Apply the source's AL_AIR_ABSORPTION_FACTOR to send paths
[openal-soft.git] / core / mixer / mixer_sse41.cpp
blob3453304544137841a15f106d48457587f0ff9bac
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <xmmintrin.h>
24 #include <emmintrin.h>
25 #include <smmintrin.h>
27 #include <algorithm>
28 #include <array>
29 #include <cstddef>
30 #include <variant>
32 #include "alnumeric.h"
33 #include "alspan.h"
34 #include "core/cubic_defs.h"
35 #include "core/resampler_limits.h"
36 #include "defs.h"
37 #include "opthelpers.h"
39 struct SSE4Tag;
40 struct LerpTag;
41 struct CubicTag;
44 #if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE4_1__)
45 #pragma GCC target("sse4.1")
46 #endif
48 using uint = unsigned int;
50 namespace {
52 constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
53 constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
54 constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
56 force_inline __m128 vmadd(const __m128 x, const __m128 y, const __m128 z) noexcept
57 { return _mm_add_ps(x, _mm_mul_ps(y, z)); }
59 } // namespace
61 template<>
62 void Resample_<LerpTag,SSE4Tag>(const InterpState*, const al::span<const float> src, uint frac,
63 const uint increment, const al::span<float> dst)
65 ASSUME(frac < MixerFracOne);
67 const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
68 const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
69 const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
71 std::array<uint,4> pos_{}, frac_{};
72 InitPosArrays(MaxResamplerEdge, frac, increment, al::span{frac_}, al::span{pos_});
73 __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
74 static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
75 __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
76 static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
78 auto vecout = al::span{reinterpret_cast<__m128*>(dst.data()), dst.size()/4};
79 std::generate(vecout.begin(), vecout.end(), [=,&pos4,&frac4]
81 const auto pos0 = static_cast<uint>(_mm_extract_epi32(pos4, 0));
82 const auto pos1 = static_cast<uint>(_mm_extract_epi32(pos4, 1));
83 const auto pos2 = static_cast<uint>(_mm_extract_epi32(pos4, 2));
84 const auto pos3 = static_cast<uint>(_mm_extract_epi32(pos4, 3));
85 ASSUME(pos0 <= pos1); ASSUME(pos1 <= pos2); ASSUME(pos2 <= pos3);
86 const __m128 val1{_mm_setr_ps(src[pos0], src[pos1], src[pos2], src[pos3])};
87 const __m128 val2{_mm_setr_ps(src[pos0+1_uz], src[pos1+1_uz], src[pos2+1_uz], src[pos3+1_uz])};
89 /* val1 + (val2-val1)*mu */
90 const __m128 r0{_mm_sub_ps(val2, val1)};
91 const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
92 const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
94 frac4 = _mm_add_epi32(frac4, increment4);
95 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
96 frac4 = _mm_and_si128(frac4, fracMask4);
97 return out;
98 });
100 if(size_t todo{dst.size()&3})
102 /* NOTE: These four elements represent the position *after* the last
103 * four samples, so the lowest element is the next position to
104 * resample.
