2 * HRTF utility for producing and demonstrating the process of creating an
3 * OpenAL Soft compatible HRIR data set.
5 * Copyright (C) 2018-2019 Christopher Fitzgerald
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
38 #include <string_view>
44 #include "alnumeric.h"
46 #include "polyphase_resampler.h"
47 #include "sofa-support.h"
54 using namespace std::string_view_literals
;
55 using uint
= unsigned int;
57 /* Attempts to produce a compatible layout. Most data sets tend to be
58 * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
59 * This will remove outliers and produce a maximally dense layout when
60 * possible. Those sets that contain purely random measurements or use
61 * different major axes will fail.
63 auto PrepareLayout(const al::span
<const float> xyzs
, HrirDataT
*hData
) -> bool
65 fprintf(stdout
, "Detecting compatible layout...\n");
67 auto fds
= GetCompatibleLayout(xyzs
);
68 if(fds
.size() > MAX_FD_COUNT
)
70 fprintf(stdout
, "Incompatible layout (inumerable radii).\n");
74 std::array
<double,MAX_FD_COUNT
> distances
{};
75 std::array
<uint
,MAX_FD_COUNT
> evCounts
{};
76 auto azCounts
= std::vector
<std::array
<uint
,MAX_EV_COUNT
>>(MAX_FD_COUNT
);
77 for(auto &azs
: azCounts
) azs
.fill(0u);
79 uint fi
{0u}, ir_total
{0u};
80 for(const auto &field
: fds
)
82 distances
[fi
] = field
.mDistance
;
83 evCounts
[fi
] = field
.mEvCount
;
85 for(uint ei
{0u};ei
< field
.mEvStart
;ei
++)
86 azCounts
[fi
][ei
] = field
.mAzCounts
[field
.mEvCount
-ei
-1];
87 for(uint ei
{field
.mEvStart
};ei
< field
.mEvCount
;ei
++)
89 azCounts
[fi
][ei
] = field
.mAzCounts
[ei
];
90 ir_total
+= field
.mAzCounts
[ei
];
95 fprintf(stdout
, "Using %u of %zu IRs.\n", ir_total
, xyzs
.size()/3);
96 const auto azs
= al::span
{azCounts
}.first
<MAX_FD_COUNT
>();
97 return PrepareHrirData(al::span
{distances
}.first(fi
), evCounts
, azs
, hData
);
100 float GetSampleRate(MYSOFA_HRTF
*sofaHrtf
)
102 const char *srate_dim
{nullptr};
103 const char *srate_units
{nullptr};
104 MYSOFA_ARRAY
*srate_array
{&sofaHrtf
->DataSamplingRate
};
105 MYSOFA_ATTRIBUTE
*srate_attrs
{srate_array
->attributes
};
108 if("DIMENSION_LIST"sv
== srate_attrs
->name
)
112 fprintf(stderr
, "Duplicate SampleRate.DIMENSION_LIST\n");
115 srate_dim
= srate_attrs
->value
;
117 else if("Units"sv
== srate_attrs
->name
)
121 fprintf(stderr
, "Duplicate SampleRate.Units\n");
124 srate_units
= srate_attrs
->value
;
127 fprintf(stderr
, "Unexpected sample rate attribute: %s = %s\n", srate_attrs
->name
,
129 srate_attrs
= srate_attrs
->next
;
133 fprintf(stderr
, "Missing sample rate dimensions\n");
136 if(srate_dim
!= "I"sv
)
138 fprintf(stderr
, "Unsupported sample rate dimensions: %s\n", srate_dim
);
143 fprintf(stderr
, "Missing sample rate unit type\n");
146 if(srate_units
!= "hertz"sv
)
148 fprintf(stderr
, "Unsupported sample rate unit type: %s\n", srate_units
);
151 /* I dimensions guarantees 1 element, so just extract it. */
152 const auto values
= al::span
{srate_array
->values
, sofaHrtf
->I
};
153 if(values
[0] < float{MIN_RATE
} || values
[0] > float{MAX_RATE
})
155 fprintf(stderr
, "Sample rate out of range: %f (expected %u to %u)", values
[0], MIN_RATE
,
162 enum class DelayType
