Apply the source's AL_AIR_ABSORPTION_FACTOR to send paths
[openal-soft.git] / core / mixer / mixer_sse2.cpp
blobc79d50cabecffd93fcdfb5b00fdf80a24c9d259d
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <xmmintrin.h>
24 #include <emmintrin.h>
26 #include <algorithm>
27 #include <array>
28 #include <cstddef>
29 #include <variant>
31 #include "alnumeric.h"
32 #include "alspan.h"
33 #include "core/cubic_defs.h"
34 #include "core/resampler_limits.h"
35 #include "defs.h"
36 #include "opthelpers.h"
38 struct SSE2Tag;
39 struct LerpTag;
40 struct CubicTag;
43 #if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE2__)
44 #pragma GCC target("sse2")
45 #endif
47 using uint = unsigned int;
49 namespace {
51 constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
52 constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
53 constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
55 force_inline __m128 vmadd(const __m128 x, const __m128 y, const __m128 z) noexcept
56 { return _mm_add_ps(x, _mm_mul_ps(y, z)); }
58 } // namespace
60 template<>
61 void Resample_<LerpTag,SSE2Tag>(const InterpState*, const al::span<const float> src, uint frac,
62 const uint increment, const al::span<float> dst)
64 ASSUME(frac < MixerFracOne);
66 const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
67 const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
68 const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
70 std::array<uint,4> pos_{}, frac_{};
71 InitPosArrays(MaxResamplerEdge, frac, increment, al::span{frac_}, al::span{pos_});
72 __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
73 static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
74 __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
75 static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
77 auto vecout = al::span{reinterpret_cast<__m128*>(dst.data()), dst.size()/4};
78 std::generate(vecout.begin(), vecout.end(), [=,&pos4,&frac4]() -> __m128
80 const auto pos0 = static_cast<uint>(_mm_cvtsi128_si32(pos4));
81 const auto pos1 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 4)));
82 const auto pos2 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 8)));
83 const auto pos3 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 12)));
84 ASSUME(pos0 <= pos1); ASSUME(pos1 <= pos2); ASSUME(pos2 <= pos3);
85 const __m128 val1{_mm_setr_ps(src[pos0], src[pos1], src[pos2], src[pos3])};
86 const __m128 val2{_mm_setr_ps(src[pos0+1_uz], src[pos1+1_uz], src[pos2+1_uz], src[pos3+1_uz])};
88 /* val1 + (val2-val1)*mu */
89 const __m128 r0{_mm_sub_ps(val2, val1)};
90 const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
91 const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
93 frac4 = _mm_add_epi32(frac4, increment4);
94 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
95 frac4 = _mm_and_si128(frac4, fracMask4);
96 return out;
97 });
99 if(size_t todo{dst.size()&3})
101 auto pos = size_t{static_cast<uint>(_mm_cvtsi128_si32(pos4))};
102 frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
104 const auto out = dst.last(todo);
105 std::generate(out.begin(), out.end(), [&pos,&frac,src,increment]()
107 const float smp{lerpf(src[pos+0], src[pos+1],
108 static_cast<float>(frac) * (1.0f/MixerFracOne))};
110 frac += increment;
111 pos += frac>>MixerFracBits;
112 frac &= MixerFracMask;
113 return smp;
118 template<>
119 void Resample_<CubicTag,SSE2Tag>(const InterpState *state, const al::span<const float> src,
120 uint frac, const uint increment, const al::span<float> dst)
122 ASSUME(frac < MixerFracOne);
124 const auto filter = std::get<CubicState>(*state).filter;
126 const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
127 const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
128 const __m128 fracDiffOne4{_mm_set1_ps(1.0f/CubicPhaseDiffOne)};
