
[irOffset
][1]};
340 min_delay
= std::min(min_delay
, std::min(res
.ldelay
, res
.rdelay
));
341 max_delay
= std::max(max_delay
, std::max(res
.ldelay
, res
.rdelay
));
345 std::transform(AmbiPoints
.begin(), AmbiPoints
.end(), std::back_inserter(impres
), calc_res
);
346 auto hrir_delay_round
= [](const uint d
) noexcept
-> uint
347 { return (d
+HrirDelayFracHalf
) >> HrirDelayFracBits
; };
349 TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
350 min_delay
/double{HrirDelayFracOne
}, max_delay
/double{HrirDelayFracOne
}, irSize
);
352 auto tmpres
= std::vector
<std::array
<double2
,HrirLength
>>(mChannels
.size());
354 auto matrixline
= AmbiMatrix
.cbegin();
355 for(auto &impulse
: impres
)
357 const ConstHrirSpan hrir
{impulse
.hrir
};
358 const uint base_delay
{perHrirMin
? std::min(impulse
.ldelay
, impulse
.rdelay
) : min_delay
};
359 const uint ldelay
{hrir_delay_round(impulse
.ldelay
- base_delay
)};
360 const uint rdelay
{hrir_delay_round(impulse
.rdelay
- base_delay
)};
361 max_delay
= std::max(max_delay
, std::max(impulse
.ldelay
, impulse
.rdelay
) - base_delay
);
363 auto gains
= matrixline
->cbegin();
365 for(auto &result
: tmpres
)
367 const double mult
{*(gains
++)};
368 const size_t numirs
{HrirLength
- std::max(ldelay
, rdelay
)};
369 size_t lidx
{ldelay
}, ridx
{rdelay
};
370 for(size_t j
{0};j
< numirs
;++j
)
372 result
[lidx
++][0] += hrir
[j
][0] * mult
;
373 result
[ridx
++][1] += hrir
[j
][1] * mult
;
379 auto output
= mChannels
.begin();
380 for(auto &result
: tmpres
)
382 auto cast_array2
= [](const double2
&in
) noexcept
-> float2
383 { return float2
{{static_cast<float>(in
[0]), static_cast<float>(in
[1])}}; };
384 std::transform(result
.cbegin(), result
.cend(), output
->mCoeffs
.begin(), cast_array2
);
389 const uint max_length
{std::min(hrir_delay_round(max_delay
) + irSize
, HrirLength
)};
390 TRACE("New max delay: %.2f, FIR length: %u\n", max_delay
/double{HrirDelayFracOne
},
392 mIrSize
= max_length
;
398 std::unique_ptr
<HrtfStore
> CreateHrtfStore(uint rate
, uint8_t irSize
,
399 const al::span
<const HrtfStore::Field
> fields
,
400 const al::span
<const HrtfStore::Elevation
> elevs
, const HrirArray
*coeffs
,
401 const ubyte2
*delays
)
403 static_assert(alignof(HrtfStore::Field
) <= alignof(HrtfStore
));
404 static_assert(alignof(HrtfStore::Elevation
) <= alignof(HrtfStore
));
405 static_assert(16 <= alignof(HrtfStore
));
407 if(rate
> MaxSampleRate
)
408 throw std::runtime_error
{"Sample rate is too large (max: "+std::to_string(MaxSampleRate
)+"hz)"};
410 const size_t irCount
{size_t{elevs
.back().azCount
} + elevs
.back().irOffset
};
411 size_t total
{sizeof(HrtfStore
)};
412 total
= RoundUp(total
, alignof(HrtfStore::Field
)); /* Align for field infos */
413 total
+= sizeof(std::declval
<HrtfStore
&>().mFields
[0])*fields
.size();
414 total
= RoundUp(total
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
415 total
+= sizeof(std::declval
<HrtfStore
&>().mElev
[0])*elevs
.size();
416 total
= RoundUp(total
, 16); /* Align for coefficients using SIMD */
417 total
+= sizeof(std::declval
<HrtfStore
&>().mCoeffs
[0])*irCount
;
418 total
+= sizeof(std::declval
<HrtfStore
&>().mDelays
[0])*irCount
;
420 static constexpr auto AlignVal
= std::align_val_t
{alignof(HrtfStore
)};
421 std::unique_ptr
<HrtfStore
> Hrtf
{::new(::operator new[](total
, AlignVal
)) HrtfStore
{}};
422 Hrtf
->mRef
.store(1u, std::memory_order_relaxed
);
423 Hrtf
->mSampleRate
= rate
& 0xff'ff'ff;
424 Hrtf
->mIrSize
= irSize
;
426 /* Set up pointers to storage following the main HRTF struct. */
427 char *base
= reinterpret_cast<char*>(Hrtf
.get());
428 size_t offset
{sizeof(HrtfStore
)};
430 offset
= RoundUp(offset
, alignof(HrtfStore::Field
)); /* Align for field infos */
431 auto field_
= reinterpret_cast<HrtfStore::Field
*>(base
+ offset
);
432 offset
+= sizeof(field_
[0])*fields
.size();
434 offset
= RoundUp(offset
, alignof(HrtfStore::Elevation
)); /* Align for elevation infos */
435 auto elev_
= reinterpret_cast<HrtfStore::Elevation
*>(base
+ offset
);
436 offset
+= sizeof(elev_
[0])*elevs
.size();
438 offset
= RoundUp(offset
, 16); /* Align for coefficients using SIMD */
439 auto coeffs_
= reinterpret_cast<HrirArray
*>(base
+ offset
);
440 offset
+= sizeof(coeffs_
[0])*irCount
;
442 auto delays_
= reinterpret_cast<ubyte2
*>(base
+ offset
);
443 offset
+= sizeof(delays_
[0])*irCount
;
446 throw std::runtime_error
{"HrtfStore allocation size mismatch"};
