Add missing include
[openal-soft.git] / alc / hrtf.cpp
bloba36e4bcc9aaaf128e4312d471bc733b3ffd3e775
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2011 by Chris Robinson
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include "hrtf.h"
25 #include <algorithm>
26 #include <array>
27 #include <cassert>
28 #include <cctype>
29 #include <cmath>
30 #include <cstdint>
31 #include <cstdio>
32 #include <cstring>
33 #include <functional>
34 #include <fstream>
35 #include <iterator>
36 #include <memory>
37 #include <mutex>
38 #include <new>
39 #include <numeric>
40 #include <type_traits>
41 #include <utility>
43 #include "AL/al.h"
45 #include "alcmain.h"
46 #include "alconfig.h"
47 #include "alfstream.h"
48 #include "almalloc.h"
49 #include "alnumeric.h"
50 #include "aloptional.h"
51 #include "alspan.h"
52 #include "filters/splitter.h"
53 #include "logging.h"
54 #include "math_defs.h"
55 #include "opthelpers.h"
56 #include "polyphase_resampler.h"
59 namespace {
61 using namespace std::placeholders;
63 struct HrtfEntry {
64 std::string mDispName;
65 std::string mFilename;
68 struct LoadedHrtf {
69 std::string mFilename;
70 std::unique_ptr<HrtfStore> mEntry;
73 /* Data set limits must be the same as or more flexible than those defined in
74 * the makemhr utility.
76 #define MIN_FD_COUNT (1)
77 #define MAX_FD_COUNT (16)
79 #define MIN_FD_DISTANCE (50)
80 #define MAX_FD_DISTANCE (2500)
82 #define MIN_EV_COUNT (5)
83 #define MAX_EV_COUNT (181)
85 #define MIN_AZ_COUNT (1)
86 #define MAX_AZ_COUNT (255)
88 #define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
90 #define HRIR_DELAY_FRACBITS 2
91 #define HRIR_DELAY_FRACONE (1<<HRIR_DELAY_FRACBITS)
92 #define HRIR_DELAY_FRACHALF (HRIR_DELAY_FRACONE>>1)
94 static_assert(MAX_HRIR_DELAY*HRIR_DELAY_FRACONE < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
96 constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'};
97 constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'};
98 constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'};
100 /* First value for pass-through coefficients (remaining are 0), used for omni-
101 * directional sounds. */
102 constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
104 std::mutex LoadedHrtfLock;
105 al::vector<LoadedHrtf> LoadedHrtfs;
107 std::mutex EnumeratedHrtfLock;
108 al::vector<HrtfEntry> EnumeratedHrtfs;
111 class databuf final : public std::streambuf {
112 int_type underflow() override
113 { return traits_type::eof(); }
115 pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
117 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
118 return traits_type::eof();
120 char_type *cur;
121 switch(whence)
123 case std::ios_base::beg:
124 if(offset < 0 || offset > egptr()-eback())
125 return traits_type::eof();
126 cur = eback() + offset;
127 break;
129 case std::ios_base::cur:
130 if((offset >= 0 && offset > egptr()-gptr()) ||
131 (offset < 0 && -offset > gptr()-eback()))
132 return traits_type::eof();
133 cur = gptr() + offset;
134 break;
136 case std::ios_base::end:
137 if(offset > 0 || -offset > egptr()-eback())
138 return traits_type::eof();
139 cur = egptr() + offset;
140 break;
142 default:
143 return traits_type::eof();
146 setg(eback(), cur, egptr());
147 return cur - eback();
150 pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
152 // Simplified version of seekoff
153 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
154 return traits_type::eof();
156 if(pos < 0 || pos > egptr()-eback())
157 return traits_type::eof();
159 setg(eback(), eback() + static_cast<size_t>(pos), egptr());
160 return pos;
163 public:
164 databuf(const char_type *start_, const char_type *end_) noexcept
166 setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
167 const_cast<char_type*>(end_));
171 class idstream final : public std::istream {
172 databuf mStreamBuf;
174 public:
175 idstream(const char *start_, const char *end_)
176 : std::istream{nullptr}, mStreamBuf{start_, end_}
177 { init(&mStreamBuf); }
181 struct IdxBlend { ALuint idx; float blend; };
182 /* Calculate the elevation index given the polar elevation in radians. This
183 * will return an index between 0 and (evcount - 1).
185 IdxBlend CalcEvIndex(ALuint evcount, float ev)
187 ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
188 al::MathDefs<float>::Pi();
189 ALuint idx{float2uint(ev)};
191 return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
194 /* Calculate the azimuth index given the polar azimuth in radians. This will
195 * return an index between 0 and (azcount - 1).
197 IdxBlend CalcAzIndex(ALuint azcount, float az)
199 az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
200 al::MathDefs<float>::Tau();
201 ALuint idx{float2uint(az)};
203 return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
206 } // namespace
209 /* Calculates static HRIR coefficients and delays for the given polar elevation
210 * and azimuth in radians. The coefficients are normalized.
