2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "al/auxeffectslot.h"
33 #include "al/listener.h"
35 #include "alcontext.h"
37 #include "bformatdec.h"
38 #include "filters/biquad.h"
42 /* This is a user config option for modifying the overall output of the reverb
45 float ReverbBoost
= 1.0f
;
49 #define MOD_FRACBITS 24
50 #define MOD_FRACONE (1<<MOD_FRACBITS)
51 #define MOD_FRACMASK (MOD_FRACONE-1)
54 using namespace std::placeholders
;
56 /* Max samples per process iteration. Used to limit the size needed for
57 * temporary buffers. Must be a multiple of 4 for SIMD alignment.
59 constexpr size_t MAX_UPDATE_SAMPLES
{256};
61 /* The number of spatialized lines or channels to process. Four channels allows
62 * for a 3D A-Format response. NOTE: This can't be changed without taking care
63 * of the conversion matrices, and a few places where the length arrays are
64 * assumed to have 4 elements.
66 constexpr size_t NUM_LINES
{4u};
69 /* This coefficient is used to define the maximum frequency range controlled by
70 * the modulation depth. The current value of 0.05 will allow it to swing from
71 * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
72 * to stall on the downswing, and above 1 it will cause it to sample backwards.
73 * The value 0.05 seems be nearest to Creative hardware behavior.
75 constexpr float MODULATION_DEPTH_COEFF
{0.05f
};
78 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
79 * deliberately chosen to align the resulting lines to their spatial opposites
80 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
81 * back left). It's not quite opposite, since the A-Format results in a
82 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
83 * in the future, true opposites can be used.
85 alignas(16) constexpr float B2A
[NUM_LINES
][NUM_LINES
]{
86 { 0.288675134595f
, 0.288675134595f
, 0.288675134595f
, 0.288675134595f
},
87 { 0.288675134595f
, -0.288675134595f
, -0.288675134595f
, 0.288675134595f
},
88 { 0.288675134595f
, 0.288675134595f
, -0.288675134595f
, -0.288675134595f
},
89 { 0.288675134595f
, -0.288675134595f
, 0.288675134595f
, -0.288675134595f
}
92 /* Converts A-Format to B-Format. */
93 alignas(16) constexpr float A2B
[NUM_LINES
][NUM_LINES
]{
94 { 0.866025403785f
, 0.866025403785f
, 0.866025403785f
, 0.866025403785f
},
95 { 0.866025403785f
, -0.866025403785f
, 0.866025403785f
, -0.866025403785f
},
96 { 0.866025403785f
, -0.866025403785f
, -0.866025403785f
, 0.866025403785f
},
97 { 0.866025403785f
, 0.866025403785f
, -0.866025403785f
, -0.866025403785f
}
101 /* The all-pass and delay lines have a variable length dependent on the
102 * effect's density parameter, which helps alter the perceived environment
103 * size. The size-to-density conversion is a cubed scale:
105 * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
107 * The line lengths scale linearly with room size, so the inverse density
108 * conversion is needed, taking the cube root of the re-scaled density to
109 * calculate the line length multiplier:
111 * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
113 * The density scale below will result in a max line multiplier of 50, for an
114 * effective size range of 5m to 50m.
116 constexpr float DENSITY_SCALE
{125000.0f
};
118 /* All delay line lengths are specified in seconds.
120 * To approximate early reflections, we break them up into primary (those
121 * arriving from the same direction as the source) and secondary (those
122 * arriving from the opposite direction).
124 * The early taps decorrelate the 4-channel signal to approximate an average
125 * room response for the primary reflections after the initial early delay.
127 * Given an average room dimension (d_a) and the speed of sound (c) we can
128 * calculate the average reflection delay (r_a) regardless of listener and
129 * source positions as:
134 * This can extended to finding the average difference (r_d) between the
135 * maximum (r_1) and minimum (r_0) reflection delays:
146 * As can be determined by integrating the 1D model with a source (s) and
147 * listener (l) positioned across the dimension of length (d_a):
149 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
151 * The initial taps (T_(i=0)^N) are then specified by taking a power series
152 * that ranges between r_0 and half of r_1 less r_0:
154 * R_i = 2^(i / (2 N - 1)) r_d
155 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
158 * = (2^(i / (2 N - 1)) - 1) r_d
160 * Assuming an average of 1m, we get the following taps:
162 constexpr std::array
<float,NUM_LINES
> EARLY_TAP_LENGTHS
{{
163 0.0000000e+0f
, 2.0213520e-4f
, 4.2531060e-4f
, 6.7171600e-4f
166 /* The early all-pass filter lengths are based on the early tap lengths:
170 * Where a is the approximate maximum all-pass cycle limit (20).