448 /* Copy input data to storage. */
449 std::uninitialized_copy(fields
.cbegin(), fields
.cend(), field_
);
450 std::uninitialized_copy(elevs
.cbegin(), elevs
.cend(), elev_
);
451 std::uninitialized_copy_n(coeffs
, irCount
, coeffs_
);
452 std::uninitialized_copy_n(delays
, irCount
, delays_
);
454 /* Finally, assign the storage pointers. */
455 Hrtf
->mFields
= {field_
, fields
.size()};
457 Hrtf
->mCoeffs
= coeffs_
;
458 Hrtf
->mDelays
= delays_
;
463 void MirrorLeftHrirs(const al::span
<const HrtfStore::Elevation
> elevs
, HrirArray
*coeffs
,
466 for(const auto &elev
: elevs
)
468 const ushort evoffset
{elev
.irOffset
};
469 const ushort azcount
{elev
.azCount
};
470 for(size_t j
{0};j
< azcount
;j
++)
472 const size_t lidx
{evoffset
+ j
};
473 const size_t ridx
{evoffset
+ ((azcount
-j
) % azcount
)};
475 const size_t irSize
{coeffs
[ridx
].size()};
476 for(size_t k
{0};k
< irSize
;k
++)
477 coeffs
[ridx
][k
][1] = coeffs
[lidx
][k
][0];
478 delays
[ridx
][1] = delays
[lidx
][0];
484 template<size_t num_bits
, typename T
>
485 constexpr std::enable_if_t
<std::is_signed
<T
>::value
&& num_bits
< sizeof(T
)*8,
486 T
> fixsign(T value
) noexcept
488 constexpr auto signbit
= static_cast<T
>(1u << (num_bits
-1));
489 return static_cast<T
>((value
^signbit
) - signbit
);
492 template<size_t num_bits
, typename T
>
493 constexpr std::enable_if_t
<!std::is_signed
<T
>::value
|| num_bits
== sizeof(T
)*8,
494 T
> fixsign(T value
) noexcept
497 template<typename T
, size_t num_bits
=sizeof(T
)*8>
498 inline std::enable_if_t
<al::endian::native
== al::endian::little
,
499 T
> readle(std::istream
&data
)
501 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
502 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
504 alignas(T
) std::array
<char,sizeof(T
)> ret
{};
505 if(!data
.read(ret
.data(), num_bits
/8))
506 return static_cast<T
>(EOF
);
508 return fixsign
<num_bits
>(al::bit_cast
<T
>(ret
));
511 template<typename T
, size_t num_bits
=sizeof(T
)*8>
512 inline std::enable_if_t
<al::endian::native
== al::endian::big
,
513 T
> readle(std::istream
&data
)
515 static_assert((num_bits
&7) == 0, "num_bits must be a multiple of 8");
516 static_assert(num_bits
<= sizeof(T
)*8, "num_bits is too large for the type");
518 alignas(T
) std::array
<char,sizeof(T
)> ret
{};
519 if(!data
.read(ret
.data(), num_bits
/8))
520 return static_cast<T
>(EOF
);
521 std::reverse(ret
.begin(), ret
.end());
523 return fixsign
<num_bits
>(al::bit_cast
<T
>(ret
));
527 inline uint8_t readle
<uint8_t,8>(std::istream
&data
)
528 { return static_cast<uint8_t>(data
.get()); }
531 std::unique_ptr
<HrtfStore
> LoadHrtf00(std::istream
&data
)
533 uint rate
{readle
<uint32_t>(data
)};
534 ushort irCount
{readle
<uint16_t>(data
)};
535 ushort irSize
{readle
<uint16_t>(data
)};
536 ubyte evCount
{readle
<uint8_t>(data
)};
537 if(!data
|| data
.eof())
538 throw std::runtime_error
{"Premature end of file"};
540 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
542 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
545 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
547 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
548 evCount
, MinEvCount
, MaxEvCount
);
552 auto elevs
= std::vector
<HrtfStore::Elevation
>(evCount
);
553 for(auto &elev
: elevs
)
554 elev
.irOffset
= readle
<uint16_t>(data
);
555 if(!data
|| data
.eof())
556 throw std::runtime_error
{"Premature end of file"};
558 for(size_t i
{1};i
< evCount
;i
++)
560 if(elevs
[i
].irOffset
<= elevs
[i
-1].irOffset
)
562 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i
, elevs
[i
].irOffset
,
563 elevs
[i
-1].irOffset
);
567 if(irCount
<= elevs
.back().irOffset
)
569 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
570 elevs
.size()-1, elevs
.back().irOffset
, irCount
);
574 for(size_t i
{1};i
< evCount
;i
++)
576 elevs
[i
-1].azCount
= static_cast<ushort
>(elevs
[i
].irOffset
- elevs
[i
-1].irOffset
);
577 if(elevs
[i
-1].azCount
< MinAzCount
|| elevs
[i
-1].azCount
> MaxAzCount
)
579 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
580 i
-1, elevs
[i
-1].azCount
, MinAzCount
, MaxAzCount
);
584 elevs
.back().azCount
= static_cast<ushort
>(irCount
- elevs
.back().irOffset
);
585 if(elevs
.back().azCount
< MinAzCount
|| elevs
.back().azCount
> MaxAzCount
)
587 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
588 elevs
.size()-1, elevs
.back().azCount
, MinAzCount
, MaxAzCount
);
592 auto coeffs
= std::vector
<HrirArray
>(irCount
