Make sure to update the input filters with partial updates
[openal-soft.git] / alc / effects / reverb.cpp
blob3010f678d738be1bd7e9f8c69fc11d9d96e4957f
1 /**
2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cstdio>
26 #include <functional>
27 #include <iterator>
28 #include <numeric>
29 #include <stdint.h>
31 #include "alc/effects/base.h"
32 #include "almalloc.h"
33 #include "alnumbers.h"
34 #include "alnumeric.h"
35 #include "alspan.h"
36 #include "core/ambidefs.h"
37 #include "core/bufferline.h"
38 #include "core/context.h"
39 #include "core/devformat.h"
40 #include "core/device.h"
41 #include "core/effectslot.h"
42 #include "core/filters/biquad.h"
43 #include "core/filters/splitter.h"
44 #include "core/mixer.h"
45 #include "core/mixer/defs.h"
46 #include "intrusive_ptr.h"
47 #include "opthelpers.h"
48 #include "vecmat.h"
49 #include "vector.h"
51 /* This is a user config option for modifying the overall output of the reverb
52 * effect.
54 float ReverbBoost = 1.0f;
56 namespace {
58 using uint = unsigned int;
60 constexpr float MaxModulationTime{4.0f};
61 constexpr float DefaultModulationTime{0.25f};
63 #define MOD_FRACBITS 24
64 #define MOD_FRACONE (1<<MOD_FRACBITS)
65 #define MOD_FRACMASK (MOD_FRACONE-1)
68 using namespace std::placeholders;
70 /* Max samples per process iteration. Used to limit the size needed for
71 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
73 constexpr size_t MAX_UPDATE_SAMPLES{256};
75 /* The number of spatialized lines or channels to process. Four channels allows
76 * for a 3D A-Format response. NOTE: This can't be changed without taking care
77 * of the conversion matrices, and a few places where the length arrays are
78 * assumed to have 4 elements.
80 constexpr size_t NUM_LINES{4u};
83 /* This coefficient is used to define the maximum frequency range controlled by
84 * the modulation depth. The current value of 0.05 will allow it to swing from
85 * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
86 * to stall on the downswing, and above 1 it will cause it to sample backwards.
87 * The value 0.05 seems be nearest to Creative hardware behavior.
89 constexpr float MODULATION_DEPTH_COEFF{0.05f};
92 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
93 * deliberately chosen to align the resulting lines to their spatial opposites
94 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
95 * back left). It's not quite opposite, since the A-Format results in a
96 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
97 * in the future, true opposites can be used.
99 alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
100 { 0.5f, 0.5f, 0.5f, 0.5f },
101 { 0.5f, -0.5f, -0.5f, 0.5f },
102 { 0.5f, 0.5f, -0.5f, -0.5f },
103 { 0.5f, -0.5f, 0.5f, -0.5f }
106 /* Converts A-Format to B-Format for early reflections. */
107 alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
108 {{ 0.5f, 0.5f, 0.5f, 0.5f }},
109 {{ 0.5f, -0.5f, 0.5f, -0.5f }},
110 {{ 0.5f, -0.5f, -0.5f, 0.5f }},
111 {{ 0.5f, 0.5f, -0.5f, -0.5f }}
114 /* Converts A-Format to B-Format for late reverb. */
115 constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
116 alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
117 {{ 0.5f, 0.5f, 0.5f, 0.5f }},
118 {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }},
119 {{ 0.0f, 0.0f, InvSqrt2, -InvSqrt2 }},
120 {{ 0.5f, 0.5f, -0.5f, -0.5f }}
123 /* The all-pass and delay lines have a variable length dependent on the
124 * effect's density parameter, which helps alter the perceived environment
125 * size. The size-to-density conversion is a cubed scale:
127 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
129 * The line lengths scale linearly with room size, so the inverse density
130 * conversion is needed, taking the cube root of the re-scaled density to
131 * calculate the line length multiplier:
133 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
135 * The density scale below will result in a max line multiplier of 50, for an
136 * effective size range of 5m to 50m.
138 constexpr float DENSITY_SCALE{125000.0f};
140 /* All delay line lengths are specified in seconds.
142 * To approximate early reflections, we break them up into primary (those
143 * arriving from the same direction as the source) and secondary (those
144 * arriving from the opposite direction).
146 * The early taps decorrelate the 4-channel signal to approximate an average
147 * room response for the primary reflections after the initial early delay.
149 * Given an average room dimension (d_a) and the speed of sound (c) we can
150 * calculate the average reflection delay (r_a) regardless of listener and
151 * source positions as:
153 * r_a = d_a / c
154 * c = 343.3
156 * This can extended to finding the average difference (r_d) between the
157 * maximum (r_1) and minimum (r_0) reflection delays:
159 * r_0 = 2 / 3 r_a
160 * = r_a - r_d / 2
161 * = r_d
162 * r_1 = 4 / 3 r_a
163 * = r_a + r_d / 2
164 * = 2 r_d
165 * r_d = 2 / 3 r_a
166 * = r_1 - r_0
168 * As can be determined by integrating the 1D model with a source (s) and
169 * listener (l) positioned across the dimension of length (d_a):
171 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
173 * The initial taps (T_(i=0)^N) are then specified by taking a power series
174 * that ranges between r_0 and half of r_1 less r_0:
176 * R_i = 2^(i / (2 N - 1)) r_d
177 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
178 * = r_0 + T_i
179 * T_i = R_i - r_0
180 * = (2^(i / (2 N - 1)) - 1) r_d
182 * Assuming an average of 1m, we get the following taps:
184 constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
185 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
188 /* The early all-pass filter lengths are based on the early tap lengths:
190 * A_i = R_i / a
192 * Where a is the approximate maximum all-pass cycle limit (20).
194 constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
195 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
198 /* The early delay lines are used to transform the primary reflections into
199 * the secondary reflections. The A-format is arranged in such a way that
200 * the channels/lines are spatially opposite:
202 * C_i is opposite C_(N-i-1)
204 * The delays of the two opposing reflections (R_i and O_i) from a source
205 * anywhere along a particular dimension always sum to twice its full delay:
207 * 2 r_a = R_i + O_i
209 * With that in mind we can determine the delay between the two reflections
210 * and thus specify our early line lengths (L_(i=0)^N) using:
212 * O_i = 2 r_a - R_(N-i-1)
213 * L_i = O_i - R_(N-i-1)
214 * = 2 (r_a - R_(N-i-1))
215 * = 2 (r_a - T_(N-i-1) - r_0)
216 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
218 * Using an average dimension of 1m, we get:
220 constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
221 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
224 /* The late all-pass filter lengths are based on the late line lengths:
226 * A_i = (5 / 3) L_i / r_1
228 constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
229 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
232 /* The late lines are used to approximate the decaying cycle of recursive
233 * late reflections.