212 void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
213 float spread, HrirArray &coeffs, ALuint (&delays)[2])
215 const float dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
217 const auto *field = Hrtf->field;
218 const auto *field_end = field + Hrtf->fdCount-1;
219 size_t ebase{0};
220 while(distance < field->distance && field != field_end)
222 ebase += field->evCount;
223 ++field;
226 /* Claculate the elevation indinces. */
227 const auto elev0 = CalcEvIndex(field->evCount, elevation);
228 const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
229 const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
230 const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
232 /* Calculate azimuth indices. */
233 const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
234 const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
236 /* Calculate the HRIR indices to blend. */
237 const size_t idx[4]{
238 ir0offset + az0.idx,
239 ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
240 ir1offset + az1.idx,
241 ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
244 /* Calculate bilinear blending weights, attenuated according to the
245 * directional panning factor.
247 const float blend[4]{
248 (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
249 (1.0f-elev0.blend) * ( az0.blend) * dirfact,
250 ( elev0.blend) * (1.0f-az1.blend) * dirfact,
251 ( elev0.blend) * ( az1.blend) * dirfact
254 /* Calculate the blended HRIR delays. */
255 float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
256 Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]};
257 delays[0] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE});
258 d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
259 Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3];
260 delays[1] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE});
262 /* Calculate the blended HRIR coefficients. */
263 float *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
264 coeffout[0] = PassthruCoeff * (1.0f-dirfact);
265 coeffout[1] = PassthruCoeff * (1.0f-dirfact);
266 std::fill_n(coeffout+2, size_t{HRIR_LENGTH-1}*2, 0.0f);
267 for(size_t c{0};c < 4;c++)
269 const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())};
270 const float mult{blend[c]};
271 auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
272 { return src*mult + coeff; };
273 std::transform(srccoeffs, srccoeffs + HRIR_LENGTH*2, coeffout, coeffout, blend_coeffs);
278 std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
280 return std::unique_ptr<DirectHrtfState>{new (FamCount{num_chans}) DirectHrtfState{num_chans}};
283 void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state,
284 const al::span<const AngularPoint> AmbiPoints, const ALfloat (*AmbiMatrix)[MAX_AMBI_CHANNELS],
285 const ALfloat *AmbiOrderHFGain)
287 using double2 = std::array<double,2>;
288 struct ImpulseResponse {
289 const HrirArray &hrir;
290 ALuint ldelay, rdelay;
293 /* Set this to true for dual-band HRTF processing. May require better
294 * calculation of the new IR length to deal with the head and tail
295 * generated by the HF scaling.
297 static constexpr bool DualBand{true};
299 ALuint min_delay{HRTF_HISTORY_LENGTH*HRIR_DELAY_FRACONE};
300 ALuint max_delay{0};
301 al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
302 auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
304 auto CalcClosestEvIndex = [](ALuint evcount, float ev) -> ALuint
306 ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
307 al::MathDefs<float>::Pi();
308 return minu(float2uint(ev+0.5f), evcount-1);
310 auto CalcClosestAzIndex = [](ALuint azcount, float az) -> ALuint
312 az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
313 al::MathDefs<float>::Tau();
314 return float2uint(az+0.5f) % azcount;
317 auto &field = Hrtf->field[0];
318 const size_t elevIdx{CalcClosestEvIndex(field.evCount, pt.Elev.value)};
319 const size_t azIdx{CalcClosestAzIndex(Hrtf->elev[elevIdx].azCount, pt.Azim.value)};
320 const size_t irOffset{Hrtf->elev[elevIdx].irOffset + azIdx};
322 ImpulseResponse res{Hrtf->coeffs[irOffset],
323 Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]};
325 min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
326 max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
328 return res;
330 std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
331 auto hrir_delay_round = [](const ALuint d) noexcept -> ALuint
332 { return (d+HRIR_DELAY_FRACHALF) >> HRIR_DELAY_FRACBITS; };
334 /* For dual-band processing, add a 16-sample delay to compensate for the HF
335 * scale on the minimum-phase response.
337 static constexpr ALuint base_delay{DualBand ? 16 : 0};
338 const double xover_norm{400.0 / Hrtf->sampleRate};
339 BandSplitterR<double> splitter{xover_norm};
341 auto tmpres = al::vector<std::array<double2,HRIR_LENGTH>>(state->Coeffs.size());
342 auto tmpflt = al::vector<std::array<double,HRIR_LENGTH*4>>(3);
343 const al::span<double,HRIR_LENGTH*4> tempir{tmpflt[2].data(), tmpflt[2].size()};
344 for(size_t c{0u};c < AmbiPoints.size();++c)
346 const HrirArray &hrir{impres[c].hrir};
347 const ALuint ldelay{hrir_delay_round(impres[c].ldelay-min_delay) + base_delay};
348 const ALuint rdelay{hrir_delay_round(impres[c].rdelay-min_delay) + base_delay};
350 if /*constexpr*/(!DualBand)
352 /* For single-band decoding, apply the HF scale to the response. */
353 for(size_t i{0u};i < state->Coeffs.size();++i)
355 const size_t order{AmbiIndex::OrderFromChannel[i]};
356 const double mult{double{AmbiOrderHFGain[order]} * AmbiMatrix[c][i]};
357 const ALuint numirs{HRIR_LENGTH - maxu(ldelay, rdelay)};
358 ALuint lidx{ldelay}, ridx{rdelay};
359 for(ALuint j{0};j < numirs;++j)
361 tmpres[i][lidx++][0] += hrir[j][0] * mult;
362 tmpres[i][ridx++][1] += hrir[j][1] * mult;
365 continue;
368 /* For dual-band processing, the HRIR needs to be split into low and
369 * high frequency responses. The band-splitter alone creates frequency-
370 * dependent phase-shifts, which is not ideal. To counteract it,
371 * combine it with a backwards phase-shift.