, HrirArray
{});
593 auto delays
= std::vector
<ubyte2
>(irCount
);
594 for(auto &hrir
: coeffs
)
596 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
597 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
599 for(auto &val
: delays
)
600 val
[0] = readle
<uint8_t>(data
);
601 if(!data
|| data
.eof())
602 throw std::runtime_error
{"Premature end of file"};
604 for(size_t i
{0};i
< irCount
;i
++)
606 if(delays
[i
][0] > MaxHrirDelay
)
608 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
611 delays
[i
][0] <<= HrirDelayFracBits
;
614 /* Mirror the left ear responses to the right ear. */
615 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
617 const std::array field
{HrtfStore::Field
{0.0f
, evCount
}};
618 return CreateHrtfStore(rate
, static_cast<uint8_t>(irSize
), field
, elevs
, coeffs
.data(),
622 std::unique_ptr
<HrtfStore
> LoadHrtf01(std::istream
&data
)
624 uint rate
{readle
<uint32_t>(data
)};
625 uint8_t irSize
{readle
<uint8_t>(data
)};
626 ubyte evCount
{readle
<uint8_t>(data
)};
627 if(!data
|| data
.eof())
628 throw std::runtime_error
{"Premature end of file"};
630 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
632 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
635 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
637 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
638 evCount
, MinEvCount
, MaxEvCount
);
642 auto elevs
= std::vector
<HrtfStore::Elevation
>(evCount
);
643 for(auto &elev
: elevs
)
644 elev
.azCount
= readle
<uint8_t>(data
);
645 if(!data
|| data
.eof())
646 throw std::runtime_error
{"Premature end of file"};
648 for(size_t i
{0};i
< evCount
;++i
)
650 if(elevs
[i
].azCount
< MinAzCount
|| elevs
[i
].azCount
> MaxAzCount
)
652 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i
, elevs
[i
].azCount
,
653 MinAzCount
, MaxAzCount
);
658 elevs
[0].irOffset
= 0;
659 for(size_t i
{1};i
< evCount
;i
++)
660 elevs
[i
].irOffset
= static_cast<ushort
>(elevs
[i
-1].irOffset
+ elevs
[i
-1].azCount
);
661 const ushort irCount
{static_cast<ushort
>(elevs
.back().irOffset
+ elevs
.back().azCount
)};
663 auto coeffs
= std::vector
<HrirArray
>(irCount
, HrirArray
{});
664 auto delays
= std::vector
<ubyte2
>(irCount
);
665 for(auto &hrir
: coeffs
)
667 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
668 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
670 for(auto &val
: delays
)
671 val
[0] = readle
<uint8_t>(data
);
672 if(!data
|| data
.eof())
673 throw std::runtime_error
{"Premature end of file"};
675 for(size_t i
{0};i
< irCount
;i
++)
677 if(delays
[i
][0] > MaxHrirDelay
)
679 ERR("Invalid delays[%zd]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
682 delays
[i
][0] <<= HrirDelayFracBits
;
685 /* Mirror the left ear responses to the right ear. */
686 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
688 const std::array field
{HrtfStore::Field
{0.0f
, evCount
}};
689 return CreateHrtfStore(rate
, irSize
, field
, elevs
, coeffs
.data(), delays
.data());
692 std::unique_ptr
<HrtfStore
> LoadHrtf02(std::istream
&data
)
694 static constexpr ubyte SampleType_S16
{0};
695 static constexpr ubyte SampleType_S24
{1};
696 static constexpr ubyte ChanType_LeftOnly
{0};
697 static constexpr ubyte ChanType_LeftRight
{1};
699 uint rate
{readle
<uint32_t>(data
)};
700 ubyte sampleType
{readle
<uint8_t>(data
)};
701 ubyte channelType
{readle
<uint8_t>(data
)};
702 uint8_t irSize
{readle
<uint8_t>(data
)};
703 ubyte fdCount
{readle
<uint8_t>(data
)};
704 if(!data
|| data
.eof())
705 throw std::runtime_error
{"Premature end of file"};
707 if(sampleType
> SampleType_S24
)
709 ERR("Unsupported sample type: %d\n", sampleType
);
712 if(channelType
> ChanType_LeftRight
)
714 ERR("Unsupported channel type: %d\n", channelType
);
718 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
720 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
723 if(fdCount
< 1 || fdCount
> MaxFdCount
)
725 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
730 auto fields
= std::vector
<HrtfStore::Field
>(fdCount
);
731 auto elevs
= std::vector
<HrtfStore::Elevation
>{};
732 for(size_t f
{0};f
< fdCount
;f
++)
734 const ushort distance
{readle
<uint16_t>(data
)};
735 const ubyte evCount
{readle
<uint8_t>(data
)};
736 if(!data
|| data
.eof())
737 throw std::runtime_error
{"Premature end of file"};
739 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
741 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
742 MinFdDistance
