2 * 2-channel UHJ Decoder
4 * Copyright (c) Chris Robinson <chris.kcat@gmail.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
37 #include <string_view>
38 #include <system_error>
44 #include "alnumbers.h"
48 #include "opthelpers.h"
49 #include "phase_shifter.h"
53 #include "win_main_utf8.h"
59 void operator()(gsl::owner
<FILE*> file
) { fclose(file
); }
61 using FilePtr
= std::unique_ptr
<FILE,FileDeleter
>;
63 struct SndFileDeleter
{
64 void operator()(SNDFILE
*sndfile
) { sf_close(sndfile
); }
66 using SndFilePtr
= std::unique_ptr
<SNDFILE
,SndFileDeleter
>;
69 using ubyte
= unsigned char;
70 using ushort
= unsigned short;
71 using uint
= unsigned int;
72 using complex_d
= std::complex<double>;
74 using byte4
= std::array
<std::byte
,4>;
77 constexpr std::array
<ubyte
,16> SUBTYPE_BFORMAT_FLOAT
{
78 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
79 0xca, 0x00, 0x00, 0x00
82 void fwrite16le(ushort val
, FILE *f
)
84 std::array data
{static_cast<ubyte
>(val
&0xff), static_cast<ubyte
>((val
>>8)&0xff)};
85 fwrite(data
.data(), 1, data
.size(), f
);
88 void fwrite32le(uint val
, FILE *f
)
90 std::array data
{static_cast<ubyte
>(val
&0xff), static_cast<ubyte
>((val
>>8)&0xff),
91 static_cast<ubyte
>((val
>>16)&0xff), static_cast<ubyte
>((val
>>24)&0xff)};
92 fwrite(data
.data(), 1, data
.size(), f
);
95 byte4
f32AsLEBytes(const float value
)
97 auto ret
= al::bit_cast
<byte4
>(value
);
98 if constexpr(al::endian::native
== al::endian::big
)
100 std::swap(ret
[0], ret
[3]);
101 std::swap(ret
[1], ret
[2]);
107 constexpr uint BufferLineSize
{1024};
109 using FloatBufferLine
= std::array
<float,BufferLineSize
>;
110 using FloatBufferSpan
= al::span
<float,BufferLineSize
>;
114 constexpr static std::size_t sFilterDelay
{1024};
116 alignas(16) std::array
<float,BufferLineSize
+sFilterDelay
> mS
{};
117 alignas(16) std::array
<float,BufferLineSize
+sFilterDelay
> mD
{};
118 alignas(16) std::array
<float,BufferLineSize
+sFilterDelay
> mT
{};
119 alignas(16) std::array
<float,BufferLineSize
+sFilterDelay
> mQ
{};
121 /* History for the FIR filter. */
122 alignas(16) std::array
<float,sFilterDelay
-1> mDTHistory
{};
123 alignas(16) std::array
<float,sFilterDelay
-1> mSHistory
{};
125 alignas(16) std::array
<float,BufferLineSize
+ sFilterDelay
*2> mTemp
{};
127 void decode(const al::span
<const float> InSamples
, const std::size_t InChannels
,
128 const al::span
<FloatBufferLine
> OutSamples
, const std::size_t SamplesToDo
);
129 void decode2(const al::span
<const float> InSamples
, const al::span
<FloatBufferLine
> OutSamples
,
130 const std::size_t SamplesToDo
);
133 const PhaseShifterT
<UhjDecoder::sFilterDelay
*2> PShift
{};
136 /* Decoding UHJ is done as:
141 * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
142 * X = 0.418496*S - j(0.828331*D + 0.767820*T)
143 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
146 * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
147 * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
148 * UHJ should not be run through a normal B-Format decoder, as it needs
149 * different shelf filters.
