2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
43 #include "alnumbers.h"
44 #include "alnumeric.h"
48 #include "core/ambidefs.h"
49 #include "core/async_event.h"
50 #include "core/bformatdec.h"
51 #include "core/bs2b.h"
52 #include "core/bsinc_defs.h"
53 #include "core/bsinc_tables.h"
54 #include "core/bufferline.h"
55 #include "core/buffer_storage.h"
56 #include "core/context.h"
57 #include "core/cpu_caps.h"
58 #include "core/devformat.h"
59 #include "core/device.h"
60 #include "core/effects/base.h"
61 #include "core/effectslot.h"
62 #include "core/filters/biquad.h"
63 #include "core/filters/nfc.h"
64 #include "core/fpu_ctrl.h"
65 #include "core/hrtf.h"
66 #include "core/mastering.h"
67 #include "core/mixer.h"
68 #include "core/mixer/defs.h"
69 #include "core/mixer/hrtfdefs.h"
70 #include "core/resampler_limits.h"
71 #include "core/uhjfilter.h"
72 #include "core/voice.h"
73 #include "core/voice_change.h"
74 #include "intrusive_ptr.h"
75 #include "opthelpers.h"
76 #include "ringbuffer.h"
102 static_assert(!(MaxResamplerPadding
&1), "MaxResamplerPadding is not a multiple of two");
107 using uint
= unsigned int;
109 constexpr uint MaxPitch
{10};
111 static_assert((BufferLineSize
-1)/MaxPitch
> 0, "MaxPitch is too large for BufferLineSize!");
112 static_assert((INT_MAX
>>MixerFracBits
)/MaxPitch
> BufferLineSize
,
113 "MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
115 using namespace std::placeholders
;
117 float InitConeScale()
120 if(auto optval
= al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
122 if(al::strcasecmp(optval
->c_str(), "true") == 0
123 || strtol(optval
->c_str(), nullptr, 0) == 1)
132 if(auto optval
= al::getenv("__ALSOFT_REVERSE_Z"))
134 if(al::strcasecmp(optval
->c_str(), "true") == 0
135 || strtol(optval
->c_str(), nullptr, 0) == 1)
144 const float ConeScale
{InitConeScale()};
146 /* Localized Z scalar for mono sources */
147 const float ZScale
{InitZScale()};
157 using HrtfDirectMixerFunc
= void(*)(const FloatBufferSpan LeftOut
, const FloatBufferSpan RightOut
,
158 const al::span
<const FloatBufferLine
> InSamples
, float2
*AccumSamples
, float *TempBuf
,
159 HrtfChannelState
*ChanState
, const size_t IrSize
, const size_t BufferSize
);
161 HrtfDirectMixerFunc MixDirectHrtf
{MixDirectHrtf_
<CTag
>};
163 inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
166 if((CPUCapFlags
&CPU_CAP_NEON
))
167 return MixDirectHrtf_
<NEONTag
>;
170 if((CPUCapFlags
&CPU_CAP_SSE
))
171 return MixDirectHrtf_
<SSETag
>;
174 return MixDirectHrtf_
<CTag
>;
178 inline void BsincPrepare(const uint increment
, BsincState
*state
, const BSincTable
*table
)
180 size_t si
{BSincScaleCount
- 1};
183 if(increment
> MixerFracOne
)
185 sf
= MixerFracOne
/static_cast<float>(increment
) - table
->scaleBase
;
186 sf
= maxf(0.0f
, BSincScaleCount
*sf
*table
->scaleRange
- 1.0f
);
188 /* The interpolation factor is fit to this diagonally-symmetric curve
189 * to reduce the transition ripple caused by interpolating different
190 * scales of the sinc function.
192 sf
= 1.0f
- std::cos(std::asin(sf
- static_cast<float>(si
)));
196 state
->m
= table
->m
[si
];
197 state
->l
= (state
->m
/2) - 1;
198 state
->filter
= table
->Tab
+ table
->filterOffset
[si
];
201 inline ResamplerFunc
SelectResampler(Resampler resampler
, uint increment
)
205 case Resampler::Point
:
206 return Resample_
<PointTag
,CTag
>;
207 case Resampler::Linear
:
209 if((CPUCapFlags
&CPU_CAP_NEON
))
210 return Resample_
<LerpTag
,NEONTag
>;
213 if((CPUCapFlags
&CPU_CAP_SSE4_1
))
214 return Resample_
<LerpTag
,SSE4Tag
>;
217 if((CPUCapFlags
&CPU_CAP_SSE2
))
218 return Resample_
<LerpTag
,SSE2Tag
>;
220 return Resample_
<LerpTag
,CTag
>;
221 case Resampler::Cubic
:
222 return Resample_
<CubicTag
,CTag
>;
223 case Resampler::BSinc12
:
224 case Resampler::BSinc24
:
225 if(increment
<= MixerFracOne
)
228 case Resampler::FastBSinc12
:
229 case Resampler::FastBSinc24
:
231 if((CPUCapFlags
&CPU_CAP_NEON
))
232 return Resample_
<FastBSincTag
,NEONTag
>;
235 if((CPUCapFlags
&CPU_CAP_SSE
))
236 return Resample_
<FastBSincTag
,SSETag
>;
238 return Resample_
<FastBSincTag
,CTag
>;
241 if((CPUCapFlags
&CPU_CAP_NEON
))
242 return Resample_
<BSincTag
,NEONTag
>;
245 if((CPUCapFlags
&CPU_CAP_SSE
))
246 return Resample_
<BSincTag
,SSETag
>;
248 return Resample_
<BSincTag
,CTag
>;
251 return Resample_
<PointTag
,CTag
>;
258 MixDirectHrtf
= SelectHrtfMixer();
262 ResamplerFunc
PrepareResampler(Resampler resampler
, uint increment
, InterpState
*state
)
266 case Resampler::Point
:
267 case Resampler::Linear
:
268 case Resampler::Cubic
:
270 case Resampler::FastBSinc12
:
271 case Resampler::BSinc12
:
272 BsincPrepare(increment
, &state
->bsinc
, &bsinc12
);
274 case Resampler::FastBSinc24
:
275 case Resampler::BSinc24
:
276 BsincPrepare(increment
, &state
->bsinc
, &bsinc24
);
279 return SelectResampler(resampler
, increment
);
283 void DeviceBase::ProcessHrtf(const size_t SamplesToDo
)
285 /* HRTF is stereo output only. */
286 const uint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
287 const uint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
289 MixDirectHrtf(RealOut
.Buffer
[lidx
], RealOut
.Buffer
[ridx
], Dry
.Buffer
, HrtfAccumData
,
290 mHrtfState
->mTemp
.data(), mHrtfState
->mChannels
.data(), mHrtfState
->mIrSize
, SamplesToDo
);
293 void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo
)
295 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
298 void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo
)
300 /* Decode with front image stablization. */
301 const uint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
302 const uint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
303 const uint cidx
{RealOut
.ChannelIndex
[FrontCenter
]};
305 AmbiDecoder
->processStablize(RealOut
.Buffer
, Dry
.Buffer
.data(), lidx
, ridx
, cidx
,
309 void DeviceBase::ProcessUhj(const size_t SamplesToDo
)
311 /* UHJ is stereo output only. */
312 const uint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
313 const uint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
315 /* Encode to stereo-compatible 2-channel UHJ output. */
316 mUhjEncoder
->encode(RealOut
.Buffer
[lidx
].data(), RealOut
.Buffer
[ridx
].data(),
317 Dry
.Buffer
.data(), SamplesToDo
);
320 void DeviceBase::ProcessBs2b(const size_t SamplesToDo
)
322 /* First, decode the ambisonic mix to the "real" output. */
323 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
325 /* BS2B is stereo output only. */
326 const uint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
327 const uint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
329 /* Now apply the BS2B binaural/crossfeed filter. */
330 bs2b_cross_feed(Bs2b
.get(), RealOut
.Buffer
[lidx
].data(), RealOut
.Buffer
[ridx
].data(),
337 /* This RNG method was created based on the math found in opusdec. It's quick,
338 * and starting with a seed value of 22222, is suitable for generating
341 inline uint
dither_rng(uint
*seed
) noexcept
343 *seed
= (*seed
* 96314165) + 907633515;
348 inline auto& GetAmbiScales(AmbiScaling scaletype
) noexcept
352 case AmbiScaling::FuMa
: return AmbiScale::FromFuMa();
353 case AmbiScaling::SN3D
: return AmbiScale::FromSN3D();
354 case AmbiScaling::UHJ
: return AmbiScale::FromUHJ();