, MaxFdDistance
);
745 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
747 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
748 MinEvCount
, MaxEvCount
);
752 fields
[f
].distance
= float(distance
) / 1000.0f
;
753 fields
[f
].evCount
= evCount
;
754 if(f
> 0 && fields
[f
].distance
<= fields
[f
-1].distance
)
756 ERR("Field distance[%zu] is not after previous (%f > %f)\n", f
, fields
[f
].distance
,
757 fields
[f
-1].distance
);
761 const size_t ebase
{elevs
.size()};
762 elevs
.resize(ebase
+ evCount
);
763 for(auto &elev
: al::span
<HrtfStore::Elevation
>(elevs
.data()+ebase
, evCount
))
764 elev
.azCount
= readle
<uint8_t>(data
);
765 if(!data
|| data
.eof())
766 throw std::runtime_error
{"Premature end of file"};
768 for(size_t e
{0};e
< evCount
;e
++)
770 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
772 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
773 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
779 elevs
[0].irOffset
= 0;
780 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
781 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
782 -> HrtfStore::Elevation
784 return HrtfStore::Elevation
{cur
.azCount
,
785 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
787 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
789 auto coeffs
= std::vector
<HrirArray
>(irTotal
, HrirArray
{});
790 auto delays
= std::vector
<ubyte2
>(irTotal
);
791 if(channelType
== ChanType_LeftOnly
)
793 if(sampleType
== SampleType_S16
)
795 for(auto &hrir
: coeffs
)
797 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
798 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
801 else if(sampleType
== SampleType_S24
)
803 for(auto &hrir
: coeffs
)
805 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
806 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
809 for(auto &val
: delays
)
810 val
[0] = readle
<uint8_t>(data
);
811 if(!data
|| data
.eof())
812 throw std::runtime_error
{"Premature end of file"};
814 for(size_t i
{0};i
< irTotal
;++i
)
816 if(delays
[i
][0] > MaxHrirDelay
)
818 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
821 delays
[i
][0] <<= HrirDelayFracBits
;
824 /* Mirror the left ear responses to the right ear. */
825 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
827 else if(channelType
== ChanType_LeftRight
)
829 if(sampleType
== SampleType_S16
)
831 for(auto &hrir
: coeffs
)
833 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
835 val
[0] = float(readle
<int16_t>(data
)) / 32768.0f
;
836 val
[1] = float(readle
<int16_t>(data
)) / 32768.0f
;
840 else if(sampleType
== SampleType_S24
)
842 for(auto &hrir
: coeffs
)
844 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
846 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
847 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
851 for(auto &val
: delays
)
853 val
[0] = readle
<uint8_t>(data
);
854 val
[1] = readle
<uint8_t>(data
);
856 if(!data
|| data
.eof())
857 throw std::runtime_error
{"Premature end of file"};
859 for(size_t i
{0};i
< irTotal
;++i
)
861 if(delays
[i
][0] > MaxHrirDelay
)
863 ERR("Invalid delays[%zu][0]: %d (%d)\n", i
, delays
[i
][0], MaxHrirDelay
);
866 if(delays
[i
][1] > MaxHrirDelay
)
868 ERR("Invalid delays[%zu][1]: %d (%d)\n", i
, delays
[i
][1], MaxHrirDelay
);
871 delays
[i
][0] <<= HrirDelayFracBits
;
872 delays
[i
][1] <<= HrirDelayFracBits
;
878 auto fields_
= std::vector
<HrtfStore::Field
>(fields
.size());
879 auto elevs_
= std::vector
<HrtfStore::Elevation
>(elevs
.size());
880 auto coeffs_
= std::vector
<HrirArray
>(coeffs
.size());
881 auto delays_
= std::vector
<ubyte2
>(delays
.size());
883 /* Simple reverse for the per-field elements. */
884 std::reverse_copy(fields
.cbegin(), fields
.cend(), fields_
.begin());
886 /* Each field has a group of elevations, which each have an azimuth
887 * count. Reverse the order of the groups, keeping the relative order
888 * of per-group azimuth counts.
890 auto elevs_end
= elevs_
.end();
891 auto copy_azs
= [&elevs
,&elevs_end
](const ptrdiff_t ebase
, const HrtfStore::Field
&field
)
894 auto elevs_src
= elevs
.begin()+ebase
;
895 elevs_end
= std::copy_backward(elevs_src
, elevs_src
+field
.evCount
, elevs_end
);
896 return ebase
+ field
.evCount
;
898 std::ignore
= std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_azs
);
899 assert(elevs_
.begin() == elevs_end
);
901 /* Reestablish the IR offset for each elevation index, given the new
902 * ordering of elevations.