106 auto pos = size_t{static_cast<uint>(_mm_cvtsi128_si32(pos4))};
107 frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
109 auto out = dst.last(todo);
110 std::generate(out.begin(), out.end(), [&pos,&frac,src,increment]
112 const float smp{lerpf(src[pos+0], src[pos+1],
113 static_cast<float>(frac) * (1.0f/MixerFracOne))};
115 frac += increment;
116 pos += frac>>MixerFracBits;
117 frac &= MixerFracMask;
118 return smp;
123 template<>
124 void Resample_<CubicTag,SSE4Tag>(const InterpState *state, const al::span<const float> src,
125 uint frac, const uint increment, const al::span<float> dst)
127 ASSUME(frac < MixerFracOne);
129 const auto filter = std::get<CubicState>(*state).filter;
131 const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
132 const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
133 const __m128 fracDiffOne4{_mm_set1_ps(1.0f/CubicPhaseDiffOne)};
134 const __m128i fracDiffMask4{_mm_set1_epi32(CubicPhaseDiffMask)};
136 std::array<uint,4> pos_{}, frac_{};
137 InitPosArrays(MaxResamplerEdge-1, frac, increment, al::span{frac_}, al::span{pos_});
138 __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
139 static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
140 __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
141 static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
143 auto vecout = al::span{reinterpret_cast<__m128*>(dst.data()), dst.size()/4};
144 std::generate(vecout.begin(), vecout.end(), [=,&pos4,&frac4]
146 const auto pos0 = static_cast<uint>(_mm_extract_epi32(pos4, 0));
147 const auto pos1 = static_cast<uint>(_mm_extract_epi32(pos4, 1));
148 const auto pos2 = static_cast<uint>(_mm_extract_epi32(pos4, 2));
149 const auto pos3 = static_cast<uint>(_mm_extract_epi32(pos4, 3));
150 ASSUME(pos0 <= pos1); ASSUME(pos1 <= pos2); ASSUME(pos2 <= pos3);
151 const __m128 val0{_mm_loadu_ps(&src[pos0])};
152 const __m128 val1{_mm_loadu_ps(&src[pos1])};
153 const __m128 val2{_mm_loadu_ps(&src[pos2])};
154 const __m128 val3{_mm_loadu_ps(&src[pos3])};
156 const __m128i pi4{_mm_srli_epi32(frac4, CubicPhaseDiffBits)};
157 const auto pi0 = static_cast<uint>(_mm_extract_epi32(pi4, 0));
158 const auto pi1 = static_cast<uint>(_mm_extract_epi32(pi4, 1));
159 const auto pi2 = static_cast<uint>(_mm_extract_epi32(pi4, 2));
160 const auto pi3 = static_cast<uint>(_mm_extract_epi32(pi4, 3));
161 ASSUME(pi0 < CubicPhaseCount); ASSUME(pi1 < CubicPhaseCount);
162 ASSUME(pi2 < CubicPhaseCount); ASSUME(pi3 < CubicPhaseCount);
164 const __m128 pf4{_mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(frac4, fracDiffMask4)),
165 fracDiffOne4)};
167 __m128 r0{_mm_mul_ps(val0,
168 vmadd(_mm_load_ps(filter[pi0].mCoeffs.data()),
169 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(0, 0, 0, 0)),
170 _mm_load_ps(filter[pi0].mDeltas.data())))};
171 __m128 r1{_mm_mul_ps(val1,
172 vmadd(_mm_load_ps(filter[pi1].mCoeffs.data()),
173 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(1, 1, 1, 1)),
174 _mm_load_ps(filter[pi1].mDeltas.data())))};
175 __m128 r2{_mm_mul_ps(val2,
176 vmadd(_mm_load_ps(filter[pi2].mCoeffs.data()),
177 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(2, 2, 2, 2)),
178 _mm_load_ps(filter[pi2].mDeltas.data())))};
179 __m128 r3{_mm_mul_ps(val3,
180 vmadd(_mm_load_ps(filter[pi3].mCoeffs.data()),
181 _mm_shuffle_ps(pf4, pf4, _MM_SHUFFLE(3, 3, 3, 3)),
182 _mm_load_ps(filter[pi3].mDeltas.data())))};
184 _MM_TRANSPOSE4_PS(r0, r1, r2, r3);
185 r0 = _mm_add_ps(_mm_add_ps(r0, r1), _mm_add_ps(r2, r3));
187 frac4 = _mm_add_epi32(frac4, increment4);
188 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
189 frac4 = _mm_and_si128(frac4, fracMask4);
190 return r0;
193 if(const size_t todo{dst.size()&3})
195 auto pos = size_t{static_cast<uint>(_mm_cvtsi128_si32(pos4))};
196 frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
198 auto out = dst.last(todo);
199 std::generate(out.begin(), out.end(), [&pos,&frac,src,increment,filter]
201 const uint pi{frac >> CubicPhaseDiffBits}; ASSUME(pi < CubicPhaseCount);
202 const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
203 const __m128 pf4{_mm_set1_ps(pf)};
205 const __m128 f4 = vmadd(_mm_load_ps(filter[pi].mCoeffs.data()), pf4,
206 _mm_load_ps(filter[pi].mDeltas.data()));
207 __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(&src[pos]))};
209 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
210 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
211 const float output{_mm_cvtss_f32(r4)};
213 frac += increment;
214 pos += frac>>MixerFracBits;
215 frac &= MixerFracMask;
216 return output;