Avoid a divide-by-zero in UhjDecoder::decodeStereo
[openal-soft.git] / alc / effects / echo.cpp
blob5d003718ca8d9ecbb4ee0f50a5bdf0bc05080889
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2009 by Chris Robinson.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cstdlib>
26 #include <iterator>
27 #include <tuple>
29 #include "alc/effects/base.h"
30 #include "almalloc.h"
31 #include "alnumeric.h"
32 #include "alspan.h"
33 #include "core/bufferline.h"
34 #include "core/context.h"
35 #include "core/devformat.h"
36 #include "core/device.h"
37 #include "core/effectslot.h"
38 #include "core/filters/biquad.h"
39 #include "core/mixer.h"
40 #include "intrusive_ptr.h"
41 #include "opthelpers.h"
42 #include "vector.h"
45 namespace {
47 using uint = unsigned int;
49 constexpr float LowpassFreqRef{5000.0f};
51 struct EchoState final : public EffectState {
52 al::vector<float,16> mSampleBuffer;
54 // The echo is two tap. The delay is the number of samples from before the
55 // current offset
56 struct {
57 size_t delay{0u};
58 } mTap[2];
59 size_t mOffset{0u};
61 /* The panning gains for the two taps */
62 struct {
63 float Current[MAX_OUTPUT_CHANNELS]{};
64 float Target[MAX_OUTPUT_CHANNELS]{};
65 } mGains[2];
67 BiquadFilter mFilter;
68 float mFeedGain{0.0f};
70 alignas(16) float mTempBuffer[2][BufferLineSize];
72 void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
73 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
74 const EffectTarget target) override;
75 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
76 const al::span<FloatBufferLine> samplesOut) override;
78 DEF_NEWDEL(EchoState)
81 void EchoState::deviceUpdate(const DeviceBase *Device, const Buffer&)
83 const auto frequency = static_cast<float>(Device->Frequency);
85 // Use the next power of 2 for the buffer length, so the tap offsets can be
86 // wrapped using a mask instead of a modulo
87 const uint maxlen{NextPowerOf2(float2uint(EchoMaxDelay*frequency + 0.5f) +
88 float2uint(EchoMaxLRDelay*frequency + 0.5f))};
89 if(maxlen != mSampleBuffer.size())
90 al::vector<float,16>(maxlen).swap(mSampleBuffer);
92 std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
93 for(auto &e : mGains)
95 std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
96 std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
100 void EchoState::update(const ContextBase *context, const EffectSlot *slot,
101 const EffectProps *props, const EffectTarget target)
103 const DeviceBase *device{context->mDevice};
104 const auto frequency = static_cast<float>(device->Frequency);
106 mTap[0].delay = maxu(float2uint(props->Echo.Delay*frequency + 0.5f), 1);
107 mTap[1].delay = float2uint(props->Echo.LRDelay*frequency + 0.5f) + mTap[0].delay;
109 const float gainhf{maxf(1.0f - props->Echo.Damping, 0.0625f)}; /* Limit -24dB */
110 mFilter.setParamsFromSlope(BiquadType::HighShelf, LowpassFreqRef/frequency, gainhf, 1.0f);
112 mFeedGain = props->Echo.Feedback;
114 /* Convert echo spread (where 0 = center, +/-1 = sides) to angle. */
115 const float angle{std::asin(props->Echo.Spread)};
117 const auto coeffs0 = CalcAngleCoeffs(-angle, 0.0f, 0.0f);
118 const auto coeffs1 = CalcAngleCoeffs( angle, 0.0f, 0.0f);
120 mOutTarget = target.Main->Buffer;
121 ComputePanGains(target.Main, coeffs0.data(), slot->Gain, mGains[0].Target);
122 ComputePanGains(target.Main, coeffs1.data(), slot->Gain, mGains[1].Target);
125 void EchoState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
127 const size_t mask{mSampleBuffer.size()-1};
128 float *RESTRICT delaybuf{mSampleBuffer.data()};
129 size_t offset{mOffset};
130 size_t tap1{offset - mTap[0].delay};
131 size_t tap2{offset - mTap[1].delay};
132 float z1, z2;
134 ASSUME(samplesToDo > 0);
136 const BiquadFilter filter{mFilter};
137 std::tie(z1, z2) = mFilter.getComponents();
138 for(size_t i{0u};i < samplesToDo;)
140 offset &= mask;
141 tap1 &= mask;
142 tap2 &= mask;
144 size_t td{minz(mask+1 - maxz(offset, maxz(tap1, tap2)), samplesToDo-i)};
145 do {
146 /* Feed the delay buffer's input first. */
147 delaybuf[offset] = samplesIn[0][i];
149 /* Get delayed output from the first and second taps. Use the
150 * second tap for feedback.
152 mTempBuffer[0][i] = delaybuf[tap1++];
153 mTempBuffer[1][i] = delaybuf[tap2++];
154 const float feedb{mTempBuffer[1][i++]};
156 /* Add feedback to the delay buffer with damping and attenuation. */
157 delaybuf[offset++] += filter.processOne(feedb, z1, z2) * mFeedGain;
158 } while(--td);
160 mFilter.setComponents(z1, z2);
161 mOffset = offset;
163 for(size_t c{0};c < 2;c++)
164 MixSamples({mTempBuffer[c], samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target,
165 samplesToDo, 0);
169 struct EchoStateFactory final : public EffectStateFactory {
170 al::intrusive_ptr<EffectState> create() override
171 { return al::intrusive_ptr<EffectState>{new EchoState{}}; }
174 } // namespace
176 EffectStateFactory *EchoStateFactory_getFactory()
178 static EchoStateFactory EchoFactory{};
179 return &EchoFactory;