904 elevs_
[0].irOffset
= 0;
905 std::partial_sum(elevs_
.cbegin(), elevs_
.cend(), elevs_
.begin(),
906 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
907 -> HrtfStore::Elevation
909 return HrtfStore::Elevation
{cur
.azCount
,
910 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
913 /* Reverse the order of each field's group of IRs. */
914 auto coeffs_end
= coeffs_
.end();
915 auto delays_end
= delays_
.end();
916 auto copy_irs
= [&elevs
,&coeffs
,&delays
,&coeffs_end
,&delays_end
](
917 const ptrdiff_t ebase
, const HrtfStore::Field
&field
) -> ptrdiff_t
919 auto accum_az
= [](const ptrdiff_t count
, const HrtfStore::Elevation
&elev
) noexcept
921 { return count
+ elev
.azCount
; };
922 const auto elev_mid
= elevs
.cbegin() + ebase
;
923 const auto abase
= std::accumulate(elevs
.cbegin(), elev_mid
, ptrdiff_t{0}, accum_az
);
924 const auto num_azs
= std::accumulate(elev_mid
, elev_mid
+ field
.evCount
, ptrdiff_t{0},
927 coeffs_end
= std::copy_backward(coeffs
.cbegin() + abase
,
928 coeffs
.cbegin() + (abase
+num_azs
), coeffs_end
);
929 delays_end
= std::copy_backward(delays
.cbegin() + abase
,
930 delays
.cbegin() + (abase
+num_azs
), delays_end
);
932 return ebase
+ field
.evCount
;
934 std::ignore
= std::accumulate(fields
.cbegin(), fields
.cend(), ptrdiff_t{0}, copy_irs
);
935 assert(coeffs_
.begin() == coeffs_end
);
936 assert(delays_
.begin() == delays_end
);
938 fields
= std::move(fields_
);
939 elevs
= std::move(elevs_
);
940 coeffs
= std::move(coeffs_
);
941 delays
= std::move(delays_
);
944 return CreateHrtfStore(rate
, irSize
, fields
, elevs
, coeffs
.data(), delays
.data());
947 std::unique_ptr
<HrtfStore
> LoadHrtf03(std::istream
&data
)
949 static constexpr ubyte ChanType_LeftOnly
{0};
950 static constexpr ubyte ChanType_LeftRight
{1};
952 uint rate
{readle
<uint32_t>(data
)};
953 ubyte channelType
{readle
<uint8_t>(data
)};
954 uint8_t irSize
{readle
<uint8_t>(data
)};
955 ubyte fdCount
{readle
<uint8_t>(data
)};
956 if(!data
|| data
.eof())
957 throw std::runtime_error
{"Premature end of file"};
959 if(channelType
> ChanType_LeftRight
)
961 ERR("Unsupported channel type: %d\n", channelType
);
965 if(irSize
< MinIrLength
|| irSize
> HrirLength
)
967 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize
, MinIrLength
, HrirLength
);
970 if(fdCount
< 1 || fdCount
> MaxFdCount
)
972 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount
, MinFdCount
,
977 auto fields
= std::vector
<HrtfStore::Field
>(fdCount
);
978 auto elevs
= std::vector
<HrtfStore::Elevation
>{};
979 for(size_t f
{0};f
< fdCount
;f
++)
981 const ushort distance
{readle
<uint16_t>(data
)};
982 const ubyte evCount
{readle
<uint8_t>(data
)};
983 if(!data
|| data
.eof())
984 throw std::runtime_error
{"Premature end of file"};
986 if(distance
< MinFdDistance
|| distance
> MaxFdDistance
)
988 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f
, distance
,
989 MinFdDistance
, MaxFdDistance
);
992 if(evCount
< MinEvCount
|| evCount
> MaxEvCount
)
994 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f
, evCount
,
995 MinEvCount
, MaxEvCount
);
999 fields
[f
].distance
= float(distance
) / 1000.0f
;
1000 fields
[f
].evCount
= evCount
;
1001 if(f
> 0 && fields
[f
].distance
> fields
[f
-1].distance
)
1003 ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f
, fields
[f
].distance
,
1004 fields
[f
-1].distance
);
1008 const size_t ebase
{elevs
.size()};
1009 elevs
.resize(ebase
+ evCount
);
1010 for(auto &elev
: al::span
<HrtfStore::Elevation
>(elevs
.data()+ebase
, evCount
))
1011 elev
.azCount
= readle
<uint8_t>(data
);
1012 if(!data
|| data
.eof())
1013 throw std::runtime_error
{"Premature end of file"};
1015 for(size_t e
{0};e
< evCount
;e
++)
1017 if(elevs
[ebase
+e
].azCount
< MinAzCount
|| elevs
[ebase
+e
].azCount
> MaxAzCount
)
1019 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f
, e
,
1020 elevs
[ebase
+e
].azCount
, MinAzCount
, MaxAzCount
);
1026 elevs
[0].irOffset
= 0;
1027 std::partial_sum(elevs
.cbegin(), elevs
.cend(), elevs
.begin(),
1028 [](const HrtfStore::Elevation
&last
, const HrtfStore::Elevation
&cur
)
1029 -> HrtfStore::Elevation
1031 return HrtfStore::Elevation
{cur
.azCount
,
1032 static_cast<ushort
>(last
.azCount
+ last
.irOffset
)};