151 * NOTE: Some sources specify
153 * S = (Left + Right)/2
154 * D = (Left - Right)/2
156 * However, this is incorrect. It's halving Left and Right even though they
157 * were already halved during encoding, causing S and D to be half what they
158 * initially were at the encoding stage. This division is not present in
159 * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
160 * signals. As proof, taking Y for example:
162 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
164 * * Plug in the encoding parameters, using ? as a placeholder for whether S
165 * and D should receive an extra 0.5 factor
166 * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
167 * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
168 * 0.186633*j(0.9396926*W + 0.1855740*X)*?
170 * * Move common factors in
171 * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
172 * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
173 * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
175 * * Clean up extraneous groupings
176 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
177 * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
178 * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
180 * * Move phase shifts together and combine them
181 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
182 * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
183 * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
186 * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
187 * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
188 * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
190 * * Move common factors out
191 * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
192 * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
193 * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
195 * * Result w/ 0.5 factor:
196 * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
197 * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
198 * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
199 * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
201 * * Result w/o 0.5 factor:
202 * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
203 * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
204 * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
205 * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
207 * Not halving produces a result matching the original input.
209 void UhjDecoder::decode(const al::span
<const float> InSamples
, const std::size_t InChannels
,
210 const al::span
<FloatBufferLine
> OutSamples
, const std::size_t SamplesToDo
)
212 ASSUME(SamplesToDo
> 0);
214 auto woutput
= al::span
{OutSamples
[0]};
215 auto xoutput
= al::span
{OutSamples
[1]};
216 auto youtput
= al::span
{OutSamples
[2]};
218 /* Add a delay to the input channels, to align it with the all-passed
222 /* S = Left + Right */
223 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
224 mS
[sFilterDelay
+i
] = InSamples
[i
*InChannels
+ 0] + InSamples
[i
*InChannels
+ 1];
226 /* D = Left - Right */
227 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
228 mD
[sFilterDelay
+i
] = InSamples
[i
*InChannels
+ 0] - InSamples
[i
*InChannels
+ 1];
233 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
234 mT
[sFilterDelay
+i
] = InSamples
[i
*InChannels
+ 2];
239 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
240 mQ
[sFilterDelay
+i
] = InSamples
[i
*InChannels
+ 3];
243 /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
244 auto tmpiter
= std::copy(mDTHistory
.cbegin(), mDTHistory
.cend(), mTemp
.begin());
245 std::transform(mD
.cbegin(), mD
.cbegin()+SamplesToDo
+sFilterDelay
, mT
.cbegin(), tmpiter
,
246 [](const float d
, const float t
) noexcept
{ return 0.828331f
*d
+ 0.767820f
*t
; });
247 std::copy_n(mTemp
.cbegin()+SamplesToDo
, mDTHistory
.size(), mDTHistory
.begin());
248 PShift
.process(xoutput
.first(SamplesToDo
), mTemp
);
250 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
252 /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
253 woutput
[i
] = 0.981532f
*mS
[i
] + 0.197484f
*xoutput
[i
];
254 /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
255 xoutput
[i
] = 0.418496f
*mS
[i
] - xoutput
[i
];
258 /* Precompute j*S and store in youtput. */
259 tmpiter
= std::copy(mSHistory
.cbegin(), mSHistory
.cend(), mTemp
.begin());
260 std::copy_n(mS
.cbegin(), SamplesToDo
+sFilterDelay
, tmpiter
);
261 std::copy_n(mTemp
.cbegin()+SamplesToDo
, mSHistory
.size(), mSHistory
.begin());
262 PShift
.process(youtput
.first(SamplesToDo
), mTemp
);
264 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
266 /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
267 youtput
[i
] = 0.795968f
*mD
[i
] - 0.676392f
*mT
[i
] + 0.186633f
*youtput
[i
];
270 if(OutSamples
.size() > 3)
272 auto zoutput
= al::span
{OutSamples
[3]};
274 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
275 zoutput
[i
] = 1.023332f
*mQ
[i
];
278 std::copy(mS
.begin()+SamplesToDo
, mS
.begin()+SamplesToDo
+sFilterDelay
, mS
.begin());
279 std::copy(mD
.begin()+SamplesToDo
, mD
.begin()+SamplesToDo
+sFilterDelay
, mD
.begin());
280 std::copy(mT
.begin()+SamplesToDo
, mT
.begin()+SamplesToDo
+sFilterDelay
, mT
.begin());
281 std::copy(mQ
.begin()+SamplesToDo
, mQ
.begin()+SamplesToDo
+sFilterDelay
, mQ
.begin());
284 /* This is an alternative equation for decoding 2-channel UHJ. Not sure what
285 * the intended benefit is over the above equation as this slightly reduces the
286 * amount of the original left response and has more of the phase-shifted
287 * forward response on the left response.