235 * Splitting the lines in half, we start with the shortest reflection paths
236 * (L_(i=0)^(N/2)):
238 * L_i = 2^(i / (N - 1)) r_d
240 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
242 * L_i = 2 r_a - L_(i-N/2)
243 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
245 * For our 1m average room, we get:
247 constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
248 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
252 using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
254 struct DelayLineI {
255 /* The delay lines use interleaved samples, with the lengths being powers
256 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
258 size_t Mask{0u};
259 union {
260 uintptr_t LineOffset{0u};
261 std::array<float,NUM_LINES> *Line;
264 /* Given the allocated sample buffer, this function updates each delay line
265 * offset.
267 void realizeLineOffset(std::array<float,NUM_LINES> *sampleBuffer) noexcept
268 { Line = sampleBuffer + LineOffset; }
270 /* Calculate the length of a delay line and store its mask and offset. */
271 uint calcLineLength(const float length, const uintptr_t offset, const float frequency,
272 const uint extra)
274 /* All line lengths are powers of 2, calculated from their lengths in
275 * seconds, rounded up.
277 uint samples{float2uint(std::ceil(length*frequency))};
278 samples = NextPowerOf2(samples + extra);
280 /* All lines share a single sample buffer. */
281 Mask = samples - 1;
282 LineOffset = offset;
284 /* Return the sample count for accumulation. */
285 return samples;
288 void write(size_t offset, const size_t c, const float *RESTRICT in, const size_t count) const noexcept
290 ASSUME(count > 0);
291 for(size_t i{0u};i < count;)
293 offset &= Mask;
294 size_t td{minz(Mask+1 - offset, count - i)};
295 do {
296 Line[offset++][c] = in[i++];
297 } while(--td);
302 struct VecAllpass {
303 DelayLineI Delay;
304 float Coeff{0.0f};
305 size_t Offset[NUM_LINES]{};
307 void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
308 const float xCoeff, const float yCoeff, const size_t todo);
311 struct T60Filter {
312 /* Two filters are used to adjust the signal. One to control the low
313 * frequencies, and one to control the high frequencies.
315 float MidGain{0.0f};
316 BiquadFilter HFFilter, LFFilter;
318 void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
319 const float hfDecayTime, const float lf0norm, const float hf0norm);
321 /* Applies the two T60 damping filter sections. */
322 void process(const al::span<float> samples)
323 { DualBiquad{HFFilter, LFFilter}.process(samples, samples.data()); }
325 void clear() noexcept { HFFilter.clear(); LFFilter.clear(); }
328 struct EarlyReflections {
329 /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
330 * The spread from this filter also helps smooth out the reverb tail.
332 VecAllpass VecAp;
334 /* An echo line is used to complete the second half of the early
335 * reflections.
337 DelayLineI Delay;
338 size_t Offset[NUM_LINES]{};
339 float Coeff[NUM_LINES]{};
341 /* The gain for each output channel based on 3D panning. */
342 float CurrentGain[NUM_LINES][MaxAmbiChannels]{};
343 float PanGain[NUM_LINES][MaxAmbiChannels]{};
345 void updateLines(const float density_mult, const float diffusion, const float decayTime,
346 const float frequency);
350 struct Modulation {
351 /* The vibrato time is tracked with an index over a (MOD_FRACONE)
352 * normalized range.
354 uint Index, Step;
356 /* The depth of frequency change, in samples. */
357 float Depth;
359 float ModDelays[MAX_UPDATE_SAMPLES];
361 void updateModulator(float modTime, float modDepth, float frequency);
363 void calcDelays(size_t todo);
366 struct LateReverb {
367 /* A recursive delay line is used fill in the reverb tail. */
368 DelayLineI Delay;
369 size_t Offset[NUM_LINES]{};
371 /* Attenuation to compensate for the modal density and decay rate of the
372 * late lines.
374 float DensityGain{0.0f};
376 /* T60 decay filters are used to simulate absorption. */
377 T60Filter T60[NUM_LINES];
379 Modulation Mod;
381 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
382 VecAllpass VecAp;
384 /* The gain for each output channel based on 3D panning. */
385 float CurrentGain[NUM_LINES][MaxAmbiChannels]{};
386 float PanGain[NUM_LINES][MaxAmbiChannels]{};
388 void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
389 const float mfDecayTime, const float hfDecayTime, const float lf0norm,
390 const float hf0norm, const float frequency);
392 void clear() noexcept
394 for(auto &filter : T60)
395 filter.clear();
399 struct ReverbPipeline {
400 /* Master effect filters */
401 struct {
402 BiquadFilter Lp;
403 BiquadFilter Hp;
404 } mFilter[NUM_LINES];
406 /* Core delay line (early reflections and late reverb tap from this). */
407 DelayLineI mEarlyDelayIn;
408 DelayLineI mLateDelayIn;
410 /* Tap points for early reflection delay. */
411 size_t mEarlyDelayTap[NUM_LINES][2]{};
412 float mEarlyDelayCoeff[NUM_LINES]{};
414 /* Tap points for late reverb feed and delay. */
415 size_t mLateDelayTap[NUM_LINES][2]{};
417 /* Coefficients for the all-pass and line scattering matrices. */
418 float mMixX{0.0f};
419 float mMixY{0.0f};
421 EarlyReflections mEarly;
423 LateReverb mLate;
425 std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
427 size_t mFadeSampleCount{1};
429 void updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult,
430 const float decayTime, const float frequency);
431 void update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
432 const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix);
434 void processEarly(size_t offset, const size_t samplesToDo,
435 const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
436 const al::span<FloatBufferLine,NUM_LINES> outSamples);
437 void processLate(size_t offset, const size_t samplesToDo,
438 const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
439 const al::span<FloatBufferLine,NUM_LINES> outSamples);
441 void clear() noexcept
443 for(auto &filter : mFilter)
445 filter.Lp.clear();
446 filter.Hp.clear();
448 mLate.clear();
449 for(auto &filters : mAmbiSplitter)
451 for(auto &filter : filters)
452 filter.clear();
457 struct ReverbState final : public EffectState {
458 /* All delay lines are allocated as a single buffer to reduce memory
459 * fragmentation and management code.
461 al::vector<std::array<float,NUM_LINES>,16> mSampleBuffer;
463 struct {
464 /* Calculated parameters which indicate if cross-fading is needed after
465 * an update.
467 float Density{1.0f};
468 float Diffusion{1.0f};
469 float DecayTime{1.49f};
470 float HFDecayTime{0.83f * 1.49f};
471 float LFDecayTime{1.0f * 1.49f};
472 float ModulationTime{0.25f};
473 float ModulationDepth{0.0f};
474 float HFReference{5000.0f};
475 float LFReference{250.0f};
476 } mParams;
478 enum PipelineState : uint8_t {
479 DeviceClear,
480 StartFade,
481 Fading,
482 Cleanup,
483 Normal,
485 PipelineState mPipelineState{DeviceClear};
486 uint8_t mCurrentPipeline{0};
488 ReverbPipeline mPipelines[2];
490 /* The current write offset for all delay lines. */
491 size_t mOffset{};
493 /* Temporary storage used when processing. */
494 union {
495 alignas(16) FloatBufferLine mTempLine{};
496 alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples;
498 alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlySamples{};
499 alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateSamples{};
501 std::array<float,MaxAmbiOrder+1> mOrderScales{};
503 bool mUpmixOutput{false};
506 void MixOutPlain(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
507 const size_t todo)
509 ASSUME(todo > 0);
511 /* When not upsampling, the panning gains convert to B-Format and pan
512 * at the same time.
