Handle deferring for EAX 1 reverb
[openal-soft.git] / utils / uhjdecoder.cpp
blobdc85ba568447abec0c4cf6d03d09fdc34971ec6b
1 /*
2 * 2-channel UHJ Decoder
4 * Copyright (c) Chris Robinson <chris.kcat@gmail.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "config.h"
27 #include <array>
28 #include <complex>
29 #include <cstring>
30 #include <memory>
31 #include <stddef.h>
32 #include <string>
33 #include <utility>
34 #include <vector>
36 #include "albit.h"
37 #include "albyte.h"
38 #include "alcomplex.h"
39 #include "almalloc.h"
40 #include "alnumbers.h"
41 #include "alspan.h"
42 #include "vector.h"
43 #include "opthelpers.h"
44 #include "phase_shifter.h"
46 #include "sndfile.h"
48 #include "win_main_utf8.h"
51 struct FileDeleter {
52 void operator()(FILE *file) { fclose(file); }
54 using FilePtr = std::unique_ptr<FILE,FileDeleter>;
56 struct SndFileDeleter {
57 void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
59 using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
62 using ubyte = unsigned char;
63 using ushort = unsigned short;
64 using uint = unsigned int;
65 using complex_d = std::complex<double>;
67 using byte4 = std::array<al::byte,4>;
70 constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
71 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
72 0xca, 0x00, 0x00, 0x00
75 void fwrite16le(ushort val, FILE *f)
77 ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
78 fwrite(data, 1, 2, f);
81 void fwrite32le(uint val, FILE *f)
83 ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
84 static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
85 fwrite(data, 1, 4, f);
88 template<al::endian = al::endian::native>
89 byte4 f32AsLEBytes(const float &value) = delete;
91 template<>
92 byte4 f32AsLEBytes<al::endian::little>(const float &value)
94 byte4 ret{};
95 std::memcpy(ret.data(), &value, 4);
96 return ret;
98 template<>
99 byte4 f32AsLEBytes<al::endian::big>(const float &value)
101 byte4 ret{};
102 std::memcpy(ret.data(), &value, 4);
103 std::swap(ret[0], ret[3]);
104 std::swap(ret[1], ret[2]);
105 return ret;
109 constexpr uint BufferLineSize{1024};
111 using FloatBufferLine = std::array<float,BufferLineSize>;
112 using FloatBufferSpan = al::span<float,BufferLineSize>;
115 struct UhjDecoder {
116 constexpr static size_t sFilterDelay{1024};
118 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
119 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
120 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
121 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
123 /* History for the FIR filter. */
124 alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
125 alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
127 alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
129 void decode(const float *RESTRICT InSamples, const size_t InChannels,
130 const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo);
131 void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine,3> OutSamples,
132 const size_t SamplesToDo);
134 DEF_NEWDEL(UhjDecoder)
137 const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
140 /* Decoding UHJ is done as:
142 * S = Left + Right
143 * D = Left - Right
145 * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
146 * X = 0.418496*S - j(0.828331*D + 0.767820*T)
147 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
148 * Z = 1.023332*Q
150 * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
151 * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
152 * UHJ should not be run through a normal B-Format decoder, as it needs
153 * different shelf filters.
155 * NOTE: Some sources specify
157 * S = (Left + Right)/2
158 * D = (Left - Right)/2
160 * However, this is incorrect. It's halving Left and Right even though they
161 * were already halved during encoding, causing S and D to be half what they
162 * initially were at the encoding stage. This division is not present in
163 * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
164 * signals. As proof, taking Y for example:
166 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
168 * * Plug in the encoding parameters, using ? as a placeholder for whether S
169 * and D should receive an extra 0.5 factor
170 * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
171 * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
172 * 0.186633*j(0.9396926*W + 0.1855740*X)*?
174 * * Move common factors in
175 * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
176 * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
177 * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
179 * * Clean up extraneous groupings
180 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
181 * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
182 * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
184 * * Move phase shifts together and combine them
185 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
186 * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
187 * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
189 * * Reorder terms
190 * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
191 * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
192 * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
194 * * Move common factors out
195 * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
196 * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
197 * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
199 * * Result w/ 0.5 factor:
200 * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
201 * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
202 * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
203 * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
205 * * Result w/o 0.5 factor:
206 * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
207 * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
208 * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
209 * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
211 * Not halving produces a result matching the original input.