289 * This decoding is done as:
294 * W = 0.981530*S + j*0.163585*D
295 * X = 0.418504*S - j*0.828347*D
296 * Y = 0.762956*D + j*0.384230*S
298 * where j is a +90 degree phase shift.
300 * NOTE: As above, S and D should not be halved. The only consequence of
301 * halving here is merely a -6dB reduction in output, but it's still incorrect.
303 void UhjDecoder::decode2(const al::span
<const float> InSamples
,
304 const al::span
<FloatBufferLine
> OutSamples
, const std::size_t SamplesToDo
)
306 ASSUME(SamplesToDo
> 0);
308 auto woutput
= al::span
{OutSamples
[0]};
309 auto xoutput
= al::span
{OutSamples
[1]};
310 auto youtput
= al::span
{OutSamples
[2]};
312 /* S = Left + Right */
313 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
314 mS
[sFilterDelay
+i
] = InSamples
[i
*2 + 0] + InSamples
[i
*2 + 1];
316 /* D = Left - Right */
317 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
318 mD
[sFilterDelay
+i
] = InSamples
[i
*2 + 0] - InSamples
[i
*2 + 1];
320 /* Precompute j*D and store in xoutput. */
321 auto tmpiter
= std::copy(mDTHistory
.cbegin(), mDTHistory
.cend(), mTemp
.begin());
322 std::copy_n(mD
.cbegin(), SamplesToDo
+sFilterDelay
, tmpiter
);
323 std::copy_n(mTemp
.cbegin()+SamplesToDo
, mDTHistory
.size(), mDTHistory
.begin());
324 PShift
.process(xoutput
.first(SamplesToDo
), mTemp
);
326 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
328 /* W = 0.981530*S + j*0.163585*D */
329 woutput
[i
] = 0.981530f
*mS
[i
] + 0.163585f
*xoutput
[i
];
330 /* X = 0.418504*S - j*0.828347*D */
331 xoutput
[i
] = 0.418504f
*mS
[i
] - 0.828347f
*xoutput
[i
];
334 /* Precompute j*S and store in youtput. */
335 tmpiter
= std::copy(mSHistory
.cbegin(), mSHistory
.cend(), mTemp
.begin());
336 std::copy_n(mS
.cbegin(), SamplesToDo
+sFilterDelay
, tmpiter
);
337 std::copy_n(mTemp
.cbegin()+SamplesToDo
, mSHistory
.size(), mSHistory
.begin());
338 PShift
.process(youtput
.first(SamplesToDo
), mTemp
);
340 for(std::size_t i
{0};i
< SamplesToDo
;++i
)
342 /* Y = 0.762956*D + j*0.384230*S */
343 youtput
[i
] = 0.762956f
*mD
[i
] + 0.384230f
*youtput
[i
];
346 std::copy(mS
.begin()+SamplesToDo
, mS
.begin()+SamplesToDo
+sFilterDelay
, mS
.begin());
347 std::copy(mD
.begin()+SamplesToDo
, mD
.begin()+SamplesToDo
+sFilterDelay
, mD
.begin());
351 int main(al::span
<std::string_view
> args
)
353 if(args
.size() < 2 || args
[1] == "-h" || args
[1] == "--help")
355 printf("Usage: %.*s <[options] filename.wav...>\n\n"
357 " --general Use the general equations for 2-channel UHJ (default).\n"
358 " --alternative Use the alternative equations for 2-channel UHJ.\n"
360 "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
361 "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
362 "reconstruct the original B-Format signal.",
363 al::sizei(args
[0]), args
[0].data());
367 std::size_t num_files
{0}, num_decoded
{0};
368 bool use_general
{true};
369 for(size_t fidx
{1};fidx
< args
.size();++fidx
)
371 if(args
[fidx
] == "--general")
376 if(args
[fidx
] == "--alternative")
383 SndFilePtr infile
{sf_open(std::string
{args
[fidx
]}.c_str(), SFM_READ
, &ininfo
)};
386 fprintf(stderr
, "Failed to open %.*s\n", al::sizei(args
[fidx
]), args
[fidx
].data());
389 if(sf_command(infile