355 case AmbiScaling::N3D
: break;
357 return AmbiScale::FromN3D();
360 inline auto& GetAmbiLayout(AmbiLayout layouttype
) noexcept
362 if(layouttype
== AmbiLayout::FuMa
) return AmbiIndex::FromFuMa();
363 return AmbiIndex::FromACN();
366 inline auto& GetAmbi2DLayout(AmbiLayout layouttype
) noexcept
368 if(layouttype
== AmbiLayout::FuMa
) return AmbiIndex::FromFuMa2D();
369 return AmbiIndex::FromACN2D();
373 bool CalcContextParams(ContextBase
*ctx
)
375 ContextProps
*props
{ctx
->mParams
.ContextUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
376 if(!props
) return false;
378 const alu::Vector pos
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
};
379 ctx
->mParams
.Position
= pos
;
382 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
384 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
386 /* Build and normalize right-vector */
387 alu::Vector U
{N
.cross_product(V
)};
390 const alu::Matrix rot
{
391 U
[0], V
[0], -N
[0], 0.0,
392 U
[1], V
[1], -N
[1], 0.0,
393 U
[2], V
[2], -N
[2], 0.0,
395 const alu::Vector vel
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0};
397 ctx
->mParams
.Matrix
= rot
;
398 ctx
->mParams
.Velocity
= rot
* vel
;
400 ctx
->mParams
.Gain
= props
->Gain
* ctx
->mGainBoost
;
401 ctx
->mParams
.MetersPerUnit
= props
->MetersPerUnit
;
402 ctx
->mParams
.AirAbsorptionGainHF
= props
->AirAbsorptionGainHF
;
404 ctx
->mParams
.DopplerFactor
= props
->DopplerFactor
;
405 ctx
->mParams
.SpeedOfSound
= props
->SpeedOfSound
* props
->DopplerVelocity
;
407 ctx
->mParams
.SourceDistanceModel
= props
->SourceDistanceModel
;
408 ctx
->mParams
.mDistanceModel
= props
->mDistanceModel
;
410 AtomicReplaceHead(ctx
->mFreeContextProps
, props
);
414 bool CalcEffectSlotParams(EffectSlot
*slot
, EffectSlot
**sorted_slots
, ContextBase
*context
)
416 EffectSlotProps
*props
{slot
->Update
.exchange(nullptr, std::memory_order_acq_rel
)};
417 if(!props
) return false;
419 /* If the effect slot target changed, clear the first sorted entry to force
422 if(slot
->Target
!= props
->Target
)
423 *sorted_slots
= nullptr;
424 slot
->Gain
= props
->Gain
;
425 slot
->AuxSendAuto
= props
->AuxSendAuto
;
426 slot
->Target
= props
->Target
;
427 slot
->EffectType
= props
->Type
;
428 slot
->mEffectProps
= props
->Props
;
429 if(props
->Type
== EffectSlotType::Reverb
|| props
->Type
== EffectSlotType::EAXReverb
)
431 slot
->RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
432 slot
->DecayTime
= props
->Props
.Reverb
.DecayTime
;
433 slot
->DecayLFRatio
= props
->Props
.Reverb
.DecayLFRatio
;
434 slot
->DecayHFRatio
= props
->Props
.Reverb
.DecayHFRatio
;
435 slot
->DecayHFLimit
= props
->Props
.Reverb
.DecayHFLimit
;
436 slot
->AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
440 slot
->RoomRolloff
= 0.0f
;
441 slot
->DecayTime
= 0.0f
;
442 slot
->DecayLFRatio
= 0.0f
;
443 slot
->DecayHFRatio
= 0.0f
;
444 slot
->DecayHFLimit
= false;
445 slot
->AirAbsorptionGainHF
= 1.0f
;
448 EffectState
*state
{props
->State
.release()};
449 EffectState
*oldstate
{slot
->mEffectState
};
450 slot
->mEffectState
= state
;
452 /* Only release the old state if it won't get deleted, since we can't be
453 * deleting/freeing anything in the mixer.
455 if(!oldstate
->releaseIfNoDelete())
457 /* Otherwise, if it would be deleted send it off with a release event. */
458 RingBuffer
*ring
{context
->mAsyncEvents
.get()};
459 auto evt_vec
= ring
->getWriteVector();
460 if LIKELY(evt_vec
.first
.len
> 0)
462 AsyncEvent
*evt
{al::construct_at(reinterpret_cast<AsyncEvent
*>(evt_vec
.first
.buf
),
463 AsyncEvent::ReleaseEffectState
)};
464 evt
->u
.mEffectState
= oldstate
;
465 ring
->writeAdvance(1);
469 /* If writing the event failed, the queue was probably full. Store
470 * the old state in the property object where it can eventually be
471 * cleaned up sometime later (not ideal, but better than blocking
474 props
->State
.reset(oldstate
);
478 AtomicReplaceHead(context
->mFreeEffectslotProps
, props
);
481 if(EffectSlot
*target
{slot
->Target
})
482 output
= EffectTarget
{&target
->Wet
, nullptr};
485 DeviceBase
*device
{context
->mDevice
};
486 output
= EffectTarget
{&device
->Dry
, &device
->RealOut
};
488 state
->update(context
, slot
, &slot
->mEffectProps
, output
);
493 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
496 inline float ScaleAzimuthFront(float azimuth
, float scale
)
498 const float abs_azi
{std::fabs(azimuth
)};
499 if(!(abs_azi
>= al::numbers::pi_v
<float>*0.5f
))
500 return std::copysign(minf(abs_azi
*scale
, al::numbers::pi_v
<float>*0.5f
), azimuth
);
504 /* Wraps the given value in radians to stay between [-pi,+pi] */
505 inline float WrapRadians(float r
)
507 static constexpr float Pi
{al::numbers::pi_v
<float>};
508 static constexpr float Pi2
{Pi
*2.0f
};
509 if(r
> Pi
) return std::fmod(Pi
+r
, Pi2
) - Pi
;
510 if(r
< -Pi
) return Pi
- std::fmod(Pi
-r
, Pi2
);
514 /* Begin ambisonic rotation helpers.
516 * Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
517 * matrix. Higher orders, however, are more complicated. The method implemented
518 * here is a recursive algorithm (the rotation for first-order is used to help
519 * generate the second-order rotation, which helps generate the third-order
523 * <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
524 * provided under the BSD 3-Clause license.
526 * Copyright (c) 2015, Archontis Politis
527 * Copyright (c) 2019, Christopher Robinson
529 * The u, v, and w coefficients used for generating higher-order rotations are
530 * precomputed since they're constant. The second-order coefficients are
531 * followed by the third-order coefficients, etc.
533 struct RotatorCoeffs
{
536 template<size_t N0
, size_t N1
>
537 static std::array
<RotatorCoeffs
,N0
+N1
> ConcatArrays(const std::array
<RotatorCoeffs
,N0
> &lhs
,
538 const std::array
<RotatorCoeffs
,N1
> &rhs
)
540 std::array
<RotatorCoeffs
,N0
+N1
> ret
;
541 auto iter
= std::copy(lhs
.cbegin(), lhs
.cend(), ret
.begin());
542 std::copy(rhs
.cbegin(), rhs
.cend(), iter
);
546 template<int l
, int num_elems
=l
*2+1>
547 static std::array
<RotatorCoeffs
,num_elems
*num_elems
> GenCoeffs()
549 std::array
<RotatorCoeffs
,num_elems
*num_elems
> ret
{};
550 auto coeffs
= ret
.begin();
552 for(int m
{-l
};m
<= l
;++m
)
554 for(int n
{-l
};n
<= l
;++n
)
556 // compute u,v,w terms of Eq.8.1 (Table I)
557 const bool d
{m
== 0}; // the delta function d_m0
558 const float denom
{static_cast<float>((std::abs(n
) == l
) ?
559 (2*l
) * (2*l
- 1) : (l
*l
- n
*n
))};
561 const int abs_m
{std::abs(m
)};
562 coeffs
->u
= std::sqrt(static_cast<float>(l
*l
- m
*m
)/denom
);
563 coeffs
->v
= std::sqrt(static_cast<float>(l
+abs_m
-1) * static_cast<float>(l
+abs_m
) /
564 denom
) * (1.0f
+d
) * (1.0f
- 2.0f
*d
) * 0.5f
;
565 coeffs
->w
= std::sqrt(static_cast<float>(l
-abs_m
-1) * static_cast<float>(l
-abs_m
) /
566 denom
) * (1.0f
-d
) * -0.5f
;
574 const auto RotatorCoeffArray
= RotatorCoeffs::ConcatArrays(RotatorCoeffs::GenCoeffs
<2>(),
575 RotatorCoeffs::GenCoeffs
<3>());
578 * Given the matrix, pre-filled with the (zeroth- and) first-order rotation
579 * coefficients, this fills in the coefficients for the higher orders up to and
580 * including the given order. The matrix is in ACN layout.
