Remove extraneous parenthesis
[openal-soft.git] / utils / makemhr / loadsofa.cpp
blobec000d72312b477edcb0a099645f7cb553a13846
1 /*
2 * HRTF utility for producing and demonstrating the process of creating an
3 * OpenAL Soft compatible HRIR data set.
5 * Copyright (C) 2018-2019 Christopher Fitzgerald
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
24 #include "loadsofa.h"
26 #include <algorithm>
27 #include <atomic>
28 #include <chrono>
29 #include <cmath>
30 #include <cstdio>
31 #include <functional>
32 #include <future>
33 #include <iterator>
34 #include <memory>
35 #include <numeric>
36 #include <string>
37 #include <vector>
39 #include "makemhr.h"
40 #include "polyphase_resampler.h"
41 #include "sofa-support.h"
43 #include "mysofa.h"
46 using uint = unsigned int;
48 /* Attempts to produce a compatible layout. Most data sets tend to be
49 * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
50 * This will remove outliers and produce a maximally dense layout when
51 * possible. Those sets that contain purely random measurements or use
52 * different major axes will fail.
54 static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
56 fprintf(stdout, "Detecting compatible layout...\n");
58 auto fds = GetCompatibleLayout(m, xyzs);
59 if(fds.size() > MAX_FD_COUNT)
61 fprintf(stdout, "Incompatible layout (inumerable radii).\n");
62 return false;
65 double distances[MAX_FD_COUNT]{};
66 uint evCounts[MAX_FD_COUNT]{};
67 auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
69 uint fi{0u}, ir_total{0u};
70 for(const auto &field : fds)
72 distances[fi] = field.mDistance;
73 evCounts[fi] = field.mEvCount;
75 for(uint ei{0u};ei < field.mEvStart;ei++)
76 azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
77 for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
79 azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
80 ir_total += field.mAzCounts[ei];
83 ++fi;
85 fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
86 return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
90 bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
92 const char *srate_dim{nullptr};
93 const char *srate_units{nullptr};
94 MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
95 MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
96 while(srate_attrs)
98 if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
100 if(srate_dim)
102 fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
103 return false;
105 srate_dim = srate_attrs->value;
107 else if(std::string{"Units"} == srate_attrs->name)
109 if(srate_units)
111 fprintf(stderr, "Duplicate SampleRate.Units\n");
112 return false;
114 srate_units = srate_attrs->value;
116 else
117 fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
118 srate_attrs->value);
119 srate_attrs = srate_attrs->next;
121 if(!srate_dim)
123 fprintf(stderr, "Missing sample rate dimensions\n");
124 return false;
126 if(srate_dim != std::string{"I"})
128 fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
129 return false;
131 if(!srate_units)
133 fprintf(stderr, "Missing sample rate unit type\n");
134 return false;
136 if(srate_units != std::string{"hertz"})
138 fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
139 return false;
141 /* I dimensions guarantees 1 element, so just extract it. */
142 hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
143 if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
145 fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
146 MIN_RATE, MAX_RATE);
147 return false;
149 return true;
152 bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
154 const char *delay_dim{nullptr};
155 MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
156 MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
157 while(delay_attrs)
159 if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
161 if(delay_dim)
163 fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
164 return false;
166 delay_dim = delay_attrs->value;
168 else
169 fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
170 delay_attrs->value);
171 delay_attrs = delay_attrs->next;
173 if(!delay_dim)
175 fprintf(stderr, "Missing delay dimensions\n");
176 /*return false;*/
178 else if(delay_dim != std::string{"I,R"})
180 fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
181 return false;
183 else if(hData->mChannelType == CT_STEREO)
185 /* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
186 * so we can ignore this as long as it's equal.