: uint8_t {
164 I_R
, /* [1][Channels] */
165 M_R
, /* [HRIRs][Channels] */
167 auto PrepareDelay(MYSOFA_HRTF
*sofaHrtf
) -> std::optional
<DelayType
>
169 const char *delay_dim
{nullptr};
170 MYSOFA_ARRAY
*delay_array
{&sofaHrtf
->DataDelay
};
171 MYSOFA_ATTRIBUTE
*delay_attrs
{delay_array
->attributes
};
174 if("DIMENSION_LIST"sv
== delay_attrs
->name
)
178 fprintf(stderr
, "Duplicate Delay.DIMENSION_LIST\n");
181 delay_dim
= delay_attrs
->value
;
184 fprintf(stderr
, "Unexpected delay attribute: %s = %s\n", delay_attrs
->name
,
185 delay_attrs
->value
? delay_attrs
->value
: "<null>");
186 delay_attrs
= delay_attrs
->next
;
190 fprintf(stderr
, "Missing delay dimensions\n");
191 return DelayType::None
;
193 if(delay_dim
== "I,R"sv
)
194 return DelayType::I_R
;
195 if(delay_dim
== "M,R"sv
)
196 return DelayType::M_R
;
198 fprintf(stderr
, "Unsupported delay dimensions: %s\n", delay_dim
);
202 bool CheckIrData(MYSOFA_HRTF
*sofaHrtf
)
204 const char *ir_dim
{nullptr};
205 MYSOFA_ARRAY
*ir_array
{&sofaHrtf
->DataIR
};
206 MYSOFA_ATTRIBUTE
*ir_attrs
{ir_array
->attributes
};
209 if("DIMENSION_LIST"sv
== ir_attrs
->name
)
213 fprintf(stderr
, "Duplicate IR.DIMENSION_LIST\n");
216 ir_dim
= ir_attrs
->value
;
219 fprintf(stderr
, "Unexpected IR attribute: %s = %s\n", ir_attrs
->name
,
220 ir_attrs
->value
? ir_attrs
->value
: "<null>");
221 ir_attrs
= ir_attrs
->next
;
225 fprintf(stderr
, "Missing IR dimensions\n");
228 if(ir_dim
!= "M,R,N"sv
)
230 fprintf(stderr
, "Unsupported IR dimensions: %s\n", ir_dim
);
237 /* Calculate the onset time of a HRIR. */
238 constexpr int OnsetRateMultiple
{10};
239 auto CalcHrirOnset(PPhaseResampler
&rs
, const uint rate
, al::span
<double> upsampled
,
240 const al::span
<const double> hrir
) -> double
242 rs
.process(hrir
, upsampled
);
244 auto abs_lt
= [](const double lhs
, const double rhs
) -> bool
245 { return std::abs(lhs
) < std::abs(rhs
); };
246 auto iter
= std::max_element(upsampled
.cbegin(), upsampled
.cend(), abs_lt
);
247 return static_cast<double>(std::distance(upsampled
.cbegin(), iter
)) /
248 (double{OnsetRateMultiple
}*rate
);
251 /* Calculate the magnitude response of a HRIR. */
252 void CalcHrirMagnitude(const uint points
, al::span
<complex_d
> h
, const al::span
<double> hrir
)
254 auto iter
= std::copy_n(hrir
.cbegin(), points
, h
.begin());
255 std::fill(iter
, h
.end(), complex_d
{0.0, 0.0});
258 MagnitudeResponse(h
, hrir
.first((h
.size()/2) + 1));
261 bool LoadResponses(MYSOFA_HRTF
*sofaHrtf
, HrirDataT
*hData
, const DelayType delayType
,
264 std::atomic
<uint
> loaded_count
{0u};
266 auto load_proc
= [sofaHrtf
,hData
,delayType
,outRate
,&loaded_count
]() -> bool
268 const uint channels
{(hData
->mChannelType
== CT_STEREO
) ? 2u : 1u};
269 hData
->mHrirsBase
.resize(channels
* size_t{hData
->mIrCount
} * hData
->mIrSize
, 0.0);
270 const auto hrirs
= al::span
{hData
->mHrirsBase
};
272 std::vector
<double> restmp
;
273 std::optional
<PPhaseResampler
> resampler
;
274 if(outRate
&& outRate
!= hData
->mIrRate
)
276 resampler
.emplace().init(hData
->mIrRate
, outRate
);
277 restmp
.resize(sofaHrtf
->N
);
280 const auto srcPosValues
= al::span
{sofaHrtf
->SourcePosition
.values
, sofaHrtf
->M
*3_uz
};