.get(), SFC_WAVEX_GET_AMBISONIC
, nullptr, 0) == SF_AMBISONIC_B_FORMAT
)
391 fprintf(stderr
, "%.*s is already B-Format\n", al::sizei(args
[fidx
]),
396 if(ininfo
.channels
== 2)
398 else if(ininfo
.channels
== 3 || ininfo
.channels
== 4)
399 outchans
= static_cast<uint
>(ininfo
.channels
);
402 fprintf(stderr
, "%.*s is not a 2-, 3-, or 4-channel file\n", al::sizei(args
[fidx
]),
406 printf("Converting %.*s from %d-channel UHJ%s...\n", al::sizei(args
[fidx
]),
407 args
[fidx
].data(), ininfo
.channels
,
408 (ininfo
.channels
== 2) ? use_general
? " (general)" : " (alternative)" : "");
410 std::string outname
{args
[fidx
]};
411 auto lastslash
= outname
.find_last_of('/');
412 if(lastslash
!= std::string::npos
)
413 outname
.erase(0, lastslash
+1);
414 auto lastdot
= outname
.find_last_of('.');
415 if(lastdot
!= std::string::npos
)
416 outname
.resize(lastdot
+1);
419 FilePtr outfile
{fopen(outname
.c_str(), "wb")};
422 fprintf(stderr
, "Failed to create %s\n", outname
.c_str());
426 fputs("RIFF", outfile
.get());
427 fwrite32le(0xFFFFFFFF, outfile
.get()); // 'RIFF' header len; filled in at close
429 fputs("WAVE", outfile
.get());
431 fputs("fmt ", outfile
.get());
432 fwrite32le(40, outfile
.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
434 // 16-bit val, format type id (extensible: 0xFFFE)
435 fwrite16le(0xFFFE, outfile
.get());
436 // 16-bit val, channel count
437 fwrite16le(static_cast<ushort
>(outchans
), outfile
.get());
438 // 32-bit val, frequency
439 fwrite32le(static_cast<uint
>(ininfo
.samplerate
), outfile
.get());
440 // 32-bit val, bytes per second
441 fwrite32le(static_cast<uint
>(ininfo
.samplerate
)*outchans
*uint
{sizeof(float)}, outfile
.get());
442 // 16-bit val, frame size
443 fwrite16le(static_cast<ushort
>(sizeof(float)*outchans
), outfile
.get());
444 // 16-bit val, bits per sample
445 fwrite16le(static_cast<ushort
>(sizeof(float)*8), outfile
.get());
446 // 16-bit val, extra byte count
447 fwrite16le(22, outfile
.get());
448 // 16-bit val, valid bits per sample
449 fwrite16le(static_cast<ushort
>(sizeof(float)*8), outfile
.get());
450 // 32-bit val, channel mask
451 fwrite32le(0, outfile
.get());
452 // 16 byte GUID, sub-type format
453 fwrite(SUBTYPE_BFORMAT_FLOAT
.data(), 1, SUBTYPE_BFORMAT_FLOAT
.size(), outfile
.get());
455 fputs("data", outfile
.get());
456 fwrite32le(0xFFFFFFFF, outfile
.get()); // 'data' header len; filled in at close
457 if(ferror(outfile
.get()))
459 fprintf(stderr
, "Error writing wave file header: %s (%d)\n",
460 std::generic_category().message(errno
).c_str(), errno
);
464 auto DataStart
= ftell(outfile
.get());
466 auto decoder
= std::make_unique
<UhjDecoder
>();
467 auto inmem
= std::vector
<float>(size_t{BufferLineSize
}*static_cast<uint
>(ininfo
.channels
));
468 auto decmem
= al::vector
<std::array
<float,BufferLineSize
>, 16>(outchans
);
469 auto outmem
= std::vector
<byte4
>(size_t{BufferLineSize
}*outchans
);
471 /* A number of initial samples need to be skipped to cut the lead-in
472 * from the all-pass filter delay. The same number of samples need to
473 * be fed through the decoder after reaching the end of the input file
474 * to ensure none of the original input is lost.