514 for(size_t c{0u};c < NUM_LINES;c++)
516 const al::span<float> tmpspan{mEarlySamples[c].data(), todo};
517 MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGain[c],
518 pipeline.mEarly.PanGain[c], todo, 0);
520 for(size_t c{0u};c < NUM_LINES;c++)
522 const al::span<float> tmpspan{mLateSamples[c].data(), todo};
523 MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGain[c],
524 pipeline.mLate.PanGain[c], todo, 0);
528 void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
529 const size_t todo)
531 ASSUME(todo > 0);
533 auto DoMixRow = [](const al::span<float> OutBuffer, const al::span<const float,4> Gains,
534 const float *InSamples, const size_t InStride)
536 std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
537 for(const float gain : Gains)
539 const float *RESTRICT input{al::assume_aligned<16>(InSamples)};
540 InSamples += InStride;
542 if(!(std::fabs(gain) > GainSilenceThreshold))
543 continue;
545 auto mix_sample = [gain](const float sample, const float in) noexcept -> float
546 { return sample + in*gain; };
547 std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(),
548 mix_sample);
552 /* When upsampling, the B-Format conversion needs to be done separately
553 * so the proper HF scaling can be applied to each B-Format channel.
554 * The panning gains then pan and upsample the B-Format channels.
556 const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
557 for(size_t c{0u};c < NUM_LINES;c++)
559 DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
561 /* Apply scaling to the B-Format's HF response to "upsample" it to
562 * higher-order output.
564 const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
565 pipeline.mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale);
567 MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGain[c],
568 pipeline.mEarly.PanGain[c], todo, 0);
570 for(size_t c{0u};c < NUM_LINES;c++)
572 DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
574 const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
575 pipeline.mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale);
577 MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGain[c],
578 pipeline.mLate.PanGain[c], todo, 0);
582 void mixOut(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut, const size_t todo)
584 if(mUpmixOutput)
585 MixOutAmbiUp(pipeline, samplesOut, todo);
586 else
587 MixOutPlain(pipeline, samplesOut, todo);
590 void allocLines(const float frequency);
592 void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
593 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
594 const EffectTarget target) override;
595 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
596 const al::span<FloatBufferLine> samplesOut) override;
598 DEF_NEWDEL(ReverbState)
601 /**************************************
602 * Device Update *
603 **************************************/
605 inline float CalcDelayLengthMult(float density)
606 { return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
608 /* Calculates the delay line metrics and allocates the shared sample buffer
609 * for all lines given the sample rate (frequency).
611 void ReverbState::allocLines(const float frequency)
613 /* All delay line lengths are calculated to accomodate the full range of
614 * lengths given their respective paramters.
616 size_t totalSamples{0u};
618 /* Multiplier for the maximum density value, i.e. density=1, which is
619 * actually the least density...
621 const float multiplier{CalcDelayLengthMult(1.0f)};
623 /* The modulator's line length is calculated from the maximum modulation
624 * time and depth coefficient, and halfed for the low-to-high frequency
625 * swing.
627 constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
629 for(auto &pipeline : mPipelines)
631 /* The main delay length includes the maximum early reflection delay,
632 * the largest early tap width, the maximum late reverb delay, and the
633 * largest late tap width. Finally, it must also be extended by the
634 * update size (BufferLineSize) for block processing.
636 float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier};
637 totalSamples += pipeline.mEarlyDelayIn.calcLineLength(length, totalSamples, frequency,
638 BufferLineSize);
640 constexpr float LateLineDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
641 float{NUM_LINES}};
642 length = ReverbMaxLateReverbDelay + LateLineDiffAvg*multiplier;
643 totalSamples += pipeline.mLateDelayIn.calcLineLength(length, totalSamples, frequency,
644 BufferLineSize);
646 /* The early vector all-pass line. */
647 length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
648 totalSamples += pipeline.mEarly.VecAp.Delay.calcLineLength(length, totalSamples, frequency,
651 /* The early reflection line. */
652 length = EARLY_LINE_LENGTHS.back() * multiplier;
653 totalSamples += pipeline.mEarly.Delay.calcLineLength(length, totalSamples, frequency,
654 MAX_UPDATE_SAMPLES);
656 /* The late vector all-pass line. */
657 length = LATE_ALLPASS_LENGTHS.back() * multiplier;
658 totalSamples += pipeline.mLate.VecAp.Delay.calcLineLength(length, totalSamples, frequency,
661 /* The late delay lines are calculated from the largest maximum density
662 * line length, and the maximum modulation delay. An additional sample
663 * is added to keep it stable when there is no modulation.
665 length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
666 totalSamples += pipeline.mLate.Delay.calcLineLength(length, totalSamples, frequency, 1);
669 if(totalSamples != mSampleBuffer.size())
670 decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
672 /* Clear the sample buffer. */
673 std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), decltype(mSampleBuffer)::value_type{});
675 /* Update all delays to reflect the new sample buffer. */
676 for(auto &pipeline : mPipelines)
678 pipeline.mEarlyDelayIn.realizeLineOffset(mSampleBuffer.data());
679 pipeline.mLateDelayIn.realizeLineOffset(mSampleBuffer.data());
680 pipeline.mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
681 pipeline.mEarly.Delay.realizeLineOffset(mSampleBuffer.data());
682 pipeline.mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
683 pipeline.mLate.Delay.realizeLineOffset(mSampleBuffer.data());
687 void ReverbState::deviceUpdate(const DeviceBase *device, const Buffer&)
689 const auto frequency = static_cast<float>(device->Frequency);
691 /* Allocate the delay lines. */
692 allocLines(frequency);
694 for(auto &pipeline : mPipelines)
696 /* Clear filters and gain coefficients since the delay lines were all just
697 * cleared (if not reallocated).