1034 const auto irTotal
= static_cast<ushort
>(elevs
.back().azCount
+ elevs
.back().irOffset
);
1036 auto coeffs
= std::vector
<HrirArray
>(irTotal
, HrirArray
{});
1037 auto delays
= std::vector
<ubyte2
>(irTotal
);
1038 if(channelType
== ChanType_LeftOnly
)
1040 for(auto &hrir
: coeffs
)
1042 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
1043 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1045 for(auto &val
: delays
)
1046 val
[0] = readle
<uint8_t>(data
);
1047 if(!data
|| data
.eof())
1048 throw std::runtime_error
{"Premature end of file"};
1050 for(size_t i
{0};i
< irTotal
;++i
)
1052 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1054 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1055 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1060 /* Mirror the left ear responses to the right ear. */
1061 MirrorLeftHrirs({elevs
.data(), elevs
.size()}, coeffs
.data(), delays
.data());
1063 else if(channelType
== ChanType_LeftRight
)
1065 for(auto &hrir
: coeffs
)
1067 for(auto &val
: al::span
<float2
>{hrir
.data(), irSize
})
1069 val
[0] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1070 val
[1] = static_cast<float>(readle
<int,24>(data
)) / 8388608.0f
;
1073 for(auto &val
: delays
)
1075 val
[0] = readle
<uint8_t>(data
);
1076 val
[1] = readle
<uint8_t>(data
);
1078 if(!data
|| data
.eof())
1079 throw std::runtime_error
{"Premature end of file"};
1081 for(size_t i
{0};i
< irTotal
;++i
)
1083 if(delays
[i
][0] > MaxHrirDelay
<<HrirDelayFracBits
)
1085 ERR("Invalid delays[%zu][0]: %f (%d)\n", i
,
1086 delays
[i
][0] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1089 if(delays
[i
][1] > MaxHrirDelay
<<HrirDelayFracBits
)
1091 ERR("Invalid delays[%zu][1]: %f (%d)\n", i
,
1092 delays
[i
][1] / float{HrirDelayFracOne
}, MaxHrirDelay
);
1098 return CreateHrtfStore(rate
, irSize
, fields
, elevs
, coeffs
.data(), delays
.data());
1102 bool checkName(const std::string_view name
)
1104 auto match_name
= [name
](const HrtfEntry
&entry
) -> bool { return name
== entry
.mDispName
; };
1105 auto &enum_names
= EnumeratedHrtfs
;
1106 return std::find_if(enum_names
.cbegin(), enum_names
.cend(), match_name
) != enum_names
.cend();
1109 void AddFileEntry(const std::string_view filename
)
1111 /* Check if this file has already been enumerated. */
1112 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1113 [filename
](const HrtfEntry
&entry
) -> bool
1114 { return entry
.mFilename
== filename
; });
1115 if(enum_iter
!= EnumeratedHrtfs
.cend())
1117 TRACE("Skipping duplicate file entry %.*s\n", al::sizei(filename
), filename
.data());
1121 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1122 * format update). */
1123 size_t namepos
{filename
.rfind('/')+1};
1124 if(!namepos
) namepos
= filename
.rfind('\\')+1;
1126 size_t extpos
{filename
.rfind('.')};
1127 if(extpos
<= namepos
) extpos
= std::string::npos
;
1129 const std::string_view basename
{(extpos
== std::string::npos
) ?
1130 filename
.substr(namepos
) : filename
.substr(namepos
, extpos
-namepos
)};
1131 std::string newname
{basename
};
1133 while(checkName(newname
))
1137 newname
+= std::to_string(++count
);
1139 const HrtfEntry
&entry
= EnumeratedHrtfs
.emplace_back(newname
, filename
);
1141 TRACE("Adding file entry \"%s\"\n", entry
.mFilename
.c_str());
1144 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1145 * for input instead of opening the given filename.
1147 void AddBuiltInEntry(const std::string_view dispname
, uint residx
)
1149 std::string filename
{'!'+std::to_string(residx
)+'_'};
1150 filename
+= dispname
;
1152 auto enum_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1153 [&filename
](const HrtfEntry
&entry
) -> bool
1154 { return entry
.mFilename
== filename
; });
1155 if(enum_iter
!= EnumeratedHrtfs
.cend())
1157 TRACE("Skipping duplicate file entry %s\n", filename
.c_str());
1161 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1162 * format update). */
1164 std::string newname
{dispname
};
1166 while(checkName(newname
))
1170 newname
+= std::to_string(++count
);
1172 const HrtfEntry
&entry
= EnumeratedHrtfs
.emplace_back(std::move(newname
), std::move(filename
));
1174 TRACE("Adding built-in entry \"%s\"\n", entry
.mFilename
.c_str());
1178 #define IDR_DEFAULT_HRTF_MHR 1