374 /* Load the (left) HRIR backwards, into a temp buffer with padding. */
375 std::fill(tempir.begin(), tempir.end(), 0.0);
376 std::transform(hrir.cbegin(), hrir.cend(), tempir.rbegin() + HRIR_LENGTH*3,
377 [](const float2 &ir) noexcept -> double { return ir[0]; });
379 /* Apply the all-pass on the reversed signal and reverse the resulting
380 * sample array. This produces the forward response with a backwards
381 * phase-shift (+n degrees becomes -n degrees).
383 splitter.applyAllpass({tempir.data(), tempir.size()});
384 std::reverse(tempir.begin(), tempir.end());
386 /* Now apply the band-splitter. This applies the normal phase-shift,
387 * which cancels out with the backwards phase-shift to get the original
388 * phase on the split signal.
390 splitter.clear();
391 splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
393 /* Apply left ear response with delay and HF scale. */
394 for(size_t i{0u};i < state->Coeffs.size();++i)
396 const double mult{AmbiMatrix[c][i]};
397 const double hfgain{AmbiOrderHFGain[AmbiIndex::OrderFromChannel[i]]};
398 ALuint j{HRIR_LENGTH*3 - ldelay};
399 for(ALuint lidx{0};lidx < HRIR_LENGTH;++lidx,++j)
400 tmpres[i][lidx][0] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
403 /* Now run the same process on the right HRIR. */
404 std::fill(tempir.begin(), tempir.end(), 0.0);
405 std::transform(hrir.cbegin(), hrir.cend(), tempir.rbegin() + HRIR_LENGTH*3,
406 [](const float2 &ir) noexcept -> double { return ir[1]; });
408 splitter.applyAllpass({tempir.data(), tempir.size()});
409 std::reverse(tempir.begin(), tempir.end());
411 splitter.clear();
412 splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
414 for(size_t i{0u};i < state->Coeffs.size();++i)
416 const double mult{AmbiMatrix[c][i]};
417 const double hfgain{AmbiOrderHFGain[AmbiIndex::OrderFromChannel[i]]};
418 ALuint j{HRIR_LENGTH*3 - rdelay};
419 for(ALuint ridx{0};ridx < HRIR_LENGTH;++ridx,++j)
420 tmpres[i][ridx][1] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
423 tmpflt.clear();
424 impres.clear();
426 for(size_t i{0u};i < state->Coeffs.size();++i)
428 auto copy_arr = [](const double2 &in) noexcept -> float2
429 { return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
430 std::transform(tmpres[i].cbegin(), tmpres[i].cend(), state->Coeffs[i].begin(),
431 copy_arr);
433 tmpres.clear();
435 max_delay -= min_delay;
436 /* Increase the IR size by double the base delay with dual-band processing
437 * to account for the head and tail from the HF response scale.
439 const ALuint irsize{minu(Hrtf->irSize + base_delay*2, HRIR_LENGTH)};
440 const ALuint max_length{minu(hrir_delay_round(max_delay) + irsize, HRIR_LENGTH)};
442 TRACE("Skipped delay: %.2f, max delay: %.2f, new FIR length: %u\n",
443 min_delay/double{HRIR_DELAY_FRACONE}, max_delay/double{HRIR_DELAY_FRACONE},
444 max_length);
445 state->IrSize = max_length;
449 namespace {
451 std::unique_ptr<HrtfStore> CreateHrtfStore(ALuint rate, ALushort irSize, const ALuint fdCount,
452 const ALubyte *evCount, const ALushort *distance, const ALushort *azCount,
453 const ALushort *irOffset, ALushort irCount, const HrirArray *coeffs, const ubyte2 *delays,
454 const char *filename)
456 std::unique_ptr<HrtfStore> Hrtf;
458 ALuint evTotal{std::accumulate(evCount, evCount+fdCount, 0u)};
459 size_t total{sizeof(HrtfStore)};
460 total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
461 total += sizeof(HrtfStore::Field)*fdCount;
462 total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
463 total += sizeof(Hrtf->elev[0])*evTotal;
464 total = RoundUp(total, 16); /* Align for coefficients using SIMD */
465 total += sizeof(Hrtf->coeffs[0])*irCount;
466 total += sizeof(Hrtf->delays[0])*irCount;
468 Hrtf.reset(new (al_calloc(16, total)) HrtfStore{});
469 if(!Hrtf)
470 ERR("Out of memory allocating storage for %s.\n", filename);
471 else
473 InitRef(Hrtf->mRef, 1u);
474 Hrtf->sampleRate = rate;
475 Hrtf->irSize = irSize;
476 Hrtf->fdCount = fdCount;
478 /* Set up pointers to storage following the main HRTF struct. */
479 char *base = reinterpret_cast<char*>(Hrtf.get());
480 uintptr_t offset = sizeof(HrtfStore);
482 offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
483 auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
484 offset += sizeof(field_[0])*fdCount;
486 offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
487 auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
488 offset += sizeof(elev_[0])*evTotal;
490 offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
491 auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
492 offset += sizeof(coeffs_[0])*irCount;