188 if(delay_array->values[0] != delay_array->values[1])
190 fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
191 delay_array->values[1]);
192 return false;
195 return true;
198 bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
200 const char *ir_dim{nullptr};
201 MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
202 MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
203 while(ir_attrs)
205 if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
207 if(ir_dim)
209 fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
210 return false;
212 ir_dim = ir_attrs->value;
214 else
215 fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
216 ir_attrs->value);
217 ir_attrs = ir_attrs->next;
219 if(!ir_dim)
221 fprintf(stderr, "Missing IR dimensions\n");
222 return false;
224 if(ir_dim != std::string{"M,R,N"})
226 fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
227 return false;
229 return true;
233 /* Calculate the onset time of a HRIR. */
234 static constexpr int OnsetRateMultiple{10};
235 static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n,
236 std::vector<double> &upsampled, const double *hrir)
238 rs.process(n, hrir, static_cast<uint>(upsampled.size()), upsampled.data());
240 auto abs_lt = [](const double &lhs, const double &rhs) -> bool
241 { return std::abs(lhs) < std::abs(rhs); };
242 auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
243 return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
244 (double{OnsetRateMultiple}*rate);
247 /* Calculate the magnitude response of a HRIR. */
248 static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
249 double *hrir)
251 auto iter = std::copy_n(hrir, points, h.begin());
252 std::fill(iter, h.end(), complex_d{0.0, 0.0});
254 FftForward(n, h.data());
255 MagnitudeResponse(n, h.data(), hrir);
258 static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
260 std::atomic<uint> loaded_count{0u};
262 auto load_proc = [sofaHrtf,hData,&loaded_count]() -> bool
264 const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
265 hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0);
266 double *hrirs = hData->mHrirsBase.data();
268 for(uint si{0u};si < sofaHrtf->M;++si)
270 loaded_count.fetch_add(1u);
272 float aer[3]{
273 sofaHrtf->SourcePosition.values[3*si],
274 sofaHrtf->SourcePosition.values[3*si + 1],
275 sofaHrtf->SourcePosition.values[3*si + 2]
277 mysofa_c2s(aer);
279 if(std::abs(aer[1]) >= 89.999f)
280 aer[0] = 0.0f;
281 else
282 aer[0] = std::fmod(360.0f - aer[0], 360.0f);
284 auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
285 [&aer](const HrirFdT &fld) -> bool
287 double delta = aer[2] - fld.mDistance;
288 return (std::abs(delta) < 0.001);
290 if(field == hData->mFds.cend())
291 continue;
293 double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)};
294 auto ei = static_cast<int>(std::round(ef));
295 ef = (ef-ei) * 180.0 / (field->mEvCount-1);
296 if(std::abs(ef) >= 0.1) continue;
298 double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount};
299 auto ai = static_cast<int>(std::round(af));
300 af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount;
301 ai %= field->mEvs[ei].mAzCount;
302 if(std::abs(af) >= 0.1) continue;
304 HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
305 if(azd->mIrs[0] != nullptr)
307 fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
308 aer[0], aer[1], aer[2]);
309 return false;
312 for(uint ti{0u};ti < channels;++ti)
314 azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
315 std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
316 hData->mIrPoints, azd->mIrs[ti]);
319 /* TODO: Since some SOFA files contain minimum phase HRIRs,
320 * it would be beneficial to check for per-measurement delays
321 * (when available) to reconstruct the HRTDs.
324 return true;
327 std::future_status load_status{};
328 auto load_future = std::async(std::launch::async, load_proc);
329 do {
330 load_status = load_future.wait_for(std::chrono::milliseconds{50});
331 printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
332 fflush(stdout);
333 } while(load_status != std::future_status::ready);
334 fputc('\n', stdout);
335 return load_future.get();
339 /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
340 * this struct, which runs asynchronously on one or more threads (sharing the
341 * same calculator object).
343 struct MagCalculator {
344 const uint mFftSize{};
345 const uint mIrPoints{};
346 std::vector<double*> mIrs{};
347 std::atomic<size_t> mCurrent{};
348 std::atomic<size_t> mDone{};
350 void Worker()
352 auto htemp = std::vector<complex_d>(mFftSize);
354 while(1)
356 /* Load the current index to process. */
357 size_t idx{mCurrent.load()};
358 do {
359 /* If the index is at the end, we're done. */
360 if(idx >= mIrs.size())
361 return;
362 /* Otherwise, increment the current index atomically so other
363 * threads know to go to the next one. If this call fails, the
364 * current index was just changed by another thread and the new
365 * value is loaded into idx, which we'll recheck.