281 const auto irValues
= al::span
{sofaHrtf
->DataIR
.values
,
282 size_t{sofaHrtf
->M
}*sofaHrtf
->R
*sofaHrtf
->N
};
283 for(uint si
{0u};si
< sofaHrtf
->M
;++si
)
285 loaded_count
.fetch_add(1u);
287 std::array aer
{srcPosValues
[3_uz
*si
], srcPosValues
[3_uz
*si
+ 1],
288 srcPosValues
[3_uz
*si
+ 2]};
289 mysofa_c2s(aer
.data());
291 if(std::abs(aer
[1]) >= 89.999f
)
294 aer
[0] = std::fmod(360.0f
- aer
[0], 360.0f
);
296 auto field
= std::find_if(hData
->mFds
.cbegin(), hData
->mFds
.cend(),
297 [&aer
](const HrirFdT
&fld
) -> bool
298 { return (std::abs(aer
[2] - fld
.mDistance
) < 0.001); });
299 if(field
== hData
->mFds
.cend())
302 const double evscale
{180.0 / static_cast<double>(field
->mEvs
.size()-1)};
303 double ef
{(90.0 + aer
[1]) / evscale
};
304 auto ei
= static_cast<uint
>(std::round(ef
));
305 ef
= (ef
- ei
) * evscale
;
306 if(std::abs(ef
) >= 0.1) continue;
308 const double azscale
{360.0 / static_cast<double>(field
->mEvs
[ei
].mAzs
.size())};
309 double af
{aer
[0] / azscale
};
310 auto ai
= static_cast<uint
>(std::round(af
));
311 af
= (af
-ai
) * azscale
;
312 ai
%= static_cast<uint
>(field
->mEvs
[ei
].mAzs
.size());
313 if(std::abs(af
) >= 0.1) continue;
315 HrirAzT
&azd
= field
->mEvs
[ei
].mAzs
[ai
];
316 if(!azd
.mIrs
[0].empty())
318 fprintf(stderr
, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
319 aer
[0], aer
[1], aer
[2]);
323 for(uint ti
{0u};ti
< channels
;++ti
)
325 azd
.mIrs
[ti
] = hrirs
.subspan(
326 (size_t{hData
->mIrCount
}*ti
+ azd
.mIndex
) * hData
->mIrSize
, hData
->mIrSize
);
327 const auto ir
= irValues
.subspan((size_t{si
}*sofaHrtf
->R
+ ti
)*sofaHrtf
->N
,
330 std::copy_n(ir
.cbegin(), ir
.size(), azd
.mIrs
[ti
].begin());
333 std::copy_n(ir
.cbegin(), ir
.size(), restmp
.begin());
334 resampler
->process(restmp
, azd
.mIrs
[ti
]);
338 /* Include any per-channel or per-HRIR delays. */
339 if(delayType
== DelayType::I_R
)
341 const auto delayValues
= al::span
{sofaHrtf
->DataDelay
.values
,
342 size_t{sofaHrtf
->I
}*sofaHrtf
->R
};
343 for(uint ti
{0u};ti
< channels
;++ti
)
344 azd
.mDelays
[ti
] = delayValues
[ti
] / static_cast<float>(hData
->mIrRate
);
346 else if(delayType
== DelayType::M_R
)
348 const auto delayValues
= al::span
{sofaHrtf
->DataDelay
.values
,
349 size_t{sofaHrtf
->M
}*sofaHrtf
->R
};
350 for(uint ti
{0u};ti
< channels
;++ti
)
351 azd
.mDelays
[ti
] = delayValues
[si
*sofaHrtf
->R
+ ti
] /
352 static_cast<float>(hData
->mIrRate
);
356 if(outRate
&& outRate
!= hData
->mIrRate
)
358 const double scale
{static_cast<double>(outRate
) / hData
->mIrRate
};
359 hData
->mIrRate
= outRate
;
360 hData
->mIrPoints
= std::min(static_cast<uint
>(std::ceil(hData
->mIrPoints
*scale
)),
366 std::future_status load_status
{};
367 auto load_future
= std::async(std::launch::async
, load_proc
);
369 load_status
= load_future
.wait_for(std::chrono::milliseconds
{50});
370 printf("\rLoading HRIRs... %u of %u", loaded_count
.load(), sofaHrtf
->M
);
372 } while(load_status
!= std::future_status::ready
);
374 return load_future
.get();
378 /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
379 * this struct, which runs asynchronously on one or more threads (sharing the
380 * same calculator object).