494 auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
495 offset += sizeof(delays_[0])*irCount;
497 assert(offset == total);
499 /* Copy input data to storage. */
500 for(ALuint i{0};i < fdCount;i++)
502 field_[i].distance = distance[i] / 1000.0f;
503 field_[i].evCount = evCount[i];
505 for(ALuint i{0};i < evTotal;i++)
507 elev_[i].azCount = azCount[i];
508 elev_[i].irOffset = irOffset[i];
510 std::copy_n(coeffs, irCount, coeffs_);
511 std::copy_n(delays, irCount, delays_);
513 /* Finally, assign the storage pointers. */
514 Hrtf->field = field_;
515 Hrtf->elev = elev_;
516 Hrtf->coeffs = coeffs_;
517 Hrtf->delays = delays_;
520 return Hrtf;
523 ALubyte GetLE_ALubyte(std::istream &data)
525 return static_cast<ALubyte>(data.get());
528 ALshort GetLE_ALshort(std::istream &data)
530 int ret = data.get();
531 ret |= data.get() << 8;
532 return static_cast<ALshort>((ret^32768) - 32768);
535 ALushort GetLE_ALushort(std::istream &data)
537 int ret = data.get();
538 ret |= data.get() << 8;
539 return static_cast<ALushort>(ret);
542 ALint GetLE_ALint24(std::istream &data)
544 int ret = data.get();
545 ret |= data.get() << 8;
546 ret |= data.get() << 16;
547 return (ret^8388608) - 8388608;
550 ALuint GetLE_ALuint(std::istream &data)
552 int ret = data.get();
553 ret |= data.get() << 8;
554 ret |= data.get() << 16;
555 ret |= data.get() << 24;
556 return static_cast<ALuint>(ret);
559 std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
561 ALuint rate{GetLE_ALuint(data)};
562 ALushort irCount{GetLE_ALushort(data)};
563 ALushort irSize{GetLE_ALushort(data)};
564 ALubyte evCount{GetLE_ALubyte(data)};
565 if(!data || data.eof())
567 ERR("Failed reading %s\n", filename);
568 return nullptr;
571 ALboolean failed{AL_FALSE};
572 if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
574 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
575 failed = AL_TRUE;
577 if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
579 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
580 evCount, MIN_EV_COUNT, MAX_EV_COUNT);
581 failed = AL_TRUE;
583 if(failed)
584 return nullptr;
586 auto evOffset = al::vector<ALushort>(evCount);
587 for(auto &val : evOffset)
588 val = GetLE_ALushort(data);
589 if(!data || data.eof())
591 ERR("Failed reading %s\n", filename);
592 return nullptr;
594 for(size_t i{1};i < evCount;i++)
596 if(evOffset[i] <= evOffset[i-1])
598 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]);
599 failed = AL_TRUE;
602 if(irCount <= evOffset.back())
604 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
605 evOffset.size()-1, evOffset.back(), irCount);
606 failed = AL_TRUE;
608 if(failed)
609 return nullptr;
611 auto azCount = al::vector<ALushort>(evCount);
612 for(size_t i{1};i < evCount;i++)
614 azCount[i-1] = static_cast<ALushort>(evOffset[i] - evOffset[i-1]);
615 if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
617 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
618 i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
619 failed = AL_TRUE;
622 azCount.back() = static_cast<ALushort>(irCount - evOffset.back());
623 if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT)
625 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
626 azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT);
627 failed = AL_TRUE;
629 if(failed)
630 return nullptr;
632 auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
633 auto delays = al::vector<ubyte2>(irCount);
634 for(auto &hrir : coeffs)
636 for(auto &val : al::span<float2>{hrir.data(), irSize})
637 val[0] = GetLE_ALshort(data) / 32768.0f;
639 for(auto &val : delays)
640 val[0] = GetLE_ALubyte(data);
641 if(!data || data.eof())
643 ERR("Failed reading %s\n", filename);
644 return nullptr;
646 for(size_t i{0};i < irCount;i++)
648 if(delays[i][0] > MAX_HRIR_DELAY)
650 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
651 failed = AL_TRUE;
653 delays[i][0] <<= HRIR_DELAY_FRACBITS;
655 if(failed)
656 return nullptr;
658 /* Mirror the left ear responses to the right ear. */
659 for(size_t i{0};i < evCount;i++)
661 const ALushort evoffset{evOffset[i]};
662 const ALushort azcount{azCount[i]};
663 for(size_t j{0};j < azcount;j++)
665 const size_t lidx{evoffset + j};
666 const size_t ridx{evoffset + ((azcount-j) % azcount)};
668 for(size_t k{0};k < irSize;k++)
669 coeffs[ridx][k][1] = coeffs[lidx][k][0];
670 delays[ridx][1] = delays[lidx][0];
674 static const ALushort distance{0};
675 return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
676 irCount, coeffs.data(), delays.data(), filename);
679 std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
681 ALuint rate{GetLE_ALuint(data)};