699 for(auto &filter : pipeline.mFilter)
701 filter.Lp.clear();
702 filter.Hp.clear();
705 std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f);
706 std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f);
708 pipeline.mLate.DensityGain = 0.0f;
709 for(auto &t60 : pipeline.mLate.T60)
711 t60.MidGain = 0.0f;
712 t60.HFFilter.clear();
713 t60.LFFilter.clear();
716 pipeline.mLate.Mod.Index = 0;
717 pipeline.mLate.Mod.Step = 1;
718 pipeline.mLate.Mod.Depth = 0.0f;
720 for(auto &gains : pipeline.mEarly.CurrentGain)
721 std::fill(std::begin(gains), std::end(gains), 0.0f);
722 for(auto &gains : pipeline.mEarly.PanGain)
723 std::fill(std::begin(gains), std::end(gains), 0.0f);
724 for(auto &gains : pipeline.mLate.CurrentGain)
725 std::fill(std::begin(gains), std::end(gains), 0.0f);
726 for(auto &gains : pipeline.mLate.PanGain)
727 std::fill(std::begin(gains), std::end(gains), 0.0f);
729 mPipelineState = DeviceClear;
731 /* Reset offset base. */
732 mOffset = 0;
734 if(device->mAmbiOrder > 1)
736 mUpmixOutput = true;
737 mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing);
739 else
741 mUpmixOutput = false;
742 mOrderScales.fill(1.0f);
744 mPipelines[0].mAmbiSplitter[0][0].init(device->mXOverFreq / frequency);
745 for(auto &pipeline : mPipelines)
747 std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(),
748 pipeline.mAmbiSplitter[0][0]);
749 std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(),
750 pipeline.mAmbiSplitter[0][0]);
754 /**************************************
755 * Effect Update *
756 **************************************/
758 /* Calculate a decay coefficient given the length of each cycle and the time
759 * until the decay reaches -60 dB.
761 inline float CalcDecayCoeff(const float length, const float decayTime)
762 { return std::pow(ReverbDecayGain, length/decayTime); }
764 /* Calculate a decay length from a coefficient and the time until the decay
765 * reaches -60 dB.
767 inline float CalcDecayLength(const float coeff, const float decayTime)
769 constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
770 return std::log10(coeff) * decayTime / log10_decaygain;
773 /* Calculate an attenuation to be applied to the input of any echo models to
774 * compensate for modal density and decay time.
776 inline float CalcDensityGain(const float a)
778 /* The energy of a signal can be obtained by finding the area under the
779 * squared signal. This takes the form of Sum(x_n^2), where x is the
780 * amplitude for the sample n.
782 * Decaying feedback matches exponential decay of the form Sum(a^n),
783 * where a is the attenuation coefficient, and n is the sample. The area
784 * under this decay curve can be calculated as: 1 / (1 - a).
786 * Modifying the above equation to find the area under the squared curve
787 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
788 * calculated by inverting the square root of this approximation,
789 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
791 return std::sqrt(1.0f - a*a);
794 /* Calculate the scattering matrix coefficients given a diffusion factor. */
795 inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
797 /* The matrix is of order 4, so n is sqrt(4 - 1). */
798 constexpr float n{al::numbers::sqrt3_v<float>};
799 const float t{diffusion * std::atan(n)};
801 /* Calculate the first mixing matrix coefficient. */
802 *x = std::cos(t);
803 /* Calculate the second mixing matrix coefficient. */
804 *y = std::sin(t) / n;
807 /* Calculate the limited HF ratio for use with the late reverb low-pass
808 * filters.
810 float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
811 const float decayTime)
813 /* Find the attenuation due to air absorption in dB (converting delay
814 * time to meters using the speed of sound). Then reversing the decay
815 * equation, solve for HF ratio. The delay length is cancelled out of
816 * the equation, so it can be calculated once for all lines.
818 float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
819 CalcDecayLength(airAbsorptionGainHF, decayTime)};
821 /* Using the limit calculated above, apply the upper bound to the HF ratio. */
822 return minf(limitRatio, hfRatio);
826 /* Calculates the 3-band T60 damping coefficients for a particular delay line
827 * of specified length, using a combination of two shelf filter sections given
828 * decay times for each band split at two reference frequencies.
830 void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
831 const float mfDecayTime, const float hfDecayTime, const float lf0norm,
832 const float hf0norm)
834 const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
835 const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
836 const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
838 MidGain = mfGain;
839 LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
840 HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
843 /* Update the early reflection line lengths and gain coefficients. */
844 void EarlyReflections::updateLines(const float density_mult, const float diffusion,
845 const float decayTime, const float frequency)
847 /* Calculate the all-pass feed-back/forward coefficient. */
848 VecAp.Coeff = diffusion*diffusion * InvSqrt2;
850 for(size_t i{0u};i < NUM_LINES;i++)
852 /* Calculate the delay length of each all-pass line. */
853 float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
854 VecAp.Offset[i] = float2uint(length * frequency);
856 /* Calculate the delay length of each delay line. */
857 length = EARLY_LINE_LENGTHS[i] * density_mult;
858 Offset[i] = float2uint(length * frequency);
860 /* Calculate the gain (coefficient) for each line. */
861 Coeff[i] = CalcDecayCoeff(length, decayTime);
865 /* Update the EAX modulation step and depth. Keep in mind that this kind of
866 * vibrato is additive and not multiplicative as one may expect. The downswing
867 * will sound stronger than the upswing.
869 void Modulation::updateModulator(float modTime, float modDepth, float frequency)
871 /* Modulation is calculated in two parts.
873 * The modulation time effects the sinus rate, altering the speed of
874 * frequency changes. An index is incremented for each sample with an
875 * appropriate step size to generate an LFO, which will vary the feedback
876 * delay over time.
878 Step = maxu(fastf2u(MOD_FRACONE / (frequency * modTime)), 1);
880 /* The modulation depth effects the amount of frequency change over the
881 * range of the sinus. It needs to be scaled by the modulation time so that
882 * a given depth produces a consistent change in frequency over all ranges
883 * of time. Since the depth is applied to a sinus value, it needs to be
884 * halved once for the sinus range and again for the sinus swing in time
885 * (half of it is spent decreasing the frequency, half is spent increasing
886 * it).
888 if(modTime >= DefaultModulationTime)
890 /* To cancel the effects of a long period modulation on the late
891 * reverberation, the amount of pitch should be varied (decreased)
892 * according to the modulation time. The natural form is varying
893 * inversely, in fact resulting in an invariant.
895 Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
897 else
898 Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
901 /* Update the late reverb line lengths and T60 coefficients. */
902 void LateReverb::updateLines(const float density_mult, const float diffusion,
903 const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
904 const float lf0norm, const float hf0norm, const float frequency)
906 /* Scaling factor to convert the normalized reference frequencies from
907 * representing 0...freq to 0...max_reference.
909 constexpr float MaxHFReference{20000.0f};
910 const float norm_weight_factor{frequency / MaxHFReference};
912 const float late_allpass_avg{
913 std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
914 float{NUM_LINES}};
916 /* To compensate for changes in modal density and decay time of the late
917 * reverb signal, the input is attenuated based on the maximal energy of
918 * the outgoing signal. This approximation is used to keep the apparent
919 * energy of the signal equal for all ranges of density and decay time.
921 * The average length of the delay lines is used to calculate the
922 * attenuation coefficient.
924 float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
925 float{NUM_LINES} + late_allpass_avg};
926 length *= density_mult;
927 /* The density gain calculation uses an average decay time weighted by
928 * approximate bandwidth. This attempts to compensate for losses of energy
929 * that reduce decay time due to scattering into highly attenuated bands.