582 void AmbiRotator(std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> &matrix
,
585 /* Don't do anything for < 2nd order. */
586 if(order
< 2) return;
588 auto P
= [](const int i
, const int l
, const int a
, const int n
, const size_t last_band
,
589 const std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> &R
)
591 const float ri1
{ R
[static_cast<uint
>(i
+2)][ 1+2]};
592 const float rim1
{R
[static_cast<uint
>(i
+2)][-1+2]};
593 const float ri0
{ R
[static_cast<uint
>(i
+2)][ 0+2]};
595 auto vec
= R
[static_cast<uint
>(a
+l
-1) + last_band
].cbegin() + last_band
;
597 return ri1
*vec
[0] + rim1
*vec
[static_cast<uint
>(l
-1)*size_t{2}];
599 return ri1
*vec
[static_cast<uint
>(l
-1)*size_t{2}] - rim1
*vec
[0];
600 return ri0
*vec
[static_cast<uint
>(n
+l
-1)];
603 auto U
= [P
](const int l
, const int m
, const int n
, const size_t last_band
,
604 const std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> &R
)
606 return P(0, l
, m
, n
, last_band
, R
);
608 auto V
= [P
](const int l
, const int m
, const int n
, const size_t last_band
,
609 const std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> &R
)
611 using namespace al::numbers
;
614 const bool d
{m
== 1};
615 const float p0
{P( 1, l
, m
-1, n
, last_band
, R
)};
616 const float p1
{P(-1, l
, -m
+1, n
, last_band
, R
)};
617 return d
? p0
*sqrt2_v
<float> : (p0
- p1
);
619 const bool d
{m
== -1};
620 const float p0
{P( 1, l
, m
+1, n
, last_band
, R
)};
621 const float p1
{P(-1, l
, -m
-1, n
, last_band
, R
)};
622 return d
? p1
*sqrt2_v
<float> : (p0
+ p1
);
624 auto W
= [P
](const int l
, const int m
, const int n
, const size_t last_band
,
625 const std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> &R
)
630 const float p0
{P( 1, l
, m
+1, n
, last_band
, R
)};
631 const float p1
{P(-1, l
, -m
-1, n
, last_band
, R
)};
634 const float p0
{P( 1, l
, m
-1, n
, last_band
, R
)};
635 const float p1
{P(-1, l
, -m
+1, n
, last_band
, R
)};
639 // compute rotation matrix of each subsequent band recursively
640 auto coeffs
= RotatorCoeffArray
.cbegin();
641 size_t band_idx
{4}, last_band
{1};
642 for(int l
{2};l
<= order
;++l
)
645 for(int m
{-l
};m
<= l
;++m
,++y
)
648 for(int n
{-l
};n
<= l
;++n
,++x
)
653 const float u
{coeffs
->u
};
654 if(u
!= 0.0f
) r
+= u
* U(l
, m
, n
, last_band
, matrix
);
655 const float v
{coeffs
->v
};
656 if(v
!= 0.0f
) r
+= v
* V(l
, m
, n
, last_band
, matrix
);
657 const float w
{coeffs
->w
};
658 if(w
!= 0.0f
) r
+= w
* W(l
, m
, n
, last_band
, matrix
);
664 last_band
= band_idx
;
665 band_idx
+= static_cast<uint
>(l
)*size_t{2} + 1;
668 /* End ambisonic rotation helpers. */
671 constexpr float Deg2Rad(float x
) noexcept
672 { return static_cast<float>(al::numbers::pi
/ 180.0 * x
); }
674 struct GainTriplet
{ float Base
, HF
, LF
; };
676 void CalcPanningAndFilters(Voice
*voice
, const float xpos
, const float ypos
, const float zpos
,
677 const float Distance
, const float Spread
, const GainTriplet
&DryGain
,
678 const al::span
<const GainTriplet
,MAX_SENDS
> WetGain
, EffectSlot
*(&SendSlots
)[MAX_SENDS
],
679 const VoiceProps
*props
, const ContextParams
&Context
, const DeviceBase
*Device
)
681 static constexpr ChanMap MonoMap
[1]{
682 { FrontCenter
, 0.0f
, 0.0f
}
684 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
685 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) }
687 { FrontLeft
, Deg2Rad( -45.0f
), Deg2Rad(0.0f
) },
688 { FrontRight
, Deg2Rad( 45.0f
), Deg2Rad(0.0f
) },
689 { BackLeft
, Deg2Rad(-135.0f
), Deg2Rad(0.0f
) },
690 { BackRight
, Deg2Rad( 135.0f
), Deg2Rad(0.0f
) }
692 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
693 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
694 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
696 { SideLeft
, Deg2Rad(-110.0f
), Deg2Rad(0.0f
) },
697 { SideRight
, Deg2Rad( 110.0f
), Deg2Rad(0.0f
) }
699 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
700 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
701 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
703 { BackCenter
, Deg2Rad(180.0f
), Deg2Rad(0.0f
) },
704 { SideLeft
, Deg2Rad(-90.0f
), Deg2Rad(0.0f
) },
705 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
707 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
708 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
709 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
711 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
712 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) },
713 { SideLeft
, Deg2Rad( -90.0f
), Deg2Rad(0.0f
) },
714 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
717 ChanMap StereoMap
[2]{
718 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
719 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) }
722 const auto Frequency
= static_cast<float>(Device
->Frequency
);
723 const uint NumSends
{Device
->NumAuxSends
};
725 const size_t num_channels
{voice
->mChans
.size()};
726 ASSUME(num_channels
> 0);
728 for(auto &chandata
: voice
->mChans
)
730 chandata
.mDryParams
.Hrtf
.Target
= HrtfFilter
{};
731 chandata
.mDryParams
.Gains
.Target
.fill(0.0f
);
732 std::for_each(chandata
.mWetParams
.begin(), chandata
.mWetParams
.begin()+NumSends
,
733 [](SendParams
¶ms
) -> void { params
.Gains
.Target
.fill(0.0f
); });
736 DirectMode DirectChannels
{props
->DirectChannels
};
737 const ChanMap
*chans
{nullptr};
738 switch(voice
->mFmtChannels
)
742 /* Mono buffers are never played direct. */
743 DirectChannels
= DirectMode::Off
;
747 if(DirectChannels
== DirectMode::Off
)
749 /* Convert counter-clockwise to clock-wise, and wrap between
752 StereoMap
[0].angle
= WrapRadians(-props
->StereoPan
[0]);
753 StereoMap
[1].angle
= WrapRadians(-props
->StereoPan
[1]);
758 case FmtRear
: chans
= RearMap
; break;
759 case FmtQuad
: chans
= QuadMap
; break;
760 case FmtX51
: chans
= X51Map
; break;
761 case FmtX61
: chans
= X61Map
; break;
762 case FmtX71
: chans
= X71Map
; break;
770 DirectChannels
= DirectMode::Off
;
774 voice
->mFlags
.reset(VoiceHasHrtf
).reset(VoiceHasNfc
);
775 if(auto *decoder
{voice
->mDecoder
.get()})
776 decoder
->mWidthControl
= props
->EnhWidth
;
778 if(IsAmbisonic(voice
->mFmtChannels
))
780 /* Special handling for B-Format and UHJ sources. */
782 if(Device
->AvgSpeakerDist
> 0.0f
&& voice
->mFmtChannels
!= FmtUHJ2
783 && voice
->mFmtChannels
!= FmtSuperStereo
)
785 if(!(Distance
> std::numeric_limits
<float>::epsilon()))
787 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
788 * is what we want for FOA input. The first channel may have
789 * been previously re-adjusted if panned, so reset it.
791 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(0.0f
);
795 /* Clamp the distance for really close sources, to prevent
798 const float mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
799 const float w0
{SpeedOfSoundMetersPerSec
/ (mdist
* Frequency
)};
801 /* Only need to adjust the first channel of a B-Format source. */
802 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(w0
);
805 voice
->mFlags
.set(VoiceHasNfc
);
808 /* Panning a B-Format sound toward some direction is easy. Just pan the
809 * first (W) channel as a normal mono sound. The angular spread is used
810 * as a directional scalar to blend between full coverage and full
813 const float coverage
{!(Distance
> std::numeric_limits
<float>::epsilon()) ? 1.0f
:
814 (al::numbers::inv_pi_v
<float>/2.0f
* Spread
)};
816 auto calc_coeffs
= [xpos
,ypos
,zpos
](RenderMode mode
)
818 if(mode
!= RenderMode::Pairwise
)
819 return CalcDirectionCoeffs({xpos
, ypos
, zpos
}, 0.0f
);
821 /* Clamp Y, in case rounding errors caused it to end up outside
824 const float ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
825 /* Negate Z for right-handed coords with -Z in front. */
826 const float az
{std::atan2(xpos
, -zpos
)};
828 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
829 * being moved to +/-90 degrees for direct right and left
832 return CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, 0.0f
);
834 auto coeffs
= calc_coeffs(Device
->mRenderMode
);
835 std::transform(coeffs
.begin()+1, coeffs
.end(), coeffs
.begin()+1,
836 std::bind(std::multiplies
<float>{}, _1
, 1.0f
-coverage
));
838 /* NOTE: W needs to be scaled according to channel scaling. */
839 auto&& scales
= GetAmbiScales(voice
->mAmbiScaling
);
840 ComputePanGains(&Device
->Dry
, coeffs
.data(), DryGain
.Base
*scales
[0],
841 voice
->mChans
[0].mDryParams
.Gains
.Target
);
842 for(uint i
{0};i
< NumSends
;i
++)
844 if(const EffectSlot
*Slot
{SendSlots
[i
]})
845 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
*scales
[0],
846 voice
->mChans
[0].mWetParams
[i
].Gains
.Target
);
851 /* Local B-Format sources have their XYZ channels rotated according
852 * to the orientation.
855 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
857 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
859 if(!props
->HeadRelative
)
861 N
= Context
.Matrix
* N
;
862 V
= Context
.Matrix
* V
;
864 /* Build and normalize right-vector */
865 alu::Vector U
{N
.cross_product(V
)};
868 /* Build a rotation matrix. Manually fill the zeroth- and first-
869 * order elements, then construct the rotation for the higher
872 std::array
<std::array
<float,MaxAmbiChannels
>,MaxAmbiChannels
> shrot
{};
874 shrot
[1][1] = U
[0]; shrot
[1][2] = -V
[0]; shrot
[1][3] = -N
[0];
875 shrot
[2][1] = -U
[1]; shrot
[2][2] = V
[1]; shrot
[2][3] = N
[1];
876 shrot
[3][1] = U
[2]; shrot
[3][2] = -V
[2]; shrot
[3][3] = -N
[2];
877 AmbiRotator(shrot
, static_cast<int>(minu(voice
->mAmbiOrder
, Device
->mAmbiOrder
)));
879 /* Convert the rotation matrix for input ordering and scaling, and
880 * whether input is 2D or 3D.
882 const uint8_t *index_map
{Is2DAmbisonic(voice
->mFmtChannels
) ?