382 struct MagCalculator
{
383 const uint mFftSize
{};
384 const uint mIrPoints
{};
385 std::vector
<al::span
<double>> mIrs
{};
386 std::atomic
<size_t> mCurrent
{};
387 std::atomic
<size_t> mDone
{};
391 auto htemp
= std::vector
<complex_d
>(mFftSize
);
395 /* Load the current index to process. */
396 size_t idx
{mCurrent
.load()};
398 /* If the index is at the end, we're done. */
399 if(idx
>= mIrs
.size())
401 /* Otherwise, increment the current index atomically so other
402 * threads know to go to the next one. If this call fails, the
403 * current index was just changed by another thread and the new
404 * value is loaded into idx, which we'll recheck.
406 } while(!mCurrent
.compare_exchange_weak(idx
, idx
+1, std::memory_order_relaxed
));
408 CalcHrirMagnitude(mIrPoints
, htemp
, mIrs
[idx
]);
410 /* Increment the number of IRs done. */
418 bool LoadSofaFile(const std::string_view filename
, const uint numThreads
, const uint fftSize
,
419 const uint truncSize
, const uint outRate
, const ChannelModeT chanMode
, HrirDataT
*hData
)
422 MySofaHrtfPtr sofaHrtf
{mysofa_load(std::string
{filename
}.c_str(), &err
)};
425 fprintf(stdout
, "Error: Could not load %.*s: %s (%d)\n", al::sizei(filename
),
426 filename
.data(), SofaErrorStr(err
), err
);
430 /* NOTE: Some valid SOFA files are failing this check. */
431 err
= mysofa_check(sofaHrtf
.get());
433 fprintf(stderr
, "Warning: Supposedly malformed source file '%.*s': %s (%d)\n",
434 al::sizei(filename
), filename
.data(), SofaErrorStr(err
), err
);
436 mysofa_tocartesian(sofaHrtf
.get());
438 /* Make sure emitter and receiver counts are sane. */
441 fprintf(stderr
, "%u emitters not supported\n", sofaHrtf
->E
);
444 if(sofaHrtf
->R
> 2 || sofaHrtf
->R
< 1)
446 fprintf(stderr
, "%u receivers not supported\n", sofaHrtf
->R
);
449 /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
450 if(sofaHrtf
->R
== 2 && chanMode
== CM_AllowStereo
)
451 hData
->mChannelType
= CT_STEREO
;
453 hData
->mChannelType
= CT_MONO
;
455 /* Check and set the FFT and IR size. */
456 if(sofaHrtf
->N
> fftSize
)
458 fprintf(stderr
, "Sample points exceeds the FFT size.\n");
461 if(sofaHrtf
->N
< truncSize
)
463 fprintf(stderr
, "Sample points is below the truncation size.\n");
466 hData
->mIrPoints
= sofaHrtf
->N
;
467 hData
->mFftSize
= fftSize
;
468 hData
->mIrSize
= std::max(1u + (fftSize
/2u), sofaHrtf
->N
);
470 /* Assume a default head radius of 9cm. */
471 hData
->mRadius
= 0.09;
473 hData
->mIrRate
= static_cast<uint
>(std::lround(GetSampleRate(sofaHrtf
.get())));
477 const auto delayType
= PrepareDelay(sofaHrtf
.get());
481 if(!CheckIrData(sofaHrtf
.get()))
483 if(!PrepareLayout(al::span
{sofaHrtf
->SourcePosition
.values
, sofaHrtf
->M
*3_uz
}, hData
))
485 if(!LoadResponses(sofaHrtf
.get(), hData
, *delayType
, outRate
))
489 for(uint fi
{0u};fi
< hData
->mFds
.size();fi
++)
492 for(;ei
< hData
->mFds
[fi
].mEvs
.size();ei
++)
495 for(;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzs
.size();ai
++)
497 HrirAzT
&azd
= hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
498 if(!azd
.mIrs
[0].empty()) break;