682 ALushort irSize{GetLE_ALubyte(data)};
683 ALubyte evCount{GetLE_ALubyte(data)};
684 if(!data || data.eof())
686 ERR("Failed reading %s\n", filename);
687 return nullptr;
690 ALboolean failed{AL_FALSE};
691 if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
693 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
694 failed = AL_TRUE;
696 if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
698 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
699 evCount, MIN_EV_COUNT, MAX_EV_COUNT);
700 failed = AL_TRUE;
702 if(failed)
703 return nullptr;
705 auto azCount = al::vector<ALushort>(evCount);
706 std::generate(azCount.begin(), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data)));
707 if(!data || data.eof())
709 ERR("Failed reading %s\n", filename);
710 return nullptr;
712 for(size_t i{0};i < evCount;++i)
714 if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
716 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, azCount[i],
717 MIN_AZ_COUNT, MAX_AZ_COUNT);
718 failed = AL_TRUE;
721 if(failed)
722 return nullptr;
724 auto evOffset = al::vector<ALushort>(evCount);
725 evOffset[0] = 0;
726 ALushort irCount{azCount[0]};
727 for(size_t i{1};i < evCount;i++)
729 evOffset[i] = static_cast<ALushort>(evOffset[i-1] + azCount[i-1]);
730 irCount = static_cast<ALushort>(irCount + azCount[i]);
733 auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
734 auto delays = al::vector<ubyte2>(irCount);
735 for(auto &hrir : coeffs)
737 for(auto &val : al::span<float2>{hrir.data(), irSize})
738 val[0] = GetLE_ALshort(data) / 32768.0f;
740 for(auto &val : delays)
741 val[0] = GetLE_ALubyte(data);
742 if(!data || data.eof())
744 ERR("Failed reading %s\n", filename);
745 return nullptr;
747 for(size_t i{0};i < irCount;i++)
749 if(delays[i][0] > MAX_HRIR_DELAY)
751 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
752 failed = AL_TRUE;
754 delays[i][0] <<= HRIR_DELAY_FRACBITS;
756 if(failed)
757 return nullptr;
759 /* Mirror the left ear responses to the right ear. */
760 for(size_t i{0};i < evCount;i++)
762 const ALushort evoffset{evOffset[i]};
763 const ALushort azcount{azCount[i]};
764 for(size_t j{0};j < azcount;j++)
766 const size_t lidx{evoffset + j};
767 const size_t ridx{evoffset + ((azcount-j) % azcount)};
769 for(size_t k{0};k < irSize;k++)
770 coeffs[ridx][k][1] = coeffs[lidx][k][0];
771 delays[ridx][1] = delays[lidx][0];
775 static const ALushort distance{0};
776 return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
777 irCount, coeffs.data(), delays.data(), filename);
780 std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
782 constexpr ALubyte SampleType_S16{0};
783 constexpr ALubyte SampleType_S24{1};
784 constexpr ALubyte ChanType_LeftOnly{0};
785 constexpr ALubyte ChanType_LeftRight{1};
787 ALuint rate{GetLE_ALuint(data)};
788 ALubyte sampleType{GetLE_ALubyte(data)};
789 ALubyte channelType{GetLE_ALubyte(data)};
790 ALushort irSize{GetLE_ALubyte(data)};
791 ALubyte fdCount{GetLE_ALubyte(data)};
792 if(!data || data.eof())
794 ERR("Failed reading %s\n", filename);
795 return nullptr;
798 ALboolean failed{AL_FALSE};
799 if(sampleType > SampleType_S24)
801 ERR("Unsupported sample type: %d\n", sampleType);
802 failed = AL_TRUE;
804 if(channelType > ChanType_LeftRight)
806 ERR("Unsupported channel type: %d\n", channelType);
807 failed = AL_TRUE;
810 if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
812 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
813 failed = AL_TRUE;
815 if(fdCount < 1 || fdCount > MAX_FD_COUNT)
817 ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n",
818 fdCount, MIN_FD_COUNT, MAX_FD_COUNT);
819 failed = AL_TRUE;
821 if(failed)
822 return nullptr;
824 auto distance = al::vector<ALushort>(fdCount);
825 auto evCount = al::vector<ALubyte>(fdCount);
826 auto azCount = al::vector<ALushort>{};
827 for(size_t f{0};f < fdCount;f++)
829 distance[f] = GetLE_ALushort(data);
830 evCount[f] = GetLE_ALubyte(data);
831 if(!data || data.eof())
833 ERR("Failed reading %s\n", filename);
834 return nullptr;
837 if(distance[f] < MIN_FD_DISTANCE || distance[f] > MAX_FD_DISTANCE)
839 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance[f],
840 MIN_FD_DISTANCE, MAX_FD_DISTANCE);
841 failed = AL_TRUE;
843 if(f > 0 && distance[f] <= distance[f-1])
845 ERR("Field distance[%zu] is not after previous (%d > %d)\n", f, distance[f],
846 distance[f-1]);
847 failed = AL_TRUE;
849 if(evCount[f] < MIN_EV_COUNT || evCount[f] > MAX_EV_COUNT)
851 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount[f],
852 MIN_EV_COUNT, MAX_EV_COUNT);
853 failed = AL_TRUE;
855 if(failed)
856 return nullptr;
