Implement LFE output in the LAF player
[openal-soft.git] / utils / sofa-support.cpp
blobecaaf3d61de7a909011ebfb60ff1e08ab1c5e68d
1 /*
2 * SOFA utility methods for inspecting SOFA file metrics and determining HRTF
3 * utility compatible layouts.
5 * Copyright (C) 2018-2019 Christopher Fitzgerald
6 * Copyright (C) 2019 Christopher Robinson
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
25 #include "sofa-support.h"
28 #include <algorithm>
29 #include <array>
30 #include <cmath>
31 #include <cstdio>
32 #include <utility>
33 #include <vector>
35 #include "mysofa.h"
38 namespace {
40 using uint = unsigned int;
41 using double3 = std::array<double,3>;
44 /* Produces a sorted array of unique elements from a particular axis of the
45 * triplets array. The filters are used to focus on particular coordinates
46 * of other axes as necessary. The epsilons are used to constrain the
47 * equality of unique elements.
49 std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const uint axis,
50 const std::array<const double*,3> &filters, const std::array<double,3> &epsilons)
52 std::vector<double> elems;
53 for(const double3 &aer : aers)
55 const double elem{aer[axis]};
57 uint j;
58 for(j = 0;j < 3;j++)
60 if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
61 break;
63 if(j < 3)
64 continue;
66 auto iter = elems.begin();
67 for(;iter != elems.end();++iter)
69 const double delta{elem - *iter};
70 if(delta > epsilons[axis]) continue;
71 if(delta >= -epsilons[axis]) break;
73 iter = elems.emplace(iter, elem);
74 break;
76 if(iter == elems.end())
77 elems.emplace_back(elem);
79 return elems;
82 /* Given a list of azimuths, this will produce the smallest step size that can
83 * uniformly cover the list. Ideally this will be over half, but in degenerate
84 * cases this can fall to a minimum of 5 (the lower limit).
86 double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
88 if(elems.size() < 5) return 0.0;
90 /* Get the maximum count possible, given the first two elements. It would
91 * be impossible to have more than this since the first element must be
92 * included.
94 uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
95 count = std::min(count, 255u);
97 for(;count >= 5;--count)
99 /* Given the stepping value for this number of elements, check each
100 * multiple to ensure there's a matching element.
102 const double step{360.0 / count};
103 bool good{true};
104 size_t idx{1u};
105 for(uint mult{1u};mult < count && good;++mult)
107 const double target{step*mult + elems[0]};
108 while(idx < elems.size() && target-elems[idx] > epsilon)
109 ++idx;
110 good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
112 if(good)
113 return step;
115 return 0.0;
118 /* Given a list of elevations, this will produce the smallest step size that
119 * can uniformly cover the list. Ideally this will be over half, but in
120 * degenerate cases this can fall to a minimum of 5 (the lower limit).
122 double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
124 if(elems.size() < 5) return 0.0;
126 /* Reverse the elevations so it increments starting with -90 (flipped from
127 * +90). This makes it easier to work out a proper stepping value.
129 std::reverse(elems.begin(), elems.end());
130 for(auto &v : elems) v *= -1.0;
132 uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
133 count = std::min(count, 255u);
135 double ret{0.0};
136 for(;count >= 5;--count)
138 const double step{180.0 / count};
139 bool good{true};
140 size_t idx{1u};
141 /* Elevations don't need to match all multiples if there's not enough
142 * elements to check. Missing elevations can be synthesized.
144 for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
146 const double target{step*mult + elems[0]};
147 while(idx < elems.size() && target-elems[idx] > epsilon)
148 ++idx;
149 good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
151 if(good)
153 ret = step;
154 break;
157 /* Re-reverse the elevations to restore the correct order. */
158 for(auto &v : elems) v *= -1.0;
159 std::reverse(elems.begin(), elems.end());
161 return ret;
164 } // namespace
167 const char *SofaErrorStr(int err)
169 switch(err)
171 case MYSOFA_OK: return "OK";
172 case MYSOFA_INVALID_FORMAT: return "Invalid format";
173 case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
174 case MYSOFA_INTERNAL_ERROR: return "Internal error";
175 case MYSOFA_NO_MEMORY: return "Out of memory";
176 case MYSOFA_READ_ERROR: return "Read error";
178 return "Unknown";
181 auto GetCompatibleLayout(const al::span<const float> xyzs) -> std::vector<SofaField>
183 auto aers = std::vector<double3>(xyzs.size()/3, double3{});
184 for(size_t i{0u};i < aers.size();++i)
186 std::array vals{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
187 mysofa_c2s(vals.data());
188 aers[i] = {vals[0], vals[1], vals[2]};
191 auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
192 std::vector<SofaField> fds;
193 fds.reserve(radii.size());
195 for(const double dist : radii)
197 auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
199 /* Remove elevations that don't have a valid set of azimuths. */
200 auto invalid_elev = [&dist,&aers](const double ev) -> bool
202 auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
204 if(std::abs(ev) > 89.999)
205 return azims.size() != 1;
206 if(azims.empty() || !(std::abs(azims[0]) < 0.1))
207 return true;
208 return GetUniformAzimStep(0.1, azims) <= 0.0;
210 elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
212 double step{GetUniformElevStep(0.1, elevs)};
213 if(step <= 0.0)
215 if(elevs.empty())
216 fprintf(stdout, "No usable elevations on field distance %f.\n", dist);
217 else
219 fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist,
220 elevs[0]);
221 for(size_t ei{1u};ei < elevs.size();++ei)
222 fprintf(stdout, ", %+.2f", elevs[ei]);
223 fputc('\n', stdout);
225 continue;
228 uint evStart{0u};
229 for(uint ei{0u};ei < elevs.size();ei++)
231 if(!(elevs[ei] < 0.0))
233 fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
234 return fds;
237 double eif{(90.0+elevs[ei]) / step};
238 const double ev_start{std::round(eif)};
240 if(std::abs(eif - ev_start) < (0.1/step))
242 evStart = static_cast<uint>(ev_start);
243 break;
247 const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
248 if(evCount < 5)
250 fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
251 continue;
254 SofaField field{};
255 field.mDistance = dist;
256 field.mEvCount = evCount;
257 field.mEvStart = evStart;
258 field.mAzCounts.resize(evCount, 0u);
259 auto &azCounts = field.mAzCounts;
261 for(uint ei{evStart};ei < evCount;ei++)
263 double ev{-90.0 + ei*180.0/(evCount - 1)};
264 auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
266 if(ei == 0 || ei == (evCount-1))
268 if(azims.size() != 1)
270 fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
271 return fds;
273 azCounts[ei] = 1;
275 else
277 step = GetUniformAzimStep(0.1, azims);
278 if(step <= 0.0)
280 fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
281 ev, dist);
282 return fds;
284 azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
288 fds.emplace_back(std::move(field));
291 return fds;