500 if(ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzs
.size())
503 if(ei
>= hData
->mFds
[fi
].mEvs
.size())
505 fprintf(stderr
, "Missing source references [ %d, *, * ].\n", fi
);
508 hData
->mFds
[fi
].mEvStart
= ei
;
509 for(;ei
< hData
->mFds
[fi
].mEvs
.size();ei
++)
511 for(uint ai
{0u};ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzs
.size();ai
++)
513 HrirAzT
&azd
= hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
514 if(azd
.mIrs
[0].empty())
516 fprintf(stderr
, "Missing source reference [ %d, %d, %d ].\n", fi
, ei
, ai
);
524 size_t hrir_total
{0};
525 const uint channels
{(hData
->mChannelType
== CT_STEREO
) ? 2u : 1u};
526 const auto hrirs
= al::span
{hData
->mHrirsBase
};
527 for(uint fi
{0u};fi
< hData
->mFds
.size();fi
++)
529 for(uint ei
{0u};ei
< hData
->mFds
[fi
].mEvStart
;ei
++)
531 for(uint ai
{0u};ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzs
.size();ai
++)
533 HrirAzT
&azd
= hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
534 for(size_t ti
{0u};ti
< channels
;ti
++)
535 azd
.mIrs
[ti
] = hrirs
.subspan((hData
->mIrCount
*ti
+ azd
.mIndex
)*hData
->mIrSize
,
540 for(uint ei
{hData
->mFds
[fi
].mEvStart
};ei
< hData
->mFds
[fi
].mEvs
.size();ei
++)
541 hrir_total
+= hData
->mFds
[fi
].mEvs
[ei
].mAzs
.size() * channels
;
544 std::atomic
<size_t> hrir_done
{0};
545 auto onset_proc
= [hData
,channels
,&hrir_done
]() -> bool
547 /* Temporary buffer used to calculate the IR's onset. */
548 auto upsampled
= std::vector
<double>(size_t{OnsetRateMultiple
} * hData
->mIrPoints
);
549 /* This resampler is used to help detect the response onset. */
551 rs
.init(hData
->mIrRate
, OnsetRateMultiple
*hData
->mIrRate
);
553 for(auto &field
: hData
->mFds
)
555 for(auto &elev
: field
.mEvs
.subspan(field
.mEvStart
))
557 for(auto &azd
: elev
.mAzs
)
559 for(uint ti
{0};ti
< channels
;ti
++)
561 hrir_done
.fetch_add(1u, std::memory_order_acq_rel
);
562 azd
.mDelays
[ti
] += CalcHrirOnset(rs
, hData
->mIrRate
, upsampled
,
563 azd
.mIrs
[ti
].first(hData
->mIrPoints
));
571 std::future_status load_status
{};
572 auto load_future
= std::async(std::launch::async
, onset_proc
);
574 load_status
= load_future
.wait_for(std::chrono::milliseconds
{50});
575 printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done
.load(), hrir_total
);
577 } while(load_status
!= std::future_status::ready
);
579 if(!load_future
.get())
582 MagCalculator calculator
{hData
->mFftSize
, hData
->mIrPoints
};
583 for(auto &field
: hData
->mFds
)
585 for(auto &elev
: field
.mEvs
.subspan(field
.mEvStart
))
587 for(auto &azd
: elev
.mAzs
)
589 for(uint ti
{0};ti
< channels
;ti
++)
590 calculator
.mIrs
.push_back(azd
.mIrs
[ti
]);
595 std::vector
<std::thread
> thrds
;
596 thrds
.reserve(numThreads
);
597 for(size_t i
{0};i
< numThreads
;++i
)
598 thrds
.emplace_back(std::mem_fn(&MagCalculator::Worker
), &calculator
);
601 std::this_thread::sleep_for(std::chrono::milliseconds
{50});
602 count
= calculator
.mDone
.load();
604 printf("\rCalculating HRIR magnitudes... %zu of %zu", count
, calculator
.mIrs
.size());
606 } while(count
!= calculator
.mIrs
.size());
609 for(auto &thrd
: thrds
)