367 } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
369 CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]);
371 /* Increment the number of IRs done. */
372 mDone.fetch_add(1);
377 bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize,
378 const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
380 int err;
381 MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
382 if(!sofaHrtf)
384 fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
385 return false;
388 /* NOTE: Some valid SOFA files are failing this check. */
389 err = mysofa_check(sofaHrtf.get());
390 if(err != MYSOFA_OK)
391 fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
392 SofaErrorStr(err));
394 mysofa_tocartesian(sofaHrtf.get());
396 /* Make sure emitter and receiver counts are sane. */
397 if(sofaHrtf->E != 1)
399 fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
400 return false;
402 if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
404 fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
405 return false;
407 /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
408 if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
409 hData->mChannelType = CT_STEREO;
410 else
411 hData->mChannelType = CT_MONO;
413 /* Check and set the FFT and IR size. */
414 if(sofaHrtf->N > fftSize)
416 fprintf(stderr, "Sample points exceeds the FFT size.\n");
417 return false;
419 if(sofaHrtf->N < truncSize)
421 fprintf(stderr, "Sample points is below the truncation size.\n");
422 return false;
424 hData->mIrPoints = sofaHrtf->N;
425 hData->mFftSize = fftSize;
426 hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
428 /* Assume a default head radius of 9cm. */
429 hData->mRadius = 0.09;
431 if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData)
432 || !CheckIrData(sofaHrtf.get()))
433 return false;
434 if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
435 return false;
437 if(!LoadResponses(sofaHrtf.get(), hData))
438 return false;
439 sofaHrtf = nullptr;
441 for(uint fi{0u};fi < hData->mFdCount;fi++)
443 uint ei{0u};
444 for(;ei < hData->mFds[fi].mEvCount;ei++)
446 uint ai{0u};
447 for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
449 HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
450 if(azd.mIrs[0] != nullptr) break;
452 if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
453 break;
455 if(ei >= hData->mFds[fi].mEvCount)
457 fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
458 return false;
460 hData->mFds[fi].mEvStart = ei;
461 for(;ei < hData->mFds[fi].mEvCount;ei++)
463 for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
465 HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
466 if(azd.mIrs[0] == nullptr)
468 fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
469 return false;
476 size_t hrir_total{0};
477 const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
478 double *hrirs = hData->mHrirsBase.data();
479 for(uint fi{0u};fi < hData->mFdCount;fi++)
481 for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
483 for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
485 HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
486 for(uint ti{0u};ti < channels;ti++)
487 azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
491 for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
492 hrir_total += hData->mFds[fi].mEvs[ei].mAzCount * channels;
495 std::atomic<size_t> hrir_done{0};
496 auto onset_proc = [hData,channels,&hrir_done]() -> bool
498 /* Temporary buffer used to calculate the IR's onset. */
499 auto upsampled = std::vector<double>(OnsetRateMultiple * hData->mIrPoints);
500 /* This resampler is used to help detect the response onset. */
501 PPhaseResampler rs;
502 rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
504 for(uint fi{0u};fi < hData->mFdCount;fi++)
506 for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
508 for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
510 HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
511 for(uint ti{0};ti < channels;ti++)
513 hrir_done.fetch_add(1u, std::memory_order_acq_rel);
514 azd.mDelays[ti] = CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints,
515 upsampled, azd.mIrs[ti]);
520 return true;
523 std::future_status load_status{};
524 auto load_future = std::async(std::launch::async, onset_proc);
525 do {
526 load_status = load_future.wait_for(std::chrono::milliseconds{50});
527 printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
528 fflush(stdout);
529 } while(load_status != std::future_status::ready);
530 fputc('\n', stdout);
531 if(!load_future.get())
532 return false;
534 MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
535 for(uint fi{0u};fi < hData->mFdCount;fi++)
537 for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
539 for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
541 HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
542 for(uint ti{0};ti < channels;ti++)
543 calculator.mIrs.push_back(azd.mIrs[ti]);
548 std::vector<std::thread> thrds;
549 thrds.reserve(numThreads);
550 for(size_t i{0};i < numThreads;++i)
551 thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
552 size_t count;
553 do {
554 std::this_thread::sleep_for(std::chrono::milliseconds{50});
555 count = calculator.mDone.load();
557 printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
558 fflush(stdout);
559 } while(count != calculator.mIrs.size());
560 fputc('\n', stdout);
562 for(auto &thrd : thrds)
564 if(thrd.joinable())
565 thrd.join();
567 return true;