129 const __m128i fracDiffMask4{_mm_set1_epi32(CubicPhaseDiffMask)};
131 std::array<uint,4> pos_{}, frac_{};
132 InitPosArrays(MaxResamplerEdge-1, frac, increment, al::span{frac_}, al::span{pos_});
133 __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
134 static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
135 __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
136 static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
138 auto vecout = al::span{reinterpret_cast<__m128*>(dst.data()), dst.size()/4};
139 std::generate(vecout.begin(), vecout.end(), [=,&pos4,&frac4]
141 const auto pos0 = static_cast<uint>(_mm_cvtsi128_si32(pos4));
142 const auto pos1 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 4)));
143 const auto pos2 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 8)));
144 const auto pos3 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pos4, 12)));
145 ASSUME(pos0 <= pos1); ASSUME(pos1 <= pos2); ASSUME(pos2 <= pos3);
146 const __m128 val0{_mm_loadu_ps(&src[pos0])};
147 const __m128 val1{_mm_loadu_ps(&src[pos1])};
148 const __m128 val2{_mm_loadu_ps(&src[pos2])};
149 const __m128 val3{_mm_loadu_ps(&src[pos3])};
151 const __m128i pi4{_mm_srli_epi32(frac4, CubicPhaseDiffBits)};
152 const auto pi0 = static_cast<uint>(_mm_cvtsi128_si32(pi4));
153 const auto pi1 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pi4, 4)));
154 const auto pi2 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pi4, 8)));
155 const auto pi3 = static_cast<uint>(_mm_cvtsi128_si32(_mm_srli_si128(pi4, 12)));
156 ASSUME(pi0 < CubicPhaseCount); ASSUME(pi1 < CubicPhaseCount);
157 ASSUME(pi2 < CubicPhaseCount); ASSUME(pi3 < CubicPhaseCount);
159 const __m128 pf4{_mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(frac4, fracDiffMask4)),
160 fracDiffOne4)};
162 __m128 r0{_mm_mul_ps(val0,
163 vmadd(_mm_load_ps(filter[pi0].mCoeffs.data()),
164 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(0, 0, 0, 0)),
165 _mm_load_ps(filter[pi0].mDeltas.data())))};
166 __m128 r1{_mm_mul_ps(val1,
167 vmadd(_mm_load_ps(filter[pi1].mCoeffs.data()),
168 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(1, 1, 1, 1)),
169 _mm_load_ps(filter[pi1].mDeltas.data())))};
170 __m128 r2{_mm_mul_ps(val2,
171 vmadd(_mm_load_ps(filter[pi2].mCoeffs.data()),
172 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(2, 2, 2, 2)),
173 _mm_load_ps(filter[pi2].mDeltas.data())))};
174 __m128 r3{_mm_mul_ps(val3,
175 vmadd(_mm_load_ps(filter[pi3].mCoeffs.data()),
176 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(3, 3, 3, 3)),
177 _mm_load_ps(filter[pi3].mDeltas.data())))};
179 _MM_TRANSPOSE4_PS(r0, r1, r2, r3);
180 r0 = _mm_add_ps(_mm_add_ps(r0, r1), _mm_add_ps(r2, r3));
182 frac4 = _mm_add_epi32(frac4, increment4);
183 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
184 frac4 = _mm_and_si128(frac4, fracMask4);
185 return r0;
188 if(const size_t todo{dst.size()&3})
190 auto pos = size_t{static_cast<uint>(_mm_cvtsi128_si32(pos4))};
191 frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
193 auto out = dst.last(todo);
194 std::generate(out.begin(), out.end(), [&pos,&frac,src,increment,filter]
196 const uint pi{frac >> CubicPhaseDiffBits}; ASSUME(pi < CubicPhaseCount);
197 const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
198 const __m128 pf4{_mm_set1_ps(pf)};
200 const __m128 f4 = vmadd(_mm_load_ps(filter[pi].mCoeffs.data()), pf4,
201 _mm_load_ps(filter[pi].mDeltas.data()));
202 __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(&src[pos]))};
204 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
205 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
206 const float output{_mm_cvtss_f32(r4)};
208 frac += increment;
209 pos += frac>>MixerFracBits;
210 frac &= MixerFracMask;
211 return output;