931 const float decayTimeWeighted{
932 lf0norm*norm_weight_factor*lfDecayTime +
933 (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
934 (1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
935 DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
937 /* Calculate the all-pass feed-back/forward coefficient. */
938 VecAp.Coeff = diffusion*diffusion * InvSqrt2;
940 for(size_t i{0u};i < NUM_LINES;i++)
942 /* Calculate the delay length of each all-pass line. */
943 length = LATE_ALLPASS_LENGTHS[i] * density_mult;
944 VecAp.Offset[i] = float2uint(length * frequency);
946 /* Calculate the delay length of each feedback delay line. */
947 length = LATE_LINE_LENGTHS[i] * density_mult;
948 Offset[i] = float2uint(length*frequency + 0.5f);
950 /* Approximate the absorption that the vector all-pass would exhibit
951 * given the current diffusion so we don't have to process a full T60
952 * filter for each of its four lines. Also include the average
953 * modulation delay (depth is half the max delay in samples).
955 length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
956 Mod.Depth/frequency;
958 /* Calculate the T60 damping coefficients for each line. */
959 T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
964 /* Update the offsets for the main effect delay line. */
965 void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDelay,
966 const float density_mult, const float decayTime, const float frequency)
968 /* Early reflection taps are decorrelated by means of an average room
969 * reflection approximation described above the definition of the taps.
970 * This approximation is linear and so the above density multiplier can
971 * be applied to adjust the width of the taps. A single-band decay
972 * coefficient is applied to simulate initial attenuation and absorption.
974 * Late reverb taps are based on the late line lengths to allow a zero-
975 * delay path and offsets that would continue the propagation naturally
976 * into the late lines.
978 for(size_t i{0u};i < NUM_LINES;i++)
980 float length{EARLY_TAP_LENGTHS[i]*density_mult};
981 mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
982 mEarlyDelayCoeff[i] = CalcDecayCoeff(length, decayTime);
984 length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
985 lateDelay;
986 mLateDelayTap[i][1] = float2uint(length * frequency);
990 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
991 * reflections toward the given direction, using its magnitude (up to 1) as a
992 * focal strength. This function results in a B-Format transformation matrix
993 * that spatially focuses the signal in the desired direction.
995 std::array<std::array<float,4>,4> GetTransformFromVector(const float *vec)
997 /* Normalize the panning vector according to the N3D scale, which has an
998 * extra sqrt(3) term on the directional components. Converting from OpenAL
999 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
1000 * that the reverb panning vectors use left-handed coordinates, unlike the
1001 * rest of OpenAL which use right-handed. This is fixed by negating Z,
1002 * which cancels out with the B-Format Z negation.
1004 float norm[3];
1005 float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
1006 if(mag > 1.0f)
1008 norm[0] = vec[0] / mag * -al::numbers::sqrt3_v<float>;
1009 norm[1] = vec[1] / mag * al::numbers::sqrt3_v<float>;
1010 norm[2] = vec[2] / mag * al::numbers::sqrt3_v<float>;
1011 mag = 1.0f;
1013 else
1015 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
1016 * term. There's no need to renormalize the magnitude since it would
1017 * just be reapplied in the matrix.
1019 norm[0] = vec[0] * -al::numbers::sqrt3_v<float>;
1020 norm[1] = vec[1] * al::numbers::sqrt3_v<float>;
1021 norm[2] = vec[2] * al::numbers::sqrt3_v<float>;
1024 return std::array<std::array<float,4>,4>{{
1025 {{1.0f, 0.0f, 0.0f, 0.0f}},
1026 {{norm[0], 1.0f-mag, 0.0f, 0.0f}},
1027 {{norm[1], 0.0f, 1.0f-mag, 0.0f}},
1028 {{norm[2], 0.0f, 0.0f, 1.0f-mag}}
1032 /* Update the early and late 3D panning gains. */
1033 void ReverbPipeline::update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
1034 const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix)
1036 /* Create matrices that transform a B-Format signal according to the
1037 * panning vectors.
1039 const std::array<std::array<float,4>,4> earlymat{GetTransformFromVector(ReflectionsPan)};
1040 const std::array<std::array<float,4>,4> latemat{GetTransformFromVector(LateReverbPan)};
1042 if(doUpmix)
1044 /* When upsampling, combine the early and late transforms with the
1045 * first-order upsample matrix. This results in panning gains that
1046 * apply the panning transform to first-order B-Format, which is then
1047 * upsampled.
1049 auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
1051 auto&& mtx2 = AmbiScale::FirstOrderUp;
1052 std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
1054 for(size_t i{0};i < mtx1[0].size();++i)
1056 for(size_t j{0};j < mtx2[0].size();++j)
1058 double sum{0.0};
1059 for(size_t k{0};k < mtx1.size();++k)
1060 sum += double{mtx1[k][i]} * mtx2[k][j];
1061 res[i][j] = static_cast<float>(sum);
1065 return res;
1067 auto earlycoeffs = mult_matrix(earlymat);
1068 auto latecoeffs = mult_matrix(latemat);
1070 for(size_t i{0u};i < NUM_LINES;i++)
1071 ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.PanGain[i]);
1072 for(size_t i{0u};i < NUM_LINES;i++)
1073 ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.PanGain[i]);
1075 else
1077 /* When not upsampling, combine the early and late A-to-B-Format
1078 * conversions with their respective transform. This results panning
1079 * gains that convert A-Format to B-Format, which is then panned.
1081 auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
1082 const al::span<const std::array<float,4>,4> mtx2)
1084 std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
1086 for(size_t i{0};i < mtx1[0].size();++i)
1088 for(size_t j{0};j < mtx2.size();++j)
1090 double sum{0.0};
1091 for(size_t k{0};k < mtx1.size();++k)
1092 sum += double{mtx1[k][i]} * mtx2[j][k];
1093 res[i][j] = static_cast<float>(sum);
1097 return res;
1099 auto earlycoeffs = mult_matrix(EarlyA2B, earlymat);
1100 auto latecoeffs = mult_matrix(LateA2B, latemat);
1102 for(size_t i{0u};i < NUM_LINES;i++)
1103 ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.PanGain[i]);
1104 for(size_t i{0u};i < NUM_LINES;i++)
1105 ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.PanGain[i]);
1109 void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
1110 const EffectProps *props, const EffectTarget target)
1112 const DeviceBase *Device{Context->mDevice};
1113 const auto frequency = static_cast<float>(Device->Frequency);
1115 /* If the HF limit parameter is flagged, calculate an appropriate limit
1116 * based on the air absorption parameter.
1118 float hfRatio{props->Reverb.DecayHFRatio};
1119 if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
1120 hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
1121 props->Reverb.DecayTime);
1123 /* Calculate the LF/HF decay times. */
1124 constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
1125 const float lfDecayTime{clampf(props->Reverb.DecayTime*props->Reverb.DecayLFRatio,
1126 MinDecayTime, MaxDecayTime)};
1127 const float hfDecayTime{clampf(props->Reverb.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
1129 /* Determine if a full update is required. */
1130 const bool fullUpdate{mPipelineState == DeviceClear ||
1131 /* Density is essentially a master control for the feedback delays, so
1132 * changes the offsets of many delay lines.