1180 #ifndef ALSOFT_EMBED_HRTF_DATA
1182 al::span
<const char> GetResource(int /*name*/)
1187 /* NOLINTNEXTLINE(*-avoid-c-arrays) */
1188 constexpr unsigned char hrtf_default
[]{
1189 #include "default_hrtf.txt"
1192 al::span
<const char> GetResource(int name
)
1194 if(name
== IDR_DEFAULT_HRTF_MHR
)
1195 return {reinterpret_cast<const char*>(hrtf_default
), sizeof(hrtf_default
)};
1203 std::vector
<std::string
> EnumerateHrtf(std::optional
<std::string
> pathopt
)
1205 std::lock_guard
<std::mutex
> enumlock
{EnumeratedHrtfLock
};
1206 EnumeratedHrtfs
.clear();
1208 bool usedefaults
{true};
1211 std::string_view pathlist
{*pathopt
};
1212 while(!pathlist
.empty())
1214 while(!pathlist
.empty() && (std::isspace(pathlist
.front()) || pathlist
.front() == ','))
1215 pathlist
.remove_prefix(1);
1216 if(pathlist
.empty())
1219 auto endpos
= std::min(pathlist
.find(','), pathlist
.size());
1220 auto entry
= pathlist
.substr(0, endpos
);
1221 if(endpos
< pathlist
.size())
1222 pathlist
.remove_prefix(++endpos
);
1225 pathlist
.remove_prefix(endpos
);
1226 usedefaults
= false;
1229 while(!entry
.empty() && std::isspace(entry
.back()))
1230 entry
.remove_suffix(1);
1233 for(const auto &fname
: SearchDataFiles(".mhr"sv
, entry
))
1234 AddFileEntry(fname
);
1241 for(const auto &fname
: SearchDataFiles(".mhr"sv
, "openal/hrtf"sv
))
1242 AddFileEntry(fname
);
1244 if(!GetResource(IDR_DEFAULT_HRTF_MHR
).empty())
1245 AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR
);
1248 std::vector
<std::string
> list
;
1249 list
.reserve(EnumeratedHrtfs
.size());
1250 for(auto &entry
: EnumeratedHrtfs
)
1251 list
.emplace_back(entry
.mDispName
);
1256 HrtfStorePtr
GetLoadedHrtf(const std::string_view name
, const uint devrate
)
1258 if(devrate
> MaxSampleRate
)
1260 WARN("Device sample rate too large for HRTF (%uhz > %uhz)\n", devrate
, MaxSampleRate
);
1263 std::lock_guard
<std::mutex
> enumlock
{EnumeratedHrtfLock
};
1264 auto entry_iter
= std::find_if(EnumeratedHrtfs
.cbegin(), EnumeratedHrtfs
.cend(),
1265 [name
](const HrtfEntry
&entry
) -> bool { return entry
.mDispName
== name
; });
1266 if(entry_iter
== EnumeratedHrtfs
.cend())
1268 const std::string
&fname
= entry_iter
->mFilename
;
1270 std::lock_guard
<std::mutex
> loadlock
{LoadedHrtfLock
};
1271 auto hrtf_lt_fname
= [devrate
](LoadedHrtf
&hrtf
, const std::string_view filename
) -> bool
1273 return hrtf
.mSampleRate
< devrate
1274 || (hrtf
.mSampleRate
== devrate
&& hrtf
.mFilename
< filename
);
1276 auto handle
= std::lower_bound(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), fname
, hrtf_lt_fname
);
1277 if(handle
!= LoadedHrtfs
.end() && handle
->mSampleRate
== devrate
&& handle
->mFilename
== fname
)
1279 if(HrtfStore
*hrtf
{handle
->mEntry
.get()})
1281 assert(hrtf
->mSampleRate
== devrate
);
1283 return HrtfStorePtr
{hrtf
};
1287 std::unique_ptr
<std::istream
> stream
;
1290 if(sscanf(fname
.c_str(), "!%d%c", &residx
, &ch
) == 2 && ch
== '_')
1292 TRACE("Loading %s...\n", fname
.c_str());
1293 al::span
<const char> res
{GetResource(residx
)};
1296 ERR("Could not get resource %u, %.*s\n", residx
, al::sizei(name
), name
.data());
1299 stream
= std::make_unique
<idstream
>(res
.begin(), res
.end());
1303 TRACE("Loading %s...\n", fname
.c_str());
1304 auto fstr
= std::make_unique
<al::ifstream
>(fname
.c_str(), std::ios::binary
);
1305 if(!fstr
->is_open())
1307 ERR("Could not open %s\n", fname
.c_str());
1310 stream
= std::move(fstr
);
1313 std::unique_ptr
<HrtfStore
> hrtf
;
1314 std::array
<char,GetMarker03Name().size()> magic
{};
1315 stream
->read(magic
.data(), magic
.size());
1316 if(stream
->gcount() < static_cast<std::streamsize
>(GetMarker03Name().size()))
1317 ERR("%.*s data is too short (%zu bytes)\n", al::sizei(name
),name
.data(), stream
->gcount());
1318 else if(GetMarker03Name() == std::string_view
{magic
.data(), magic
.size()})
1320 TRACE("Detected data set format v3\n");
1321 hrtf
= LoadHrtf03(*stream
);
1323 else if(GetMarker02Name() == std::string_view
{magic
.data(), magic
.size()})
1325 TRACE("Detected data set format v2\n");
1326 hrtf
= LoadHrtf02(*stream
);
1328 else if(GetMarker01Name() == std::string_view
{magic
.data(), magic
.size()})
1330 TRACE("Detected data set format v1\n");