883 GetAmbi2DLayout(voice
->mAmbiLayout
).data() :
884 GetAmbiLayout(voice
->mAmbiLayout
).data()};
886 static const uint8_t ChansPerOrder
[MaxAmbiOrder
+1]{1, 3, 5, 7,};
887 static const uint8_t OrderOffset
[MaxAmbiOrder
+1]{0, 1, 4, 9,};
888 for(size_t c
{1};c
< num_channels
;c
++)
890 const size_t acn
{index_map
[c
]};
891 const size_t order
{AmbiIndex::OrderFromChannel()[acn
]};
892 const size_t tocopy
{ChansPerOrder
[order
]};
893 const size_t offset
{OrderOffset
[order
]};
894 const float scale
{scales
[acn
] * coverage
};
895 auto in
= shrot
.cbegin() + offset
;
897 coeffs
= std::array
<float,MaxAmbiChannels
>{};
898 for(size_t x
{0};x
< tocopy
;++x
)
899 coeffs
[offset
+x
] = in
[x
][acn
] * scale
;
901 ComputePanGains(&Device
->Dry
, coeffs
.data(), DryGain
.Base
,
902 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
904 for(uint i
{0};i
< NumSends
;i
++)
906 if(const EffectSlot
*Slot
{SendSlots
[i
]})
907 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
908 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
913 else if(DirectChannels
!= DirectMode::Off
&& !Device
->RealOut
.RemixMap
.empty())
915 /* Direct source channels always play local. Skip the virtual channels
916 * and write inputs to the matching real outputs.
918 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
920 for(size_t c
{0};c
< num_channels
;c
++)
922 uint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
923 if(idx
!= INVALID_CHANNEL_INDEX
)
924 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
.Base
;
925 else if(DirectChannels
== DirectMode::RemixMismatch
)
927 auto match_channel
= [chans
,c
](const InputRemixMap
&map
) noexcept
-> bool
928 { return chans
[c
].channel
== map
.channel
; };
929 auto remap
= std::find_if(Device
->RealOut
.RemixMap
.cbegin(),
930 Device
->RealOut
.RemixMap
.cend(), match_channel
);
931 if(remap
!= Device
->RealOut
.RemixMap
.cend())
933 for(const auto &target
: remap
->targets
)
935 idx
= GetChannelIdxByName(Device
->RealOut
, target
.channel
);
936 if(idx
!= INVALID_CHANNEL_INDEX
)
937 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
.Base
*
944 /* Auxiliary sends still use normal channel panning since they mix to
945 * B-Format, which can't channel-match.
947 for(size_t c
{0};c
< num_channels
;c
++)
949 const auto coeffs
= CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
);
951 for(uint i
{0};i
< NumSends
;i
++)
953 if(const EffectSlot
*Slot
{SendSlots
[i
]})
954 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
955 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
959 else if(Device
->mRenderMode
== RenderMode::Hrtf
)
961 /* Full HRTF rendering. Skip the virtual channels and render to the
964 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
966 if(Distance
> std::numeric_limits
<float>::epsilon())
968 const float ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
969 const float az
{std::atan2(xpos
, -zpos
)};
971 /* Get the HRIR coefficients and delays just once, for the given
974 GetHrtfCoeffs(Device
->mHrtf
.get(), ev
, az
, Distance
, Spread
,
975 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Coeffs
,
976 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Delay
);
977 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Gain
= DryGain
.Base
;
979 /* Remaining channels use the same results as the first. */
980 for(size_t c
{1};c
< num_channels
;c
++)
983 if(chans
[c
].channel
== LFE
) continue;
984 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
= voice
->mChans
[0].mDryParams
.Hrtf
.Target
;
987 /* Calculate the directional coefficients once, which apply to all
988 * input channels of the source sends.
990 const auto coeffs
= CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
);
992 for(size_t c
{0};c
< num_channels
;c
++)
995 if(chans
[c
].channel
== LFE
)
997 for(uint i
{0};i
< NumSends
;i
++)
999 if(const EffectSlot
*Slot
{SendSlots
[i
]})
1000 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
1001 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
1007 /* Local sources on HRTF play with each channel panned to its
1008 * relative location around the listener, providing "virtual
1009 * speaker" responses.
1011 for(size_t c
{0};c
< num_channels
;c
++)
1014 if(chans
[c
].channel
== LFE
)
1017 /* Get the HRIR coefficients and delays for this channel
1020 GetHrtfCoeffs(Device
->mHrtf
.get(), chans
[c
].elevation
, chans
[c
].angle
,
1021 std::numeric_limits
<float>::infinity(), Spread
,
1022 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Coeffs
,
1023 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Delay
);
1024 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Gain
= DryGain
.Base
;
1026 /* Normal panning for auxiliary sends. */
1027 const auto coeffs
= CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, Spread
);
1029 for(uint i
{0};i
< NumSends
;i
++)
1031 if(const EffectSlot
*Slot
{SendSlots
[i
]})
1032 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
1033 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
1038 voice
->mFlags
.set(VoiceHasHrtf
);
1042 /* Non-HRTF rendering. Use normal panning to the output. */
1044 if(Distance
> std::numeric_limits
<float>::epsilon())
1046 /* Calculate NFC filter coefficient if needed. */
1047 if(Device
->AvgSpeakerDist
> 0.0f
)
1049 /* Clamp the distance for really close sources, to prevent
1052 const float mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
1053 const float w0
{SpeedOfSoundMetersPerSec
/ (mdist
* Frequency
)};
1055 /* Adjust NFC filters. */
1056 for(size_t c
{0};c
< num_channels
;c
++)
1057 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
1059 voice
->mFlags
.set(VoiceHasNfc
);
1062 /* Calculate the directional coefficients once, which apply to all
1065 auto calc_coeffs
= [xpos
,ypos
,zpos
,Spread
](RenderMode mode
)
1067 if(mode
!= RenderMode::Pairwise
)
1068 return CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
);
1069 const float ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
1070 const float az
{std::atan2(xpos
, -zpos
)};
1071 return CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, Spread
);
1073 const auto coeffs
= calc_coeffs(Device
->mRenderMode
);
1075 for(size_t c
{0};c
< num_channels
;c
++)
1077 /* Special-case LFE */
1078 if(chans
[c
].channel
== LFE
)
1080 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
1082 const uint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
1083 if(idx
!= INVALID_CHANNEL_INDEX
)
1084 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
.Base
;
1089 ComputePanGains(&Device
->Dry
, coeffs
.data(), DryGain
.Base
,
1090 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
1091 for(uint i
{0};i
< NumSends
;i
++)
1093 if(const EffectSlot
*Slot
{SendSlots
[i
]})
1094 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
1095 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
1101 if(Device
->AvgSpeakerDist
> 0.0f
)
1103 /* If the source distance is 0, simulate a plane-wave by using
1104 * infinite distance, which results in a w0 of 0.