213 void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels,
214 const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
216 ASSUME(SamplesToDo > 0);
218 float *woutput{OutSamples[0].data()};
219 float *xoutput{OutSamples[1].data()};
220 float *youtput{OutSamples[2].data()};
222 /* Add a delay to the input channels, to align it with the all-passed
223 * signal.
226 /* S = Left + Right */
227 for(size_t i{0};i < SamplesToDo;++i)
228 mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
230 /* D = Left - Right */
231 for(size_t i{0};i < SamplesToDo;++i)
232 mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
234 if(InChannels > 2)
236 /* T */
237 for(size_t i{0};i < SamplesToDo;++i)
238 mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
240 if(InChannels > 3)
242 /* Q */
243 for(size_t i{0};i < SamplesToDo;++i)
244 mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
247 /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
248 auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
249 std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
250 [](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
251 std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
252 PShift.process({xoutput, SamplesToDo}, mTemp.data());
254 for(size_t i{0};i < SamplesToDo;++i)
256 /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
257 woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
258 /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
259 xoutput[i] = 0.418496f*mS[i] - xoutput[i];
262 /* Precompute j*S and store in youtput. */
263 tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
264 std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
265 std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
266 PShift.process({youtput, SamplesToDo}, mTemp.data());
268 for(size_t i{0};i < SamplesToDo;++i)
270 /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
271 youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
274 if(OutSamples.size() > 3)
276 float *zoutput{OutSamples[3].data()};
277 /* Z = 1.023332*Q */
278 for(size_t i{0};i < SamplesToDo;++i)
279 zoutput[i] = 1.023332f*mQ[i];
282 std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
283 std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
284 std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
285 std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
288 /* This is an alternative equation for decoding 2-channel UHJ. Not sure what
289 * the intended benefit is over the above equation as this slightly reduces the
290 * amount of the original left response and has more of the phase-shifted
291 * forward response on the left response.
293 * This decoding is done as:
295 * S = Left + Right
296 * D = Left - Right
298 * W = 0.981530*S + j*0.163585*D
299 * X = 0.418504*S - j*0.828347*D
300 * Y = 0.762956*D + j*0.384230*S
302 * where j is a +90 degree phase shift.
304 * NOTE: As above, S and D should not be halved. The only consequence of
305 * halving here is merely a -6dB reduction in output, but it's still incorrect.
307 void UhjDecoder::decode2(const float *RESTRICT InSamples,
308 const al::span<FloatBufferLine,3> OutSamples, const size_t SamplesToDo)
310 ASSUME(SamplesToDo > 0);
312 float *woutput{OutSamples[0].data()};
313 float *xoutput{OutSamples[1].data()};
314 float *youtput{OutSamples[2].data()};
316 /* S = Left + Right */
317 for(size_t i{0};i < SamplesToDo;++i)
318 mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
320 /* D = Left - Right */
321 for(size_t i{0};i < SamplesToDo;++i)
322 mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
324 /* Precompute j*D and store in xoutput. */
325 auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
326 std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
327 std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
328 PShift.process({xoutput, SamplesToDo}, mTemp.data());
330 for(size_t i{0};i < SamplesToDo;++i)
332 /* W = 0.981530*S + j*0.163585*D */
333 woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
334 /* X = 0.418504*S - j*0.828347*D */
335 xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
338 /* Precompute j*S and store in youtput. */
339 tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
340 std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
341 std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
342 PShift.process({youtput, SamplesToDo}, mTemp.data());
344 for(size_t i{0};i < SamplesToDo;++i)
346 /* Y = 0.762956*D + j*0.384230*S */
347 youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
350 std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
351 std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
355 int main(int argc, char **argv)
357 if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
359 printf("Usage: %s <[options] filename.wav...>\n\n"
360 " Options:\n"
361 " --general Use the general equations for 2-channel UHJ (default).\n"
362 " --alternative Use the alternative equations for 2-channel UHJ.\n"
363 "\n"
364 "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
365 "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
366 "reconstruct the original B-Format signal.",
367 argv[0]);