1134 mParams.Density != props->Reverb.Density ||
1135 /* Diffusion and decay times influences the decay rate (gain) of the
1136 * late reverb T60 filter.
1138 mParams.Diffusion != props->Reverb.Diffusion ||
1139 mParams.DecayTime != props->Reverb.DecayTime ||
1140 mParams.HFDecayTime != hfDecayTime ||
1141 mParams.LFDecayTime != lfDecayTime ||
1142 /* Modulation time and depth both require fading the modulation delay. */
1143 mParams.ModulationTime != props->Reverb.ModulationTime ||
1144 mParams.ModulationDepth != props->Reverb.ModulationDepth ||
1145 /* HF/LF References control the weighting used to calculate the density
1146 * gain.
1148 mParams.HFReference != props->Reverb.HFReference ||
1149 mParams.LFReference != props->Reverb.LFReference};
1150 if(fullUpdate)
1152 mParams.Density = props->Reverb.Density;
1153 mParams.Diffusion = props->Reverb.Diffusion;
1154 mParams.DecayTime = props->Reverb.DecayTime;
1155 mParams.HFDecayTime = hfDecayTime;
1156 mParams.LFDecayTime = lfDecayTime;
1157 mParams.ModulationTime = props->Reverb.ModulationTime;
1158 mParams.ModulationDepth = props->Reverb.ModulationDepth;
1159 mParams.HFReference = props->Reverb.HFReference;
1160 mParams.LFReference = props->Reverb.LFReference;
1162 mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal;
1163 mCurrentPipeline ^= 1;
1165 auto &pipeline = mPipelines[mCurrentPipeline];
1167 /* Update early and late 3D panning. */
1168 mOutTarget = target.Main->Buffer;
1169 const float gain{props->Reverb.Gain * Slot->Gain * ReverbBoost};
1170 pipeline.update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
1171 props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, mUpmixOutput,
1172 target.Main);
1174 if(!fullUpdate)
1176 /* Calculate the master filters */
1177 float hf0norm{minf(mParams.HFReference/frequency, 0.49f)};
1178 pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f);
1179 float lf0norm{minf(mParams.LFReference/frequency, 0.49f)};
1180 pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f);
1181 for(size_t i{1u};i < NUM_LINES;i++)
1183 pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
1184 pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
1187 /* The density-based room size (delay length) multiplier. */
1188 const float density_mult{CalcDelayLengthMult(mParams.Density)};
1190 /* Update the main effect delay and associated taps. */
1191 pipeline.updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
1192 density_mult, mParams.DecayTime, frequency);
1194 else
1196 float hf0norm{minf(props->Reverb.HFReference/frequency, 0.49f)};
1197 pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f);
1198 float lf0norm{minf(props->Reverb.LFReference/frequency, 0.49f)};
1199 pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f);
1200 for(size_t i{1u};i < NUM_LINES;i++)
1202 pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
1203 pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
1206 const float density_mult{CalcDelayLengthMult(props->Reverb.Density)};
1208 pipeline.updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
1209 density_mult, props->Reverb.DecayTime, frequency);
1211 /* Update the early lines. */
1212 pipeline.mEarly.updateLines(density_mult, props->Reverb.Diffusion, props->Reverb.DecayTime,
1213 frequency);
1215 /* Get the mixing matrix coefficients. */
1216 CalcMatrixCoeffs(props->Reverb.Diffusion, &pipeline.mMixX, &pipeline.mMixY);
1218 /* Update the modulator rate and depth. */
1219 pipeline.mLate.Mod.updateModulator(props->Reverb.ModulationTime,
1220 props->Reverb.ModulationDepth, frequency);
1222 /* Update the late lines. */
1223 pipeline.mLate.updateLines(density_mult, props->Reverb.Diffusion, lfDecayTime,
1224 props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
1226 const float decayCount{minf(props->Reverb.DecayTime*frequency, 1'000'000.0f)};
1227 pipeline.mFadeSampleCount = static_cast<size_t>(decayCount);
1232 /**************************************
1233 * Effect Processing *
1234 **************************************/
1236 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1237 * for both the below vector all-pass model and to perform modal feed-back
1238 * delay network (FDN) mixing.
1240 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1241 * matrix with a single unitary rotational parameter:
1243 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1244 * [ -a, d, c, -b ]
1245 * [ -b, -c, d, a ]
1246 * [ -c, b, -a, d ]
1248 * The rotation is constructed from the effect's diffusion parameter,
1249 * yielding:
1251 * 1 = x^2 + 3 y^2
1253 * Where a, b, and c are the coefficient y with differing signs, and d is the
1254 * coefficient x. The final matrix is thus:
1256 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1257 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1258 * [ y, -y, x, y ] x = cos(t)
1259 * [ -y, -y, -y, x ] y = sin(t) / n
1261 * Any square orthogonal matrix with an order that is a power of two will
1262 * work (where ^T is transpose, ^-1 is inverse):
1264 * M^T = M^-1
1266 * Using that knowledge, finding an appropriate matrix can be accomplished
1267 * naively by searching all combinations of:
1269 * M = D + S - S^T
1271 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1272 * whose combination of signs are being iterated.
1274 inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &RESTRICT in,
1275 const float xCoeff, const float yCoeff) -> std::array<float,NUM_LINES>
1277 return std::array<float,NUM_LINES>{{
1278 xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
1279 xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
1280 xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
1281 xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
1285 /* Utilizes the above, but reverses the input channels. */
1286 void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float xCoeff,
1287 const float yCoeff, const al::span<const ReverbUpdateLine,NUM_LINES> in, const size_t count)
1289 ASSUME(count > 0);
1291 for(size_t i{0u};i < count;)
1293 offset &= delay.Mask;
1294 size_t td{minz(delay.Mask+1 - offset, count-i)};
1295 do {
1296 std::array<float,NUM_LINES> f;
1297 for(size_t j{0u};j < NUM_LINES;j++)
1298 f[NUM_LINES-1-j] = in[j][i];
1299 ++i;
1301 delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
1302 } while(--td);
1306 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1307 * filter to the 4-line input.
1309 * It works by vectorizing a regular all-pass filter and replacing the delay
1310 * element with a scattering matrix (like the one above) and a diagonal
1311 * matrix of delay elements.
1313 * Two static specializations are used for transitional (cross-faded) delay
1314 * line processing and non-transitional processing.