1106 static constexpr float w0
{0.0f
};
1107 for(size_t c
{0};c
< num_channels
;c
++)
1108 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
1110 voice
->mFlags
.set(VoiceHasNfc
);
1113 for(size_t c
{0};c
< num_channels
;c
++)
1115 /* Special-case LFE */
1116 if(chans
[c
].channel
== LFE
)
1118 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
1120 const uint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
1121 if(idx
!= INVALID_CHANNEL_INDEX
)
1122 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
.Base
;
1127 const auto coeffs
= CalcAngleCoeffs((Device
->mRenderMode
== RenderMode::Pairwise
)
1128 ? ScaleAzimuthFront(chans
[c
].angle
, 3.0f
) : chans
[c
].angle
,
1129 chans
[c
].elevation
, Spread
);
1131 ComputePanGains(&Device
->Dry
, coeffs
.data(), DryGain
.Base
,
1132 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
1133 for(uint i
{0};i
< NumSends
;i
++)
1135 if(const EffectSlot
*Slot
{SendSlots
[i
]})
1136 ComputePanGains(&Slot
->Wet
, coeffs
.data(), WetGain
[i
].Base
,
1137 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
1144 const float hfNorm
{props
->Direct
.HFReference
/ Frequency
};
1145 const float lfNorm
{props
->Direct
.LFReference
/ Frequency
};
1147 voice
->mDirect
.FilterType
= AF_None
;
1148 if(DryGain
.HF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_LowPass
;
1149 if(DryGain
.LF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_HighPass
;
1151 auto &lowpass
= voice
->mChans
[0].mDryParams
.LowPass
;
1152 auto &highpass
= voice
->mChans
[0].mDryParams
.HighPass
;
1153 lowpass
.setParamsFromSlope(BiquadType::HighShelf
, hfNorm
, DryGain
.HF
, 1.0f
);
1154 highpass
.setParamsFromSlope(BiquadType::LowShelf
, lfNorm
, DryGain
.LF
, 1.0f
);
1155 for(size_t c
{1};c
< num_channels
;c
++)
1157 voice
->mChans
[c
].mDryParams
.LowPass
.copyParamsFrom(lowpass
);
1158 voice
->mChans
[c
].mDryParams
.HighPass
.copyParamsFrom(highpass
);
1161 for(uint i
{0};i
< NumSends
;i
++)
1163 const float hfNorm
{props
->Send
[i
].HFReference
/ Frequency
};
1164 const float lfNorm
{props
->Send
[i
].LFReference
/ Frequency
};
1166 voice
->mSend
[i
].FilterType
= AF_None
;
1167 if(WetGain
[i
].HF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_LowPass
;
1168 if(WetGain
[i
].LF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_HighPass
;
1170 auto &lowpass
= voice
->mChans
[0].mWetParams
[i
].LowPass
;
1171 auto &highpass
= voice
->mChans
[0].mWetParams
[i
].HighPass
;
1172 lowpass
.setParamsFromSlope(BiquadType::HighShelf
, hfNorm
, WetGain
[i
].HF
, 1.0f
);
1173 highpass
.setParamsFromSlope(BiquadType::LowShelf
, lfNorm
, WetGain
[i
].LF
, 1.0f
);
1174 for(size_t c
{1};c
< num_channels
;c
++)
1176 voice
->mChans
[c
].mWetParams
[i
].LowPass
.copyParamsFrom(lowpass
);
1177 voice
->mChans
[c
].mWetParams
[i
].HighPass
.copyParamsFrom(highpass
);
1182 void CalcNonAttnSourceParams(Voice
*voice
, const VoiceProps
*props
, const ContextBase
*context
)
1184 const DeviceBase
*Device
{context
->mDevice
};
1185 EffectSlot
*SendSlots
[MAX_SENDS
];
1187 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
1188 for(uint i
{0};i
< Device
->NumAuxSends
;i
++)
1190 SendSlots
[i
] = props
->Send
[i
].Slot
;
1191 if(!SendSlots
[i
] || SendSlots
[i
]->EffectType
== EffectSlotType::None
)
1193 SendSlots
[i
] = nullptr;
1194 voice
->mSend
[i
].Buffer
= {};
1197 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
1200 /* Calculate the stepping value */
1201 const auto Pitch
= static_cast<float>(voice
->mFrequency
) /
1202 static_cast<float>(Device
->Frequency
) * props
->Pitch
;
1203 if(Pitch
> float{MaxPitch
})
1204 voice
->mStep
= MaxPitch
<<MixerFracBits
;
1206 voice
->mStep
= maxu(fastf2u(Pitch
* MixerFracOne
), 1);
1207 voice
->mResampler
= PrepareResampler(props
->mResampler
, voice
->mStep
, &voice
->mResampleState
);
1209 /* Calculate gains */
1210 GainTriplet DryGain
;
1211 DryGain
.Base
= minf(clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
) * props
->Direct
.Gain
*
1212 context
->mParams
.Gain
, GainMixMax
);
1213 DryGain
.HF
= props
->Direct
.GainHF
;
1214 DryGain
.LF
= props
->Direct
.GainLF
;
1215 GainTriplet WetGain
[MAX_SENDS
];
1216 for(uint i
{0};i
< Device
->NumAuxSends
;i
++)
1218 WetGain
[i
].Base
= minf(clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
) *
1219 props
->Send
[i
].Gain
* context
->mParams
.Gain
, GainMixMax
);
1220 WetGain
[i
].HF
= props
->Send
[i
].GainHF
;
1221 WetGain
[i
].LF
= props
->Send
[i
].GainLF
;
1224 CalcPanningAndFilters(voice
, 0.0f
, 0.0f
, -1.0f
, 0.0f
, 0.0f
, DryGain
, WetGain
, SendSlots
, props
,
1225 context
->mParams
, Device
);
1228 void CalcAttnSourceParams(Voice
*voice
, const VoiceProps
*props
, const ContextBase
*context
)
1230 const DeviceBase
*Device
{context
->mDevice
};
1231 const uint NumSends
{Device
->NumAuxSends
};
1233 /* Set mixing buffers and get send parameters. */
1234 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
1235 EffectSlot
*SendSlots
[MAX_SENDS
];
1236 uint UseDryAttnForRoom
{0};
1237 for(uint i
{0};i
< NumSends
;i
++)
1239 SendSlots
[i
] = props
->Send
[i
].Slot
;
1240 if(!SendSlots
[i
] || SendSlots
[i
]->EffectType
== EffectSlotType::None
)
1241 SendSlots
[i
] = nullptr;
1242 else if(!SendSlots
[i
]->AuxSendAuto
)
1244 /* If the slot's auxiliary send auto is off, the data sent to the
1245 * effect slot is the same as the dry path, sans filter effects.
1247 UseDryAttnForRoom
|= 1u<<i
;
1251 voice
->mSend
[i
].Buffer
= {};
1253 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
1256 /* Transform source to listener space (convert to head relative) */
1257 alu::Vector Position
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
};
1258 alu::Vector Velocity
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
};
1259 alu::Vector Direction
{props
->Direction
[0], props
->Direction
[1], props
->Direction
[2], 0.0f
};
1260 if(!props
->HeadRelative
)
1262 /* Transform source vectors */
1263 Position
= context
->mParams
.Matrix
* (Position
- context
->mParams
.Position
);
1264 Velocity
= context
->mParams
.Matrix
* Velocity
;
1265 Direction
= context
->mParams
.Matrix
* Direction
;
1269 /* Offset the source velocity to be relative of the listener velocity */
1270 Velocity
+= context
->mParams
.Velocity
;
1273 const bool directional
{Direction
.normalize() > 0.0f
};
1274 alu::Vector ToSource
{Position
[0], Position
[1], Position
[2], 0.0f
};
1275 const float Distance
{ToSource
.normalize()};
1277 /* Calculate distance attenuation */
1278 float ClampedDist
{Distance
};
1279 float DryGainBase
{props
->Gain
};
1280 float WetGainBase
{props
->Gain
};
1282 switch(context
->mParams
.SourceDistanceModel
? props
->mDistanceModel
1283 : context
->mParams
.mDistanceModel
)
1285 case DistanceModel::InverseClamped
:
1286 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1287 if(props
->MaxDistance
< props
->RefDistance
) break;
1289 case DistanceModel::Inverse
:
1290 if(!(props
->RefDistance
> 0.0f
))
1291 ClampedDist
= props
->RefDistance
;
1294 float dist
{lerp(props
->RefDistance
, ClampedDist
, props
->RolloffFactor
)};
1295 if(dist
> 0.0f
) DryGainBase
*= props
->RefDistance
/ dist
;
1297 dist
= lerp(props
->RefDistance
, ClampedDist
, props
->RoomRolloffFactor
);
1298 if(dist
> 0.0f
) WetGainBase
*= props
->RefDistance
/ dist
;
1302 case DistanceModel::LinearClamped
:
1303 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1304 if(props
->MaxDistance
< props
->RefDistance
) break;
1306 case DistanceModel::Linear
:
1307 if(!(props
->MaxDistance
!= props
->RefDistance
))
1308 ClampedDist
= props
->RefDistance
;
1311 float attn
{(ClampedDist
-props
->RefDistance
) /
1312 (props
->MaxDistance
-props
->RefDistance
) * props
->RolloffFactor
};
1313 DryGainBase
*= maxf(1.0f
- attn
, 0.0f
);
1315 attn
= (ClampedDist
-props
->RefDistance
) /
1316 (props
->MaxDistance
-props
->RefDistance
) * props
->RoomRolloffFactor
;
1317 WetGainBase
*= maxf(1.0f
- attn
, 0.0f
);
1321 case DistanceModel::ExponentClamped
:
1322 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1323 if(props
->MaxDistance
< props
->RefDistance
) break;
1325 case DistanceModel::Exponent
:
1326 if(!(ClampedDist
> 0.0f
&& props
->RefDistance
> 0.0f
))
1327 ClampedDist
= props
->RefDistance
;
1330 const float dist_ratio
{ClampedDist
/props
->RefDistance
};
1331 DryGainBase
*= std::pow(dist_ratio
, -props
->RolloffFactor
);
1332 WetGainBase
*= std::pow(dist_ratio
, -props
->RoomRolloffFactor
);
1336 case DistanceModel::Disable
:
1340 /* Calculate directional soundcones */
1341 float ConeHF
{1.0f
}, WetConeHF
{1.0f
};
1342 if(directional
&& props
->InnerAngle
< 360.0f
)
1344 static constexpr float Rad2Deg
{static_cast<float>(180.0 / al::numbers::pi
)};
1345 const float Angle
{Rad2Deg
*2.0f
* std::acos(-Direction
.dot_product(ToSource
)) * ConeScale
};
1347 float ConeGain
{1.0f
};
1348 if(Angle
>= props
->OuterAngle
)
1350 ConeGain
= props
->OuterGain
;
1351 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, props
->DryGainHFAuto
);
1353 else if(Angle
>= props
->InnerAngle
)
1355 const float scale
{(Angle
-props
->InnerAngle
) / (props
->OuterAngle
-props
->InnerAngle
)};
1356 ConeGain
= lerp(1.0f
, props
->OuterGain
, scale
);
1357 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, scale
* props
->DryGainHFAuto
);
1360 DryGainBase
*= ConeGain
;
1361 WetGainBase
*= lerp(1.0f
, ConeGain
, props
->WetGainAuto
);
1363 WetConeHF
= lerp(1.0f
, ConeHF
, props
->WetGainHFAuto
);
1366 /* Apply gain and frequency filters */
1367 DryGainBase
= clampf(DryGainBase
, props
->MinGain
, props
->MaxGain
) * context
->mParams
.Gain
;
1368 WetGainBase
= clampf(WetGainBase
, props
->MinGain
, props
->MaxGain
) * context
->mParams
.Gain
;
1370 GainTriplet DryGain
{};
1371 DryGain
.Base
= minf(DryGainBase
* props
->Direct
.Gain
, GainMixMax
);
1372 DryGain
.HF
= ConeHF
* props
->Direct
.GainHF
;
1373 DryGain
.LF
= props
->Direct
.GainLF
;
1374 GainTriplet WetGain
[MAX_SENDS
]{};
1375 for(uint i
{0};i
< NumSends
;i
++)
1377 /* If this effect slot's Auxiliary Send Auto is off, then use the dry
1378 * path distance and cone attenuation, otherwise use the wet (room)
1379 * path distance and cone attenuation. The send filter is used instead
1380 * of the direct filter, regardless.