858 const size_t ebase{azCount.size()};
859 azCount.resize(ebase + evCount[f]);
860 std::generate(azCount.begin()+static_cast<ptrdiff_t>(ebase), azCount.end(),
861 std::bind(GetLE_ALubyte, std::ref(data)));
862 if(!data || data.eof())
864 ERR("Failed reading %s\n", filename);
865 return nullptr;
868 for(size_t e{0};e < evCount[f];e++)
870 if(azCount[ebase+e] < MIN_AZ_COUNT || azCount[ebase+e] > MAX_AZ_COUNT)
872 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
873 azCount[ebase+e], MIN_AZ_COUNT, MAX_AZ_COUNT);
874 failed = AL_TRUE;
877 if(failed)
878 return nullptr;
881 auto evOffset = al::vector<ALushort>(azCount.size());
882 evOffset[0] = 0;
883 std::partial_sum(azCount.cbegin(), azCount.cend()-1, evOffset.begin()+1);
884 const auto irTotal = static_cast<ALushort>(evOffset.back() + azCount.back());
886 auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
887 auto delays = al::vector<ubyte2>(irTotal);
888 if(channelType == ChanType_LeftOnly)
890 if(sampleType == SampleType_S16)
892 for(auto &hrir : coeffs)
894 for(auto &val : al::span<float2>{hrir.data(), irSize})
895 val[0] = GetLE_ALshort(data) / 32768.0f;
898 else if(sampleType == SampleType_S24)
900 for(auto &hrir : coeffs)
902 for(auto &val : al::span<float2>{hrir.data(), irSize})
903 val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
906 for(auto &val : delays)
907 val[0] = GetLE_ALubyte(data);
908 if(!data || data.eof())
910 ERR("Failed reading %s\n", filename);
911 return nullptr;
913 for(size_t i{0};i < irTotal;++i)
915 if(delays[i][0] > MAX_HRIR_DELAY)
917 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
918 failed = AL_TRUE;
920 delays[i][0] <<= HRIR_DELAY_FRACBITS;
923 else if(channelType == ChanType_LeftRight)
925 if(sampleType == SampleType_S16)
927 for(auto &hrir : coeffs)
929 for(auto &val : al::span<float2>{hrir.data(), irSize})
931 val[0] = GetLE_ALshort(data) / 32768.0f;
932 val[1] = GetLE_ALshort(data) / 32768.0f;
936 else if(sampleType == SampleType_S24)
938 for(auto &hrir : coeffs)
940 for(auto &val : al::span<float2>{hrir.data(), irSize})
942 val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
943 val[1] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
947 for(auto &val : delays)
949 val[0] = GetLE_ALubyte(data);
950 val[1] = GetLE_ALubyte(data);
952 if(!data || data.eof())
954 ERR("Failed reading %s\n", filename);
955 return nullptr;
958 for(size_t i{0};i < irTotal;++i)
960 if(delays[i][0] > MAX_HRIR_DELAY)
962 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
963 failed = AL_TRUE;
965 if(delays[i][1] > MAX_HRIR_DELAY)
967 ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
968 failed = AL_TRUE;
970 delays[i][0] <<= HRIR_DELAY_FRACBITS;
971 delays[i][1] <<= HRIR_DELAY_FRACBITS;
974 if(failed)
975 return nullptr;
977 if(channelType == ChanType_LeftOnly)
979 /* Mirror the left ear responses to the right ear. */
980 size_t ebase{0};
981 for(size_t f{0};f < fdCount;f++)
983 for(size_t e{0};e < evCount[f];e++)
985 const ALushort evoffset{evOffset[ebase+e]};
986 const ALushort azcount{azCount[ebase+e]};
987 for(size_t a{0};a < azcount;a++)
989 const size_t lidx{evoffset + a};
990 const size_t ridx{evoffset + ((azcount-a) % azcount)};
992 for(size_t k{0};k < irSize;k++)
993 coeffs[ridx][k][1] = coeffs[lidx][k][0];
994 delays[ridx][1] = delays[lidx][0];
997 ebase += evCount[f];
1001 if(fdCount > 1)
1003 auto distance_ = al::vector<ALushort>(distance.size());
1004 auto evCount_ = al::vector<ALubyte>(evCount.size());
1005 auto azCount_ = al::vector<ALushort>(azCount.size());
1006 auto evOffset_ = al::vector<ALushort>(evOffset.size());
1007 auto coeffs_ = al::vector<HrirArray>(coeffs.size());
1008 auto delays_ = al::vector<ubyte2>(delays.size());
1010 /* Simple reverse for the per-field elements. */
1011 std::reverse_copy(distance.cbegin(), distance.cend(), distance_.begin());
1012 std::reverse_copy(evCount.cbegin(), evCount.cend(), evCount_.begin());
1014 /* Each field has a group of elevations, which each have an azimuth
1015 * count. Reverse the order of the groups, keeping the relative order
1016 * of per-group azimuth counts.
1018 auto azcnt_end = azCount_.end();
1019 auto copy_azs = [&azCount,&azcnt_end](const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t
1021 auto azcnt_src = azCount.begin()+ebase;
1022 azcnt_end = std::copy_backward(azcnt_src, azcnt_src+num_evs, azcnt_end);
1023 return ebase + num_evs;
1025 std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_azs);
1026 assert(azCount_.begin() == azcnt_end);
1028 /* Reestablish the IR offset for each elevation index, given the new
1029 * ordering of elevations.