1316 void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
1317 const float xCoeff, const float yCoeff, const size_t todo)
1319 const DelayLineI delay{Delay};
1320 const float feedCoeff{Coeff};
1322 ASSUME(todo > 0);
1324 size_t vap_offset[NUM_LINES];
1325 for(size_t j{0u};j < NUM_LINES;j++)
1326 vap_offset[j] = offset - Offset[j];
1327 for(size_t i{0u};i < todo;)
1329 for(size_t j{0u};j < NUM_LINES;j++)
1330 vap_offset[j] &= delay.Mask;
1331 offset &= delay.Mask;
1333 size_t maxoff{offset};
1334 for(size_t j{0u};j < NUM_LINES;j++)
1335 maxoff = maxz(maxoff, vap_offset[j]);
1336 size_t td{minz(delay.Mask+1 - maxoff, todo - i)};
1338 do {
1339 std::array<float,NUM_LINES> f;
1340 for(size_t j{0u};j < NUM_LINES;j++)
1342 const float input{samples[j][i]};
1343 const float out{delay.Line[vap_offset[j]++][j] - feedCoeff*input};
1344 f[j] = input + feedCoeff*out;
1346 samples[j][i] = out;
1348 ++i;
1350 delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
1351 } while(--td);
1355 /* This generates early reflections.
1357 * This is done by obtaining the primary reflections (those arriving from the
1358 * same direction as the source) from the main delay line. These are
1359 * attenuated and all-pass filtered (based on the diffusion parameter).
1361 * The early lines are then fed in reverse (according to the approximately
1362 * opposite spatial location of the A-Format lines) to create the secondary
1363 * reflections (those arriving from the opposite direction as the source).
1365 * The early response is then completed by combining the primary reflections
1366 * with the delayed and attenuated output from the early lines.
1368 * Finally, the early response is reversed, scattered (based on diffusion),
1369 * and fed into the late reverb section of the main delay line.
1371 void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
1372 const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
1373 const al::span<FloatBufferLine, NUM_LINES> outSamples)
1375 const DelayLineI early_delay{mEarly.Delay};
1376 const DelayLineI in_delay{mEarlyDelayIn};
1377 const float mixX{mMixX};
1378 const float mixY{mMixY};
1380 ASSUME(samplesToDo > 0);
1382 for(size_t base{0};base < samplesToDo;)
1384 const size_t todo{minz(samplesToDo-base, MAX_UPDATE_SAMPLES)};
1386 /* First, load decorrelated samples from the main delay line as the
1387 * primary reflections.
1389 const float fadeStep{1.0f / static_cast<float>(todo)};
1390 for(size_t j{0u};j < NUM_LINES;j++)
1392 size_t early_delay_tap0{offset - mEarlyDelayTap[j][0]};
1393 size_t early_delay_tap1{offset - mEarlyDelayTap[j][1]};
1394 const float coeff{mEarlyDelayCoeff[j]};
1395 const float coeffStep{early_delay_tap0 != early_delay_tap1 ? coeff*fadeStep : 0.0f};
1396 float fadeCount{0.0f};
1398 for(size_t i{0u};i < todo;)
1400 early_delay_tap0 &= in_delay.Mask;
1401 early_delay_tap1 &= in_delay.Mask;
1402 const size_t max_tap{maxz(early_delay_tap0, early_delay_tap1)};
1403 size_t td{minz(in_delay.Mask+1 - max_tap, todo-i)};
1404 do {
1405 const float fade0{coeff - coeffStep*fadeCount};
1406 const float fade1{coeffStep*fadeCount};
1407 fadeCount += 1.0f;
1408 tempSamples[j][i++] = in_delay.Line[early_delay_tap0++][j]*fade0 +
1409 in_delay.Line[early_delay_tap1++][j]*fade1;
1410 } while(--td);
1413 mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1];
1416 /* Apply a vector all-pass, to help color the initial reflections based
1417 * on the diffusion strength.
1419 mEarly.VecAp.process(tempSamples, offset, mixX, mixY, todo);
1421 /* Apply a delay and bounce to generate secondary reflections, combine
1422 * with the primary reflections and write out the result for mixing.
1424 for(size_t j{0u};j < NUM_LINES;j++)
1425 early_delay.write(offset, NUM_LINES-1-j, tempSamples[j].data(), todo);
1426 for(size_t j{0u};j < NUM_LINES;j++)
1428 size_t feedb_tap{offset - mEarly.Offset[j]};
1429 const float feedb_coeff{mEarly.Coeff[j]};
1430 float *RESTRICT out{al::assume_aligned<16>(outSamples[j].data() + base)};
1432 for(size_t i{0u};i < todo;)
1434 feedb_tap &= early_delay.Mask;
1435 size_t td{minz(early_delay.Mask+1 - feedb_tap, todo - i)};
1436 do {
1437 tempSamples[j][i] += early_delay.Line[feedb_tap++][j]*feedb_coeff;
1438 out[i] = tempSamples[j][i];
1439 ++i;
1440 } while(--td);
1444 /* Finally, write the result to the late delay line input for the late
1445 * reverb stage to pick up at the appropriate time, applying a scatter
1446 * and bounce to improve the initial diffusion in the late reverb.
1448 VectorScatterRevDelayIn(mLateDelayIn, offset, mixX, mixY, tempSamples, todo);
1450 base += todo;
1451 offset += todo;
1455 void Modulation::calcDelays(size_t todo)
1457 constexpr float mod_scale{al::numbers::pi_v<float> * 2.0f / MOD_FRACONE};
1458 uint idx{Index};
1459 const uint step{Step};
1460 const float depth{Depth};
1461 for(size_t i{0};i < todo;++i)
1463 idx += step;
1464 const float lfo{std::sin(static_cast<float>(idx&MOD_FRACMASK) * mod_scale)};
1465 ModDelays[i] = (lfo+1.0f) * depth;
1467 Index = idx;
1471 /* This generates the reverb tail using a modified feed-back delay network
1472 * (FDN).
1474 * Results from the early reflections are mixed with the output from the
1475 * modulated late delay lines.
1477 * The late response is then completed by T60 and all-pass filtering the mix.
1479 * Finally, the lines are reversed (so they feed their opposite directions)
1480 * and scattered with the FDN matrix before re-feeding the delay lines.
1482 void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
1483 const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
1484 const al::span<FloatBufferLine, NUM_LINES> outSamples)
1486 const DelayLineI late_delay{mLate.Delay};
1487 const DelayLineI in_delay{mLateDelayIn};
1488 const float mixX{mMixX};
1489 const float mixY{mMixY};
1491 ASSUME(samplesToDo > 0);
1493 for(size_t base{0};base < samplesToDo;)
1495 const size_t todo{minz(samplesToDo-base, minz(mLate.Offset[0], MAX_UPDATE_SAMPLES))};
1496 ASSUME(todo > 0);
1498 /* First, calculate the modulated delays for the late feedback. */
1499 mLate.Mod.calcDelays(todo);
1501 /* Next, load decorrelated samples from the main and feedback delay
1502 * lines. Filter the signal to apply its frequency-dependent decay.
1504 const float fadeStep{1.0f / static_cast<float>(todo)};
1505 for(size_t j{0u};j < NUM_LINES;j++)
1507 size_t late_delay_tap0{offset - mLateDelayTap[j][0]};
1508 size_t late_delay_tap1{offset - mLateDelayTap[j][1]};
1509 size_t late_feedb_tap{offset - mLate.Offset[j]};
1510 const float midGain{mLate.T60[j].MidGain};
1511 const float densityGain{mLate.DensityGain * midGain};
1512 const float densityStep{late_delay_tap0 != late_delay_tap1 ?