1331 hrtf
= LoadHrtf01(*stream
);
1333 else if(GetMarker00Name() == std::string_view
{magic
.data(), magic
.size()})
1335 TRACE("Detected data set format v0\n");
1336 hrtf
= LoadHrtf00(*stream
);
1339 ERR("Invalid header in %.*s: \"%.8s\"\n", al::sizei(name
), name
.data(), magic
.data());
1345 if(hrtf
->mSampleRate
!= devrate
)
1347 TRACE("Resampling HRTF %.*s (%uhz -> %uhz)\n", al::sizei(name
), name
.data(),
1348 hrtf
->mSampleRate
, devrate
);
1350 /* Calculate the last elevation's index and get the total IR count. */
1351 const size_t lastEv
{std::accumulate(hrtf
->mFields
.begin(), hrtf
->mFields
.end(), 0_uz
,
1352 [](const size_t curval
, const HrtfStore::Field
&field
) noexcept
-> size_t
1353 { return curval
+ field
.evCount
; }
1355 const size_t irCount
{size_t{hrtf
->mElev
[lastEv
].irOffset
} + hrtf
->mElev
[lastEv
].azCount
};
1357 /* Resample all the IRs. */
1358 std::array
<std::array
<double,HrirLength
>,2> inout
;
1360 rs
.init(hrtf
->mSampleRate
, devrate
);
1361 for(size_t i
{0};i
< irCount
;++i
)
1363 /* NOLINTNEXTLINE(*-const-cast) */
1364 auto coeffs
= al::span
{const_cast<HrirArray
&>(hrtf
->mCoeffs
[i
])};
1365 for(size_t j
{0};j
< 2;++j
)
1367 std::transform(coeffs
.cbegin(), coeffs
.cend(), inout
[0].begin(),
1368 [j
](const float2
&in
) noexcept
-> double { return in
[j
]; });
1369 rs
.process(HrirLength
, inout
[0].data(), HrirLength
, inout
[1].data());
1370 for(size_t k
{0};k
< HrirLength
;++k
)
1371 coeffs
[k
][j
] = static_cast<float>(inout
[1][k
]);
1376 /* Scale the delays for the new sample rate. */
1377 float max_delay
{0.0f
};
1378 auto new_delays
= std::vector
<float2
>(irCount
);
1379 const float rate_scale
{static_cast<float>(devrate
)/static_cast<float>(hrtf
->mSampleRate
)};
1380 for(size_t i
{0};i
< irCount
;++i
)
1382 for(size_t j
{0};j
< 2;++j
)
1384 const float new_delay
{std::round(float(hrtf
->mDelays
[i
][j
]) * rate_scale
) /
1385 float{HrirDelayFracOne
}};
1386 max_delay
= std::max(max_delay
, new_delay
);
1387 new_delays
[i
][j
] = new_delay
;
1391 /* If the new delays exceed the max, scale it down to fit (essentially
1392 * shrinking the head radius; not ideal but better than a per-delay
1395 float delay_scale
{HrirDelayFracOne
};
1396 if(max_delay
> MaxHrirDelay
)
1398 WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay
, MaxHrirDelay
);
1399 delay_scale
*= float{MaxHrirDelay
} / max_delay
;
1402 for(size_t i
{0};i
< irCount
;++i
)
1404 /* NOLINTNEXTLINE(*-const-cast) */
1405 auto delays
= al::span
{const_cast<ubyte2
&>(hrtf
->mDelays
[i
])};
1406 std::transform(new_delays
[i
].cbegin(), new_delays
[i
].cend(), delays
.begin(),
1407 [delay_scale
](const float delay
)
1408 { return static_cast<ubyte
>(float2int(delay
*delay_scale
+ 0.5f
)); });
1411 /* Scale the IR size for the new sample rate and update the stored
1414 const float newIrSize
{std::round(static_cast<float>(hrtf
->mIrSize
) * rate_scale
)};
1415 hrtf
->mIrSize
= static_cast<uint8_t>(std::min(float{HrirLength
}, newIrSize
));
1416 hrtf
->mSampleRate
= devrate
& 0xff'ff'ff;
1419 handle
= LoadedHrtfs
.emplace(handle
, fname
, devrate
, std::move(hrtf
));
1420 TRACE("Loaded HRTF %.*s for sample rate %uhz, %u-sample filter\n", al::sizei(name
),name
.data(),
1421 handle
->mEntry
->mSampleRate
, handle
->mEntry
->mIrSize
);
1423 return HrtfStorePtr
{handle
->mEntry
.get()};
1425 catch(std::exception
& e
) {
1426 ERR("Failed to load %.*s: %s\n", al::sizei(name
), name
.data(), e
.what());
1431 void HrtfStore::add_ref()
1433 auto ref
= IncrementRef(mRef
);
1434 TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1437 void HrtfStore::dec_ref()
1439 auto ref
= DecrementRef(mRef
);
1440 TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval
<void*>()){this}, ref
);
1443 std::lock_guard
<std::mutex
> loadlock
{LoadedHrtfLock
};
1445 /* Go through and remove all unused HRTFs. */
1446 auto remove_unused
= [](LoadedHrtf
&hrtf
) -> bool
1448 HrtfStore
*entry
{hrtf
.mEntry
.get()};
1449 if(entry
&& entry
->mRef
.load() == 0)
1451 TRACE("Unloading unused HRTF %s\n", hrtf
.mFilename
.c_str());
1452 hrtf
.mEntry
= nullptr;
1457 auto iter
= std::remove_if(LoadedHrtfs
.begin(), LoadedHrtfs
.end(), remove_unused
);
1458 LoadedHrtfs
.erase(iter
, LoadedHrtfs
.end());