1382 const bool use_room
{!(UseDryAttnForRoom
&(1u<<i
))};
1383 const float gain
{use_room
? WetGainBase
: DryGainBase
};
1384 WetGain
[i
].Base
= minf(gain
* props
->Send
[i
].Gain
, GainMixMax
);
1385 WetGain
[i
].HF
= (use_room
? WetConeHF
: ConeHF
) * props
->Send
[i
].GainHF
;
1386 WetGain
[i
].LF
= props
->Send
[i
].GainLF
;
1389 /* Distance-based air absorption and initial send decay. */
1390 if(likely(Distance
> props
->RefDistance
))
1392 const float distance_base
{(Distance
-props
->RefDistance
) * props
->RolloffFactor
};
1393 const float absorption
{distance_base
* context
->mParams
.MetersPerUnit
*
1394 props
->AirAbsorptionFactor
};
1395 if(absorption
> std::numeric_limits
<float>::epsilon())
1397 const float hfattn
{std::pow(context
->mParams
.AirAbsorptionGainHF
, absorption
)};
1398 DryGain
.HF
*= hfattn
;
1399 for(uint i
{0u};i
< NumSends
;++i
)
1400 WetGain
[i
].HF
*= hfattn
;
1403 /* If the source's Auxiliary Send Filter Gain Auto is off, no extra
1404 * adjustment is applied to the send gains.
1406 for(uint i
{props
->WetGainAuto
? 0u : NumSends
};i
< NumSends
;++i
)
1411 auto calc_attenuation
= [](float distance
, float refdist
, float rolloff
) noexcept
1413 const float dist
{lerp(refdist
, distance
, rolloff
)};
1414 if(dist
> refdist
) return refdist
/ dist
;
1418 /* The reverb effect's room rolloff factor always applies to an
1419 * inverse distance rolloff model.
1421 WetGain
[i
].Base
*= calc_attenuation(Distance
, props
->RefDistance
,
1422 SendSlots
[i
]->RoomRolloff
);
1424 /* If this effect slot's Auxiliary Send Auto is off, don't apply
1425 * the automatic initial reverb decay (should the reverb's room
1426 * rolloff still apply?).
1428 if(!SendSlots
[i
]->AuxSendAuto
)
1431 GainTriplet DecayDistance
;
1432 /* Calculate the distances to where this effect's decay reaches
1435 DecayDistance
.Base
= SendSlots
[i
]->DecayTime
* SpeedOfSoundMetersPerSec
;
1436 DecayDistance
.LF
= DecayDistance
.Base
* SendSlots
[i
]->DecayLFRatio
;
1437 DecayDistance
.HF
= DecayDistance
.Base
* SendSlots
[i
]->DecayHFRatio
;
1438 if(SendSlots
[i
]->DecayHFLimit
)
1440 const float airAbsorption
{SendSlots
[i
]->AirAbsorptionGainHF
};
1441 if(airAbsorption
< 1.0f
)
1443 /* Calculate the distance to where this effect's air
1444 * absorption reaches -60dB, and limit the effect's HF
1445 * decay distance (so it doesn't take any longer to decay
1446 * than the air would allow).
1448 static constexpr float log10_decaygain
{-3.0f
/*std::log10(ReverbDecayGain)*/};
1449 const float absorb_dist
{log10_decaygain
/ std::log10(airAbsorption
)};
1450 DecayDistance
.HF
= minf(absorb_dist
, DecayDistance
.HF
);
1454 const float baseAttn
= calc_attenuation(Distance
, props
->RefDistance
,
1455 props
->RolloffFactor
);
1457 /* Apply a decay-time transformation to the wet path, based on the
1458 * source distance. The initial decay of the reverb effect is
1459 * calculated and applied to the wet path.
1461 const float fact
{distance_base
/ DecayDistance
.Base
};
1462 const float gain
{std::pow(ReverbDecayGain
, fact
)*(1.0f
-baseAttn
) + baseAttn
};
1463 WetGain
[i
].Base
*= gain
;
1467 const float hffact
{distance_base
/ DecayDistance
.HF
};
1468 const float gainhf
{std::pow(ReverbDecayGain
, hffact
)*(1.0f
-baseAttn
) + baseAttn
};
1469 WetGain
[i
].HF
*= minf(gainhf
/gain
, 1.0f
);
1470 const float lffact
{distance_base
/ DecayDistance
.LF
};
1471 const float gainlf
{std::pow(ReverbDecayGain
, lffact
)*(1.0f
-baseAttn
) + baseAttn
};
1472 WetGain
[i
].LF
*= minf(gainlf
/gain
, 1.0f
);
1478 /* Initial source pitch */
1479 float Pitch
{props
->Pitch
};
1481 /* Calculate velocity-based doppler effect */
1482 float DopplerFactor
{props
->DopplerFactor
* context
->mParams
.DopplerFactor
};
1483 if(DopplerFactor
> 0.0f
)
1485 const alu::Vector
&lvelocity
= context
->mParams
.Velocity
;
1486 float vss
{Velocity
.dot_product(ToSource
) * -DopplerFactor
};
1487 float vls
{lvelocity
.dot_product(ToSource
) * -DopplerFactor
};
1489 const float SpeedOfSound
{context
->mParams
.SpeedOfSound
};
1490 if(!(vls
< SpeedOfSound
))
1492 /* Listener moving away from the source at the speed of sound.
1493 * Sound waves can't catch it.
1497 else if(!(vss
< SpeedOfSound
))
1499 /* Source moving toward the listener at the speed of sound. Sound
1500 * waves bunch up to extreme frequencies.
1502 Pitch
= std::numeric_limits
<float>::infinity();
1506 /* Source and listener movement is nominal. Calculate the proper
1509 Pitch
*= (SpeedOfSound
-vls
) / (SpeedOfSound
-vss
);
1513 /* Adjust pitch based on the buffer and output frequencies, and calculate
1514 * fixed-point stepping value.
1516 Pitch
*= static_cast<float>(voice
->mFrequency
) / static_cast<float>(Device
->Frequency
);
1517 if(Pitch
> float{MaxPitch
})
1518 voice
->mStep
= MaxPitch
<<MixerFracBits
;
1520 voice
->mStep
= maxu(fastf2u(Pitch
* MixerFracOne
), 1);
1521 voice
->mResampler
= PrepareResampler(props
->mResampler
, voice
->mStep
, &voice
->mResampleState
);
1524 if(props
->Radius
> Distance
)
1525 spread
= al::numbers::pi_v
<float>*2.0f
- Distance
/props
->Radius
*al::numbers::pi_v
<float>;
1526 else if(Distance
> 0.0f
)
1527 spread
= std::asin(props
->Radius
/Distance
) * 2.0f
;
1529 CalcPanningAndFilters(voice
, ToSource
[0], ToSource
[1], ToSource
[2]*ZScale
,
1530 Distance
*context
->mParams
.MetersPerUnit
, spread
, DryGain
, WetGain
, SendSlots
, props
,
1531 context
->mParams
, Device
);
1534 void CalcSourceParams(Voice
*voice
, ContextBase
*context
, bool force
)
1536 VoicePropsItem
*props
{voice
->mUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
1537 if(!props
&& !force
) return;
1541 voice
->mProps
= *props
;
1543 AtomicReplaceHead(context
->mFreeVoiceProps
, props
);
1546 if((voice
->mProps
.DirectChannels
!= DirectMode::Off
&& voice
->mFmtChannels
!= FmtMono
1547 && !IsAmbisonic(voice
->mFmtChannels
))
1548 || voice
->mProps
.mSpatializeMode
== SpatializeMode::Off
1549 || (voice
->mProps
.mSpatializeMode
==SpatializeMode::Auto
&& voice
->mFmtChannels
!= FmtMono
))
1550 CalcNonAttnSourceParams(voice
, &voice
->mProps
, context
);
1552 CalcAttnSourceParams(voice
, &voice
->mProps
, context
);
1556 void SendSourceStateEvent(ContextBase
*context
, uint id
, VChangeState state
)
1558 RingBuffer
*ring
{context
->mAsyncEvents
.get()};
1559 auto evt_vec
= ring
->getWriteVector();
1560 if(evt_vec
.first
.len
< 1) return;
1562 AsyncEvent
*evt
{al::construct_at(reinterpret_cast<AsyncEvent
*>(evt_vec
.first
.buf
),
1563 AsyncEvent::SourceStateChange
)};
1564 evt
->u
.srcstate
.id
= id
;
1567 case VChangeState::Reset
:
1568 evt
->u
.srcstate
.state
= AsyncEvent::SrcState::Reset
;
1570 case VChangeState::Stop
:
1571 evt
->u
.srcstate
.state
= AsyncEvent::SrcState::Stop
;
1573 case VChangeState::Play
:
1574 evt
->u
.srcstate
.state
= AsyncEvent::SrcState::Play
;
1576 case VChangeState::Pause
:
1577 evt
->u
.srcstate
.state
= AsyncEvent::SrcState::Pause
;
1579 /* Shouldn't happen. */
1580 case VChangeState::Restart
:
1584 ring
->writeAdvance(1);
1587 void ProcessVoiceChanges(ContextBase
*ctx
)
1589 VoiceChange
*cur
{ctx
->mCurrentVoiceChange
.load(std::memory_order_acquire
)};
1590 VoiceChange
*next
{cur
->mNext
.load(std::memory_order_acquire
)};
1593 const uint enabledevt
{ctx
->mEnabledEvts
.load(std::memory_order_acquire
)};
1597 bool sendevt
{false};
1598 if(cur
->mState
== VChangeState::Reset
|| cur
->mState
== VChangeState::Stop
)
1600 if(Voice
*voice
{cur
->mVoice
})
1602 voice
->mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
1603 voice
->mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
1604 /* A source ID indicates the voice was playing or paused, which
1605 * gets a reset/stop event.