1513 densityGain*fadeStep : 0.0f};
1514 float fadeCount{0.0f};
1516 for(size_t i{0u};i < todo;)
1518 late_delay_tap0 &= in_delay.Mask;
1519 late_delay_tap1 &= in_delay.Mask;
1520 size_t td{minz(todo-i, in_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))};
1521 do {
1522 /* Calculate the read offset and fraction between it and
1523 * the next sample.
1525 const float fdelay{mLate.Mod.ModDelays[i]};
1526 const size_t delay{float2uint(fdelay)};
1527 const float frac{fdelay - static_cast<float>(delay)};
1529 /* Get the two samples crossed by the delayed offset. */
1530 const float out0{late_delay.Line[(late_feedb_tap-delay) & late_delay.Mask][j]};
1531 const float out1{late_delay.Line[(late_feedb_tap-delay-1) & late_delay.Mask][j]};
1532 ++late_feedb_tap;
1534 /* The output is obtained by linearly interpolating the two
1535 * samples that were acquired above, and combined with the
1536 * main delay tap.
1538 const float fade0{densityGain - densityStep*fadeCount};
1539 const float fade1{densityStep*fadeCount};
1540 fadeCount += 1.0f;
1541 tempSamples[j][i] = lerpf(out0, out1, frac)*midGain +
1542 in_delay.Line[late_delay_tap0++][j]*fade0 +
1543 in_delay.Line[late_delay_tap1++][j]*fade1;
1544 ++i;
1545 } while(--td);
1547 mLateDelayTap[j][0] = mLateDelayTap[j][1];
1549 mLate.T60[j].process({tempSamples[j].data(), todo});
1552 /* Apply a vector all-pass to improve micro-surface diffusion, and
1553 * write out the results for mixing.
1555 mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
1556 for(size_t j{0u};j < NUM_LINES;j++)
1557 std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
1559 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1560 VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, tempSamples, todo);
1562 base += todo;
1563 offset += todo;
1567 void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
1569 const size_t offset{mOffset};
1571 ASSUME(samplesToDo > 0);
1573 auto &oldpipeline = mPipelines[mCurrentPipeline^1];
1574 auto &pipeline = mPipelines[mCurrentPipeline];
1576 if(mPipelineState >= Fading)
1578 /* Convert B-Format to A-Format for processing. */
1579 const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
1580 const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
1581 for(size_t c{0u};c < NUM_LINES;c++)
1583 std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
1584 for(size_t i{0};i < numInput;++i)
1586 const float gain{B2A[c][i]};
1587 const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
1589 auto mix_sample = [gain](const float sample, const float in) noexcept -> float
1590 { return sample + in*gain; };
1591 std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
1592 mix_sample);
1595 /* Band-pass the incoming samples and feed the initial delay line. */
1596 auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp};
1597 filter.process(tmpspan, tmpspan.data());
1598 pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
1600 if(mPipelineState == Fading)
1602 /* Give the old pipeline silence if it's still fading out. */
1603 for(size_t c{0u};c < NUM_LINES;c++)
1605 std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
1607 auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp};
1608 filter.process(tmpspan, tmpspan.data());
1609 oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
1613 else
1615 /* At the start of a fade, fade in input for the current pipeline, and
1616 * fade out input for the old pipeline.
1618 const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
1619 const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
1620 const float fadeStep{1.0f / static_cast<float>(samplesToDo)};
1622 for(size_t c{0u};c < NUM_LINES;c++)
1624 std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
1625 for(size_t i{0};i < numInput;++i)
1627 const float gain{B2A[c][i]};
1628 const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
1630 auto mix_sample = [gain](const float sample, const float in) noexcept -> float
1631 { return sample + in*gain; };
1632 std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
1633 mix_sample);
1635 float stepCount{0.0f};
1636 for(float &sample : tmpspan)
1638 stepCount += 1.0f;
1639 sample *= stepCount*fadeStep;
1642 auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp};
1643 filter.process(tmpspan, tmpspan.data());
1644 pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
1646 for(size_t c{0u};c < NUM_LINES;c++)
1648 std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
1649 for(size_t i{0};i < numInput;++i)
1651 const float gain{B2A[c][i]};
1652 const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
1654 auto mix_sample = [gain](const float sample, const float in) noexcept -> float
1655 { return sample + in*gain; };
1656 std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
1657 mix_sample);
1659 float stepCount{0.0f};
1660 for(float &sample : tmpspan)
1662 stepCount += 1.0f;
1663 sample *= 1.0f - stepCount*fadeStep;
1666 auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp};
1667 filter.process(tmpspan, tmpspan.data());
1668 oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
1670 mPipelineState = Fading;
1673 /* Process reverb for these samples. and mix them to the output. */
1674 pipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples);
1675 pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
1676 mixOut(pipeline, samplesOut, samplesToDo);
1678 if(mPipelineState != Normal)
1680 if(mPipelineState == Cleanup)
1682 size_t numSamples{mSampleBuffer.size()/2};
1683 size_t pipelineOffset{numSamples * (mCurrentPipeline^1)};
1684 std::fill_n(mSampleBuffer.data()+pipelineOffset, numSamples,
1685 decltype(mSampleBuffer)::value_type{});
1687 oldpipeline.clear();
1688 mPipelineState = Normal;
1690 else
1692 /* If this is the final mix for this old pipeline, set the target
1693 * gains to 0 to ensure a complete fade out, and set the state to
1694 * Cleanup so the next invocation cleans up the delay buffers and
1695 * filters.
1697 if(samplesToDo >= oldpipeline.mFadeSampleCount)
1699 for(auto &gains : oldpipeline.mEarly.PanGain)
1700 std::fill(std::begin(gains), std::end(gains), 0.0f);
1701 for(auto &gains : oldpipeline.mLate.PanGain)
1702 std::fill(std::begin(gains), std::end(gains), 0.0f);
1703 oldpipeline.mFadeSampleCount = 0;
1704 mPipelineState = Cleanup;
1706 else
1707 oldpipeline.mFadeSampleCount -= samplesToDo;
1709 /* Process the old reverb for these samples. */
1710 oldpipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples);
1711 oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
1712 mixOut(oldpipeline, samplesOut, samplesToDo);
1716 mOffset = offset + samplesToDo;
1720 struct ReverbStateFactory final : public EffectStateFactory {
1721 al::intrusive_ptr<EffectState> create() override
1722 { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
1725 struct StdReverbStateFactory final : public EffectStateFactory {
1726 al::intrusive_ptr<EffectState> create() override
1727 { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
1730 } // namespace
1732 EffectStateFactory *ReverbStateFactory_getFactory()
1734 static ReverbStateFactory ReverbFactory{};
1735 return &ReverbFactory;
1738 EffectStateFactory *StdReverbStateFactory_getFactory()
1740 static StdReverbStateFactory ReverbFactory{};
1741 return &ReverbFactory;