368 return 1;
371 size_t num_files{0}, num_decoded{0};
372 bool use_general{true};
373 for(int fidx{1};fidx < argc;++fidx)
375 if(std::strcmp(argv[fidx], "--general") == 0)
377 use_general = true;
378 continue;
380 if(std::strcmp(argv[fidx], "--alternative") == 0)
382 use_general = false;
383 continue;
385 ++num_files;
386 SF_INFO ininfo{};
387 SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
388 if(!infile)
390 fprintf(stderr, "Failed to open %s\n", argv[fidx]);
391 continue;
393 if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
395 fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
396 continue;
398 uint outchans{};
399 if(ininfo.channels == 2)
400 outchans = 3;
401 else if(ininfo.channels == 3 || ininfo.channels == 4)
402 outchans = static_cast<uint>(ininfo.channels);
403 else
405 fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
406 continue;
408 printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
409 (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
411 std::string outname{argv[fidx]};
412 auto lastslash = outname.find_last_of('/');
413 if(lastslash != std::string::npos)
414 outname.erase(0, lastslash+1);
415 auto lastdot = outname.find_last_of('.');
416 if(lastdot != std::string::npos)
417 outname.resize(lastdot+1);
418 outname += "amb";
420 FilePtr outfile{fopen(outname.c_str(), "wb")};
421 if(!outfile)
423 fprintf(stderr, "Failed to create %s\n", outname.c_str());
424 continue;
427 fputs("RIFF", outfile.get());
428 fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
430 fputs("WAVE", outfile.get());
432 fputs("fmt ", outfile.get());
433 fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
435 // 16-bit val, format type id (extensible: 0xFFFE)
436 fwrite16le(0xFFFE, outfile.get());
437 // 16-bit val, channel count
438 fwrite16le(static_cast<ushort>(outchans), outfile.get());
439 // 32-bit val, frequency
440 fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
441 // 32-bit val, bytes per second
442 fwrite32le(static_cast<uint>(ininfo.samplerate)*sizeof(float)*outchans, outfile.get());
443 // 16-bit val, frame size
444 fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
445 // 16-bit val, bits per sample
446 fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
447 // 16-bit val, extra byte count
448 fwrite16le(22, outfile.get());
449 // 16-bit val, valid bits per sample
450 fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
451 // 32-bit val, channel mask
452 fwrite32le(0, outfile.get());
453 // 16 byte GUID, sub-type format
454 fwrite(SUBTYPE_BFORMAT_FLOAT, 1, 16, outfile.get());
456 fputs("data", outfile.get());
457 fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
458 if(ferror(outfile.get()))
460 fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
461 continue;
464 auto DataStart = ftell(outfile.get());
466 auto decoder = std::make_unique<UhjDecoder>();
467 auto inmem = std::make_unique<float[]>(BufferLineSize*static_cast<uint>(ininfo.channels));
468 auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
469 auto outmem = std::make_unique<byte4[]>(BufferLineSize*outchans);
471 /* A number of initial samples need to be skipped to cut the lead-in
472 * from the all-pass filter delay. The same number of samples need to
473 * be fed through the decoder after reaching the end of the input file
474 * to ensure none of the original input is lost.
476 size_t LeadIn{UhjDecoder::sFilterDelay};
477 sf_count_t LeadOut{UhjDecoder::sFilterDelay};
478 while(LeadOut > 0)
480 sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};
481 sgot = std::max<sf_count_t>(sgot, 0);
482 if(sgot < BufferLineSize)
484 const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
485 std::fill_n(inmem.get() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
486 sgot += remaining;
487 LeadOut -= remaining;
490 auto got = static_cast<size_t>(sgot);
491 if(ininfo.channels > 2 || use_general)
492 decoder->decode(inmem.get(), static_cast<uint>(ininfo.channels), decmem, got);
493 else
494 decoder->decode2(inmem.get(), decmem, got);
495 if(LeadIn >= got)
497 LeadIn -= got;
498 continue;
501 got -= LeadIn;
502 for(size_t i{0};i < got;++i)
504 /* Attenuate by -3dB for FuMa output levels. */
505 constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
506 for(size_t j{0};j < outchans;++j)
507 outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
509 LeadIn = 0;
511 size_t wrote{fwrite(outmem.get(), sizeof(byte4)*outchans, got, outfile.get())};
512 if(wrote < got)
514 fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
515 break;
519 auto DataEnd = ftell(outfile.get());
520 if(DataEnd > DataStart)
522 long dataLen{DataEnd - DataStart};
523 if(fseek(outfile.get(), 4, SEEK_SET) == 0)
524 fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
525 if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
526 fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
528 fflush(outfile.get());
529 ++num_decoded;
531 if(num_decoded == 0)
532 fprintf(stderr, "Failed to decode any input files\n");
533 else if(num_decoded < num_files)
534 fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
535 else
536 printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
537 return 0;