476 std::size_t LeadIn
{UhjDecoder::sFilterDelay
};
477 sf_count_t LeadOut
{UhjDecoder::sFilterDelay
};
480 sf_count_t sgot
{sf_readf_float(infile
.get(), inmem
.data(), BufferLineSize
)};
481 sgot
= std::max
<sf_count_t
>(sgot
, 0);
482 if(sgot
< BufferLineSize
)
484 const sf_count_t remaining
{std::min(BufferLineSize
- sgot
, LeadOut
)};
485 std::fill_n(inmem
.begin() + sgot
*ininfo
.channels
, remaining
*ininfo
.channels
, 0.0f
);
487 LeadOut
-= remaining
;
490 auto got
= static_cast<std::size_t>(sgot
);
491 if(ininfo
.channels
> 2 || use_general
)
492 decoder
->decode(inmem
, static_cast<uint
>(ininfo
.channels
), decmem
, got
);
494 decoder
->decode2(inmem
, decmem
, got
);
502 for(std::size_t i
{0};i
< got
;++i
)
504 /* Attenuate by -3dB for FuMa output levels. */
505 constexpr auto inv_sqrt2
= static_cast<float>(1.0/al::numbers::sqrt2
);
506 for(std::size_t j
{0};j
< outchans
;++j
)
507 outmem
[i
*outchans
+ j
] = f32AsLEBytes(decmem
[j
][LeadIn
+i
] * inv_sqrt2
);
511 std::size_t wrote
{fwrite(outmem
.data(), sizeof(byte4
)*outchans
, got
, outfile
.get())};
514 fprintf(stderr
, "Error writing wave data: %s (%d)\n",
515 std::generic_category().message(errno
).c_str(), errno
);
520 auto DataEnd
= ftell(outfile
.get());
521 if(DataEnd
> DataStart
)
523 long dataLen
{DataEnd
- DataStart
};
524 if(fseek(outfile
.get(), 4, SEEK_SET
) == 0)
525 fwrite32le(static_cast<uint
>(DataEnd
-8), outfile
.get()); // 'WAVE' header len
526 if(fseek(outfile
.get(), DataStart
-4, SEEK_SET
) == 0)
527 fwrite32le(static_cast<uint
>(dataLen
), outfile
.get()); // 'data' header len
529 fflush(outfile
.get());
533 fprintf(stderr
, "Failed to decode any input files\n");
534 else if(num_decoded
< num_files
)
535 fprintf(stderr
, "Decoded %zu of %zu files\n", num_decoded
, num_files
);
537 printf("Decoded %zu file%s\n", num_decoded
, (num_decoded
==1)?"":"s");
543 int main(int argc
, char **argv
)
546 auto args
= std::vector
<std::string_view
>(static_cast<unsigned int>(argc
));
547 std::copy_n(argv
, args
.size(), args
.begin());
548 return main(al::span
{args
});