1607 sendevt
= voice
->mSourceID
.exchange(0u, std::memory_order_relaxed
) != 0u;
1608 Voice::State oldvstate
{Voice::Playing
};
1609 voice
->mPlayState
.compare_exchange_strong(oldvstate
, Voice::Stopping
,
1610 std::memory_order_relaxed
, std::memory_order_acquire
);
1611 voice
->mPendingChange
.store(false, std::memory_order_release
);
1613 /* Reset state change events are always sent, even if the voice is
1614 * already stopped or even if there is no voice.
1616 sendevt
|= (cur
->mState
== VChangeState::Reset
);
1618 else if(cur
->mState
== VChangeState::Pause
)
1620 Voice
*voice
{cur
->mVoice
};
1621 Voice::State oldvstate
{Voice::Playing
};
1622 sendevt
= voice
->mPlayState
.compare_exchange_strong(oldvstate
, Voice::Stopping
,
1623 std::memory_order_release
, std::memory_order_acquire
);
1625 else if(cur
->mState
== VChangeState::Play
)
1627 /* NOTE: When playing a voice, sending a source state change event
1628 * depends if there's an old voice to stop and if that stop is
1629 * successful. If there is no old voice, a playing event is always
1630 * sent. If there is an old voice, an event is sent only if the
1631 * voice is already stopped.
1633 if(Voice
*oldvoice
{cur
->mOldVoice
})
1635 oldvoice
->mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
1636 oldvoice
->mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
1637 oldvoice
->mSourceID
.store(0u, std::memory_order_relaxed
);
1638 Voice::State oldvstate
{Voice::Playing
};
1639 sendevt
= !oldvoice
->mPlayState
.compare_exchange_strong(oldvstate
, Voice::Stopping
,
1640 std::memory_order_relaxed
, std::memory_order_acquire
);
1641 oldvoice
->mPendingChange
.store(false, std::memory_order_release
);
1646 Voice
*voice
{cur
->mVoice
};
1647 voice
->mPlayState
.store(Voice::Playing
, std::memory_order_release
);
1649 else if(cur
->mState
== VChangeState::Restart
)
1651 /* Restarting a voice never sends a source change event. */
1652 Voice
*oldvoice
{cur
->mOldVoice
};
1653 oldvoice
->mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
1654 oldvoice
->mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
1655 /* If there's no sourceID, the old voice finished so don't start
1656 * the new one at its new offset.
1658 if(oldvoice
->mSourceID
.exchange(0u, std::memory_order_relaxed
) != 0u)
1660 /* Otherwise, set the voice to stopping if it's not already (it
1661 * might already be, if paused), and play the new voice as
1664 Voice::State oldvstate
{Voice::Playing
};
1665 oldvoice
->mPlayState
.compare_exchange_strong(oldvstate
, Voice::Stopping
,
1666 std::memory_order_relaxed
, std::memory_order_acquire
);
1668 Voice
*voice
{cur
->mVoice
};
1669 voice
->mPlayState
.store((oldvstate
== Voice::Playing
) ? Voice::Playing
1670 : Voice::Stopped
, std::memory_order_release
);
1672 oldvoice
->mPendingChange
.store(false, std::memory_order_release
);
1674 if(sendevt
&& (enabledevt
&AsyncEvent::SourceStateChange
))
1675 SendSourceStateEvent(ctx
, cur
->mSourceID
, cur
->mState
);
1677 next
= cur
->mNext
.load(std::memory_order_acquire
);
1679 ctx
->mCurrentVoiceChange
.store(cur
, std::memory_order_release
);
1682 void ProcessParamUpdates(ContextBase
*ctx
, const EffectSlotArray
&slots
,
1683 const al::span
<Voice
*> voices
)
1685 ProcessVoiceChanges(ctx
);
1687 IncrementRef(ctx
->mUpdateCount
);
1688 if LIKELY(!ctx
->mHoldUpdates
.load(std::memory_order_acquire
))
1690 bool force
{CalcContextParams(ctx
)};
1691 auto sorted_slots
= const_cast<EffectSlot
**>(slots
.data() + slots
.size());
1692 for(EffectSlot
*slot
: slots
)
1693 force
|= CalcEffectSlotParams(slot
, sorted_slots
, ctx
);
1695 for(Voice
*voice
: voices
)
1697 /* Only update voices that have a source. */
1698 if(voice
->mSourceID
.load(std::memory_order_relaxed
) != 0)
1699 CalcSourceParams(voice
, ctx
, force
);
1702 IncrementRef(ctx
->mUpdateCount
);
1705 void ProcessContexts(DeviceBase
*device
, const uint SamplesToDo
)
1707 ASSUME(SamplesToDo
> 0);
1709 for(ContextBase
*ctx
: *device
->mContexts
.load(std::memory_order_acquire
))
1711 const EffectSlotArray
&auxslots
= *ctx
->mActiveAuxSlots
.load(std::memory_order_acquire
);
1712 const al::span
<Voice
*> voices
{ctx
->getVoicesSpanAcquired()};
1714 /* Process pending propery updates for objects on the context. */
1715 ProcessParamUpdates(ctx
, auxslots
, voices
);
1717 /* Clear auxiliary effect slot mixing buffers. */
1718 for(EffectSlot
*slot
: auxslots
)
1720 for(auto &buffer
: slot
->Wet
.Buffer
)
1724 /* Process voices that have a playing source. */
1725 for(Voice
*voice
: voices
)
1727 const Voice::State vstate
{voice
->mPlayState
.load(std::memory_order_acquire
)};
1728 if(vstate
!= Voice::Stopped
&& vstate
!= Voice::Pending
)
1729 voice
->mix(vstate
, ctx
, SamplesToDo
);
1732 /* Process effects. */
1733 if(const size_t num_slots
{auxslots
.size()})
1735 auto slots
= auxslots
.data();
1736 auto slots_end
= slots
+ num_slots
;
1738 /* Sort the slots into extra storage, so that effect slots come
1739 * before their effect slot target (or their targets' target).
1741 const al::span
<EffectSlot
*> sorted_slots
{const_cast<EffectSlot
**>(slots_end
),
1743 /* Skip sorting if it has already been done. */
1744 if(!sorted_slots
[0])
1746 /* First, copy the slots to the sorted list, then partition the
1747 * sorted list so that all slots without a target slot go to
1750 std::copy(slots
, slots_end
, sorted_slots
.begin());
1751 auto split_point
= std::partition(sorted_slots
.begin(), sorted_slots
.end(),
1752 [](const EffectSlot
*slot
) noexcept
-> bool
1753 { return slot
->Target
!= nullptr; });
1754 /* There must be at least one slot without a slot target. */
1755 assert(split_point
!= sorted_slots
.end());
1757 /* Simple case: no more than 1 slot has a target slot. Either
1758 * all slots go right to the output, or the remaining one must
1759 * target an already-partitioned slot.
1761 if(split_point
- sorted_slots
.begin() > 1)
1763 /* At least two slots target other slots. Starting from the
1764 * back of the sorted list, continue partitioning the front
1765 * of the list given each target until all targets are
1766 * accounted for. This ensures all slots without a target
1767 * go last, all slots directly targeting those last slots
1768 * go second-to-last, all slots directly targeting those
1769 * second-last slots go third-to-last, etc.
1771 auto next_target
= sorted_slots
.end();
1773 /* This shouldn't happen, but if there's unsorted slots
1774 * left that don't target any sorted slots, they can't
1775 * contribute to the output, so leave them.
1777 if UNLIKELY(next_target
== split_point
)
1781 split_point
= std::partition(sorted_slots
.begin(), split_point
,
1782 [next_target
](const EffectSlot
*slot
) noexcept
-> bool
1783 { return slot
->Target
!= *next_target
; });
1784 } while(split_point
- sorted_slots
.begin() > 1);
1788 for(const EffectSlot
*slot
: sorted_slots
)
1790 EffectState
*state
{slot
->mEffectState
};
1791 state
->process(SamplesToDo
, slot
->Wet
.Buffer
, state
->mOutTarget
);
1795 /* Signal the event handler if there are any events to read. */
1796 RingBuffer
*ring
{ctx
->mAsyncEvents
.get()};
1797 if(ring
->readSpace() > 0)
1798 ctx
->mEventSem
.post();
1803 void ApplyDistanceComp(const al::span
<FloatBufferLine
> Samples
, const size_t SamplesToDo
,
1804 const DistanceComp::ChanData
*distcomp
)
1806 ASSUME(SamplesToDo
> 0);
1808 for(auto &chanbuffer
: Samples
)
1810 const float gain
{distcomp
->Gain
};
1811 const size_t base
{distcomp
->Length
};
1812 float *distbuf
{al::assume_aligned
<16>(distcomp
->Buffer
)};
1818 float *inout
{al::assume_aligned
<16>(chanbuffer
.data())};
1819 auto inout_end
= inout
+ SamplesToDo
;
1820 if LIKELY(SamplesToDo
>= base
)
1822 auto delay_end
= std::rotate(inout
, inout_end
- base
, inout_end
);
1823 std::swap_ranges(inout
, delay_end
, distbuf
);
1827 auto delay_start
= std::swap_ranges(inout
, inout_end
, distbuf
);
1828 std::rotate(distbuf
, delay_start
, distbuf
+ base
);
1830 std::transform(inout
, inout_end
, inout
, std::bind(std::multiplies
<float>{}, _1
, gain
));
1834 void ApplyDither(const al::span
<FloatBufferLine
> Samples
, uint
*dither_seed
,
1835 const float quant_scale
, const size_t SamplesToDo
)
1837 ASSUME(SamplesToDo
> 0);
1839 /* Dithering. Generate whitenoise (uniform distribution of random values
1840 * between -1 and +1) and add it to the sample values, after scaling up to
1841 * the desired quantization depth amd before rounding.