1031 evOffset_[0] = 0;
1032 std::partial_sum(azCount_.cbegin(), azCount_.cend()-1, evOffset_.begin()+1);
1034 /* Reverse the order of each field's group of IRs. */
1035 auto coeffs_end = coeffs_.end();
1036 auto delays_end = delays_.end();
1037 auto copy_irs = [&azCount,&coeffs,&delays,&coeffs_end,&delays_end](
1038 const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t
1040 const ALsizei abase{std::accumulate(azCount.cbegin(), azCount.cbegin()+ebase, 0)};
1041 const ALsizei num_azs{std::accumulate(azCount.cbegin()+ebase,
1042 azCount.cbegin() + (ebase+num_evs), 0)};
1044 coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
1045 coeffs.cbegin() + (abase+num_azs), coeffs_end);
1046 delays_end = std::copy_backward(delays.cbegin() + abase,
1047 delays.cbegin() + (abase+num_azs), delays_end);
1049 return ebase + num_evs;
1051 std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_irs);
1052 assert(coeffs_.begin() == coeffs_end);
1053 assert(delays_.begin() == delays_end);
1055 distance = std::move(distance_);
1056 evCount = std::move(evCount_);
1057 azCount = std::move(azCount_);
1058 evOffset = std::move(evOffset_);
1059 coeffs = std::move(coeffs_);
1060 delays = std::move(delays_);
1063 return CreateHrtfStore(rate, irSize, fdCount, evCount.data(), distance.data(), azCount.data(),
1064 evOffset.data(), irTotal, coeffs.data(), delays.data(), filename);
1068 bool checkName(const std::string &name)
1070 auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
1071 auto &enum_names = EnumeratedHrtfs;
1072 return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
1075 void AddFileEntry(const std::string &filename)
1077 /* Check if this file has already been enumerated. */
1078 auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1079 [&filename](const HrtfEntry &entry) -> bool
1080 { return entry.mFilename == filename; });
1081 if(enum_iter != EnumeratedHrtfs.cend())
1083 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1084 return;
1087 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1088 * format update). */
1089 size_t namepos = filename.find_last_of('/')+1;
1090 if(!namepos) namepos = filename.find_last_of('\\')+1;
1092 size_t extpos{filename.find_last_of('.')};
1093 if(extpos <= namepos) extpos = std::string::npos;
1095 const std::string basename{(extpos == std::string::npos) ?
1096 filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
1097 std::string newname{basename};
1098 int count{1};
1099 while(checkName(newname))
1101 newname = basename;
1102 newname += " #";
1103 newname += std::to_string(++count);
1105 EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
1106 const HrtfEntry &entry = EnumeratedHrtfs.back();
1108 TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
1111 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1112 * for input instead of opening the given filename.
1114 void AddBuiltInEntry(const std::string &dispname, ALuint residx)
1116 const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
1118 auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1119 [&filename](const HrtfEntry &entry) -> bool
1120 { return entry.mFilename == filename; });
1121 if(enum_iter != EnumeratedHrtfs.cend())
1123 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1124 return;
1127 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1128 * format update). */
1130 std::string newname{dispname};
1131 int count{1};
1132 while(checkName(newname))
1134 newname = dispname;
1135 newname += " #";
1136 newname += std::to_string(++count);
1138 EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
1139 const HrtfEntry &entry = EnumeratedHrtfs.back();
1141 TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
1145 #define IDR_DEFAULT_HRTF_MHR 1
1147 #ifndef ALSOFT_EMBED_HRTF_DATA
1149 al::span<const char> GetResource(int /*name*/)
1150 { return {}; }
1152 #else
1154 #include "hrtf_default.h"
1156 al::span<const char> GetResource(int name)
1158 if(name == IDR_DEFAULT_HRTF_MHR)
1159 return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
1160 return {};
1162 #endif
1164 } // namespace
1167 al::vector<std::string> EnumerateHrtf(const char *devname)
1169 std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
1170 EnumeratedHrtfs.clear();
1172 bool usedefaults{true};
1173 if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths"))
1175 const char *pathlist{pathopt->c_str()};
1176 while(pathlist && *pathlist)
1178 const char *next, *end;
1180 while(isspace(*pathlist) || *pathlist == ',')
1181 pathlist++;
1182 if(*pathlist == '\0')
1183 continue;
1185 next = strchr(pathlist, ',');
1186 if(next)
1187 end = next++;
1188 else
1190 end = pathlist + strlen(pathlist);
1191 usedefaults = false;
1194 while(end != pathlist && isspace(*(end-1)))
1195 --end;
1196 if(end != pathlist)
1198 const std::string pname{pathlist, end};
1199 for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
1200 AddFileEntry(fname);
1203 pathlist = next;
1207 if(usedefaults)
1209 for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
1210 AddFileEntry(fname);
1212 if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
1213 AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
1216 al::vector<std::string> list;
1217 list.reserve(EnumeratedHrtfs.size());
1218 for(auto &entry : EnumeratedHrtfs)
1219 list.emplace_back(entry.mDispName);
1221 if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf"))
1223 auto iter = std::find(list.begin(), list.end(), *defhrtfopt);
1224 if(iter == list.end())
1225 WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str());
1226 else if(iter != list.begin())
1227 std::rotate(list.begin(), iter, iter+1);
1230 return list;
1233 HrtfStore *GetLoadedHrtf(const std::string &name, const char *devname, const ALuint devrate)