1843 const float invscale
{1.0f
/ quant_scale
};
1844 uint seed
{*dither_seed
};
1845 auto dither_sample
= [&seed
,invscale
,quant_scale
](const float sample
) noexcept
-> float
1847 float val
{sample
* quant_scale
};
1848 uint rng0
{dither_rng(&seed
)};
1849 uint rng1
{dither_rng(&seed
)};
1850 val
+= static_cast<float>(rng0
*(1.0/UINT_MAX
) - rng1
*(1.0/UINT_MAX
));
1851 return fast_roundf(val
) * invscale
;
1853 for(FloatBufferLine
&inout
: Samples
)
1854 std::transform(inout
.begin(), inout
.begin()+SamplesToDo
, inout
.begin(), dither_sample
);
1855 *dither_seed
= seed
;
1859 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1860 * chokes on that given the inline specializations.
1862 template<typename T
>
1863 inline T
SampleConv(float) noexcept
;
1865 template<> inline float SampleConv(float val
) noexcept
1867 template<> inline int32_t SampleConv(float val
) noexcept
1869 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1870 * This means a normalized float has at most 25 bits of signed precision.
1871 * When scaling and clamping for a signed 32-bit integer, these following
1872 * values are the best a float can give.
1874 return fastf2i(clampf(val
*2147483648.0f
, -2147483648.0f
, 2147483520.0f
));
1876 template<> inline int16_t SampleConv(float val
) noexcept
1877 { return static_cast<int16_t>(fastf2i(clampf(val
*32768.0f
, -32768.0f
, 32767.0f
))); }
1878 template<> inline int8_t SampleConv(float val
) noexcept
1879 { return static_cast<int8_t>(fastf2i(clampf(val
*128.0f
, -128.0f
, 127.0f
))); }
1881 /* Define unsigned output variations. */
1882 template<> inline uint32_t SampleConv(float val
) noexcept
1883 { return static_cast<uint32_t>(SampleConv
<int32_t>(val
)) + 2147483648u; }
1884 template<> inline uint16_t SampleConv(float val
) noexcept
1885 { return static_cast<uint16_t>(SampleConv
<int16_t>(val
) + 32768); }
1886 template<> inline uint8_t SampleConv(float val
) noexcept
1887 { return static_cast<uint8_t>(SampleConv
<int8_t>(val
) + 128); }
1889 template<DevFmtType T
>
1890 void Write(const al::span
<const FloatBufferLine
> InBuffer
, void *OutBuffer
, const size_t Offset
,
1891 const size_t SamplesToDo
, const size_t FrameStep
)
1893 ASSUME(FrameStep
> 0);
1894 ASSUME(SamplesToDo
> 0);
1896 DevFmtType_t
<T
> *outbase
{static_cast<DevFmtType_t
<T
>*>(OutBuffer
) + Offset
*FrameStep
};
1898 for(const FloatBufferLine
&inbuf
: InBuffer
)
1900 DevFmtType_t
<T
> *out
{outbase
++};
1901 auto conv_sample
= [FrameStep
,&out
](const float s
) noexcept
-> void
1903 *out
= SampleConv
<DevFmtType_t
<T
>>(s
);
1906 std::for_each(inbuf
.begin(), inbuf
.begin()+SamplesToDo
, conv_sample
);
1909 if(const size_t extra
{FrameStep
- c
})
1911 const auto silence
= SampleConv
<DevFmtType_t
<T
>>(0.0f
);
1912 for(size_t i
{0};i
< SamplesToDo
;++i
)
1914 std::fill_n(outbase
, extra
, silence
);
1915 outbase
+= FrameStep
;
1922 uint
DeviceBase::renderSamples(const uint numSamples
)
1924 const uint samplesToDo
{minu(numSamples
, BufferLineSize
)};
1926 /* Clear main mixing buffers. */
1927 for(FloatBufferLine
&buffer
: MixBuffer
)
1930 /* Increment the mix count at the start (lsb should now be 1). */
1931 IncrementRef(MixCount
);
1933 /* Process and mix each context's sources and effects. */
1934 ProcessContexts(this, samplesToDo
);
1936 /* Increment the clock time. Every second's worth of samples is converted
1937 * and added to clock base so that large sample counts don't overflow
1938 * during conversion. This also guarantees a stable conversion.
1940 SamplesDone
+= samplesToDo
;
1941 ClockBase
+= std::chrono::seconds
{SamplesDone
/ Frequency
};
1942 SamplesDone
%= Frequency
;
1944 /* Increment the mix count at the end (lsb should now be 0). */
1945 IncrementRef(MixCount
);
1947 /* Apply any needed post-process for finalizing the Dry mix to the RealOut
1948 * (Ambisonic decode, UHJ encode, etc).
1950 postProcess(samplesToDo
);
1952 /* Apply compression, limiting sample amplitude if needed or desired. */
1953 if(Limiter
) Limiter
->process(samplesToDo
, RealOut
.Buffer
.data());
1955 /* Apply delays and attenuation for mismatched speaker distances. */
1957 ApplyDistanceComp(RealOut
.Buffer
, samplesToDo
, ChannelDelays
->mChannels
.data());
1959 /* Apply dithering. The compressor should have left enough headroom for the
1960 * dither noise to not saturate.
1962 if(DitherDepth
> 0.0f
)
1963 ApplyDither(RealOut
.Buffer
, &DitherSeed
, DitherDepth
, samplesToDo
);
1968 void DeviceBase::renderSamples(const al::span
<float*> outBuffers
, const uint numSamples
)
1970 FPUCtl mixer_mode
{};
1972 while(const uint todo
{numSamples
- total
})
1974 const uint samplesToDo
{renderSamples(todo
)};
1976 auto *srcbuf
= RealOut
.Buffer
.data();
1977 for(auto *dstbuf
: outBuffers
)
1979 std::copy_n(srcbuf
->data(), samplesToDo
, dstbuf
+ total
);
1983 total
+= samplesToDo
;
1987 void DeviceBase::renderSamples(void *outBuffer
, const uint numSamples
, const size_t frameStep
)
1989 FPUCtl mixer_mode
{};
1991 while(const uint todo
{numSamples
- total
})
1993 const uint samplesToDo
{renderSamples(todo
)};
1995 if LIKELY(outBuffer
)
1997 /* Finally, interleave and convert samples, writing to the device's
2002 #define HANDLE_WRITE(T) case T: \
2003 Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
2004 HANDLE_WRITE(DevFmtByte
)
2005 HANDLE_WRITE(DevFmtUByte
)
2006 HANDLE_WRITE(DevFmtShort
)
2007 HANDLE_WRITE(DevFmtUShort
)
2008 HANDLE_WRITE(DevFmtInt
)
2009 HANDLE_WRITE(DevFmtUInt
)
2010 HANDLE_WRITE(DevFmtFloat
)
2015 total
+= samplesToDo
;
2019 void DeviceBase::handleDisconnect(const char *msg
, ...)
2021 if(!Connected
.exchange(false, std::memory_order_acq_rel
))
2024 AsyncEvent evt
{AsyncEvent::Disconnected
};
2027 va_start(args
, msg
);
2028 int msglen
{vsnprintf(evt
.u
.disconnect
.msg
, sizeof(evt
.u
.disconnect
.msg
), msg
, args
)};
2031 if(msglen
< 0 || static_cast<size_t>(msglen
) >= sizeof(evt
.u
.disconnect
.msg
))
2032 evt
.u
.disconnect
.msg
[sizeof(evt
.u
.disconnect
.msg
)-1] = 0;
2034 IncrementRef(MixCount
);
2035 for(ContextBase
*ctx
: *mContexts
.load())
2037 const uint enabledevt
{ctx
->mEnabledEvts
.load(std::memory_order_acquire
)};
2038 if((enabledevt
&AsyncEvent::Disconnected
))
2040 RingBuffer
*ring
{ctx
->mAsyncEvents
.get()};
2041 auto evt_data
= ring
->getWriteVector().first
;
2042 if(evt_data
.len
> 0)
2044 al::construct_at(reinterpret_cast<AsyncEvent
*>(evt_data
.buf
), evt
);
2045 ring
->writeAdvance(1);
2046 ctx
->mEventSem
.post();
2050 if(!ctx
->mStopVoicesOnDisconnect
)
2052 ProcessVoiceChanges(ctx
);
2056 auto voicelist
= ctx
->getVoicesSpanAcquired();
2057 auto stop_voice
= [](Voice
*voice
) -> void
2059 voice
->mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
2060 voice
->mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
2061 voice
->mSourceID
.store(0u, std::memory_order_relaxed
);
2062 voice
->mPlayState
.store(Voice::Stopped
, std::memory_order_release
);
2064 std::for_each(voicelist
.begin(), voicelist
.end(), stop_voice
);
2066 IncrementRef(MixCount
);