1235 std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
1236 auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1237 [&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; }
1239 if(entry_iter == EnumeratedHrtfs.cend())
1240 return nullptr;
1241 const std::string &fname = entry_iter->mFilename;
1243 std::lock_guard<std::mutex> __{LoadedHrtfLock};
1244 auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
1245 { return hrtf.mFilename < filename; };
1246 auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
1247 while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
1249 HrtfStore *hrtf{handle->mEntry.get()};
1250 if(hrtf && hrtf->sampleRate == devrate)
1252 hrtf->IncRef();
1253 return hrtf;
1255 ++handle;
1258 std::unique_ptr<std::istream> stream;
1259 ALint residx{};
1260 char ch{};
1261 if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
1263 TRACE("Loading %s...\n", fname.c_str());
1264 al::span<const char> res{GetResource(residx)};
1265 if(res.empty())
1267 ERR("Could not get resource %u, %s\n", residx, name.c_str());
1268 return nullptr;
1270 stream = al::make_unique<idstream>(res.begin(), res.end());
1272 else
1274 TRACE("Loading %s...\n", fname.c_str());
1275 auto fstr = al::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
1276 if(!fstr->is_open())
1278 ERR("Could not open %s\n", fname.c_str());
1279 return nullptr;
1281 stream = std::move(fstr);
1284 std::unique_ptr<HrtfStore> hrtf;
1285 char magic[sizeof(magicMarker02)];
1286 stream->read(magic, sizeof(magic));
1287 if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker02)))
1288 ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
1289 else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
1291 TRACE("Detected data set format v2\n");
1292 hrtf = LoadHrtf02(*stream, name.c_str());
1294 else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
1296 TRACE("Detected data set format v1\n");
1297 hrtf = LoadHrtf01(*stream, name.c_str());
1299 else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
1301 TRACE("Detected data set format v0\n");
1302 hrtf = LoadHrtf00(*stream, name.c_str());
1304 else
1305 ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
1306 stream.reset();
1308 if(!hrtf)
1310 ERR("Failed to load %s\n", name.c_str());
1311 return nullptr;
1314 if(hrtf->sampleRate != devrate)
1316 /* Calculate the last elevation's index and get the total IR count. */
1317 const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0},
1318 [](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
1319 { return curval + field.evCount; }
1320 ) - 1};
1321 const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount};
1323 /* Resample all the IRs. */
1324 std::array<std::array<double,HRIR_LENGTH>,2> inout;
1325 PPhaseResampler rs;
1326 rs.init(hrtf->sampleRate, devrate);
1327 for(size_t i{0};i < irCount;++i)
1329 HrirArray &coeffs = const_cast<HrirArray&>(hrtf->coeffs[i]);
1330 for(size_t j{0};j < 2;++j)
1332 std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
1333 [j](const float2 &in) noexcept -> double { return in[j]; });
1334 rs.process(HRIR_LENGTH, inout[0].data(), HRIR_LENGTH, inout[1].data());
1335 for(size_t k{0};k < HRIR_LENGTH;++k)
1336 coeffs[k][j] = static_cast<float>(inout[1][k]);
1339 rs = {};
1341 /* Scale the delays for the new sample rate. */
1342 float max_delay{0.0f};
1343 auto new_delays = al::vector<float2>(irCount);
1344 const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->sampleRate)};
1345 for(size_t i{0};i < irCount;++i)
1347 for(size_t j{0};j < 2;++j)
1349 const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) /
1350 float{HRIR_DELAY_FRACONE}};
1351 max_delay = maxf(max_delay, new_delay);
1352 new_delays[i][j] = new_delay;
1356 /* If the new delays exceed the max, scale it down to fit (essentially
1357 * shrinking the head radius; not ideal but better than a per-delay
1358 * clamp).
1360 float delay_scale{HRIR_DELAY_FRACONE};
1361 if(max_delay > MAX_HRIR_DELAY)
1363 WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MAX_HRIR_DELAY);
1364 delay_scale *= float{MAX_HRIR_DELAY} / max_delay;
1367 for(size_t i{0};i < irCount;++i)
1369 ubyte2 &delays = const_cast<ubyte2&>(hrtf->delays[i]);
1370 for(size_t j{0};j < 2;++j)
1371 delays[j] = static_cast<ALubyte>(float2int(new_delays[i][j] * delay_scale));
1374 /* Scale the IR size for the new sample rate and update the stored
1375 * sample rate.
1377 const float newIrSize{std::round(static_cast<float>(hrtf->irSize) * rate_scale)};
1378 hrtf->irSize = static_cast<ALuint>(minf(HRIR_LENGTH, newIrSize));
1379 hrtf->sampleRate = devrate;
1382 if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
1384 if(*hrtfsizeopt > 0 && *hrtfsizeopt < hrtf->irSize)
1385 hrtf->irSize = maxu(*hrtfsizeopt, MIN_IR_LENGTH);
1388 TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
1389 hrtf->sampleRate, hrtf->irSize);
1390 handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)});
1392 return handle->mEntry.get();
1396 void HrtfStore::IncRef()
1398 auto ref = IncrementRef(mRef);
1399 TRACE("HrtfEntry %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1402 void HrtfStore::DecRef()
1404 auto ref = DecrementRef(mRef);
1405 TRACE("HrtfEntry %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1406 if(ref == 0)
1408 std::lock_guard<std::mutex> _{LoadedHrtfLock};
1410 /* Go through and remove all unused HRTFs. */
1411 auto remove_unused = [](LoadedHrtf &hrtf) -> bool
1413 HrtfStore *entry{hrtf.mEntry.get()};
1414 if(entry && ReadRef(entry->mRef) == 0)
1416 TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
1417 hrtf.mEntry = nullptr;
1418 return true;
1420 return false;
1422 auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
1423 LoadedHrtfs.erase(iter, LoadedHrtfs.end());