172 constexpr std::array
<float,NUM_LINES
> EARLY_ALLPASS_LENGTHS
{{
173 9.7096800e-5f
, 1.0720356e-4f
, 1.1836234e-4f
, 1.3068260e-4f
176 /* The early delay lines are used to transform the primary reflections into
177 * the secondary reflections. The A-format is arranged in such a way that
178 * the channels/lines are spatially opposite:
180 * C_i is opposite C_(N-i-1)
182 * The delays of the two opposing reflections (R_i and O_i) from a source
183 * anywhere along a particular dimension always sum to twice its full delay:
187 * With that in mind we can determine the delay between the two reflections
188 * and thus specify our early line lengths (L_(i=0)^N) using:
190 * O_i = 2 r_a - R_(N-i-1)
191 * L_i = O_i - R_(N-i-1)
192 * = 2 (r_a - R_(N-i-1))
193 * = 2 (r_a - T_(N-i-1) - r_0)
194 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
196 * Using an average dimension of 1m, we get:
198 constexpr std::array
<float,NUM_LINES
> EARLY_LINE_LENGTHS
{{
199 5.9850400e-4f
, 1.0913150e-3f
, 1.5376658e-3f
, 1.9419362e-3f
202 /* The late all-pass filter lengths are based on the late line lengths:
204 * A_i = (5 / 3) L_i / r_1
206 constexpr std::array
<float,NUM_LINES
> LATE_ALLPASS_LENGTHS
{{
207 1.6182800e-4f
, 2.0389060e-4f
, 2.8159360e-4f
, 3.2365600e-4f
210 /* The late lines are used to approximate the decaying cycle of recursive
213 * Splitting the lines in half, we start with the shortest reflection paths
216 * L_i = 2^(i / (N - 1)) r_d
218 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
220 * L_i = 2 r_a - L_(i-N/2)
221 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
223 * For our 1m average room, we get:
225 constexpr std::array
<float,NUM_LINES
> LATE_LINE_LENGTHS
{{
226 1.9419362e-3f
, 2.4466860e-3f
, 3.3791220e-3f
, 3.8838720e-3f
230 using ReverbUpdateLine
= std::array
<float,MAX_UPDATE_SAMPLES
>;
233 /* The delay lines use interleaved samples, with the lengths being powers
234 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
238 uintptr_t LineOffset
{0u};
239 std::array
<float,NUM_LINES
> *Line
;
242 /* Given the allocated sample buffer, this function updates each delay line
245 void realizeLineOffset(std::array
<float,NUM_LINES
> *sampleBuffer
) noexcept
246 { Line
= sampleBuffer
+ LineOffset
; }
248 /* Calculate the length of a delay line and store its mask and offset. */
249 ALuint
calcLineLength(const float length
, const uintptr_t offset
, const float frequency
,
252 /* All line lengths are powers of 2, calculated from their lengths in
253 * seconds, rounded up.
255 ALuint samples
{float2uint(std::ceil(length
*frequency
))};
256 samples
= NextPowerOf2(samples
+ extra
);
258 /* All lines share a single sample buffer. */
262 /* Return the sample count for accumulation. */
266 void write(size_t offset
, const size_t c
, const float *RESTRICT in
, const size_t count
) const noexcept
269 for(size_t i
{0u};i
< count
;)
272 size_t td
{minz(Mask
+1 - offset
, count
- i
)};
274 Line
[offset
++][c
] = in
[i
++];
283 size_t Offset
[NUM_LINES
][2]{};
285 void processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
286 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
288 void processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
289 const float xCoeff
, const float yCoeff
, const size_t todo
);
293 /* Two filters are used to adjust the signal. One to control the low
294 * frequencies, and one to control the high frequencies.
296 float MidGain
[2]{0.0f
, 0.0f
};
297 BiquadFilter HFFilter
, LFFilter
;
299 void calcCoeffs(const float length
, const float lfDecayTime
, const float mfDecayTime
,
300 const float hfDecayTime
, const float lf0norm
, const float hf0norm
);
302 /* Applies the two T60 damping filter sections. */
303 void process(const al::span
<float> samples
)
304 { DualBiquad
{HFFilter
, LFFilter
}.process(samples
, samples
.data()); }
307 struct EarlyReflections
{
308 /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
309 * The spread from this filter also helps smooth out the reverb tail.
313 /* An echo line is used to complete the second half of the early
317 size_t Offset
[NUM_LINES
][2]{};
318 float Coeff
[NUM_LINES
][2]{};
320 /* The gain for each output channel based on 3D panning. */
321 float CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
322 float PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
324 void updateLines(const float density_mult
, const float diffusion
, const float decayTime
,
325 const float frequency
);
330 /* The vibrato time is tracked with an index over a (MOD_FRACONE)
335 /* The depth of frequency change, in samples. */
338 float ModDelays
[MAX_UPDATE_SAMPLES
];
340 void updateModulator(float modTime
, float modDepth
, float frequency
);
342 void calcDelays(size_t todo
);
343 void calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
);
347 /* A recursive delay line is used fill in the reverb tail. */
349 size_t Offset
[NUM_LINES
][2]{};
351 /* Attenuation to compensate for the modal density and decay rate of the
354 float DensityGain
[2]{0.0f
, 0.0f
};
356 /* T60 decay filters are used to simulate absorption. */
357 T60Filter T60
[NUM_LINES
];
361 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
364 /* The gain for each output channel based on 3D panning. */
365 float CurrentGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
366 float PanGain
[NUM_LINES
][MAX_OUTPUT_CHANNELS
]{};
368 void updateLines(const float density_mult
, const float diffusion
, const float lfDecayTime
,
369 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
370 const float hf0norm
, const float frequency
);
373 struct ReverbState final
: public EffectState
{
374 /* All delay lines are allocated as a single buffer to reduce memory
375 * fragmentation and management code.
377 al::vector
<std::array
<float,NUM_LINES
>,16> mSampleBuffer
;
380 /* Calculated parameters which indicate if cross-fading is needed after
383 float Density
{AL_EAXREVERB_DEFAULT_DENSITY
};
384 float Diffusion
{AL_EAXREVERB_DEFAULT_DIFFUSION
};
385 float DecayTime
{AL_EAXREVERB_DEFAULT_DECAY_TIME
};
386 float HFDecayTime
{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO
* AL_EAXREVERB_DEFAULT_DECAY_TIME
};
387 float LFDecayTime
{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO
* AL_EAXREVERB_DEFAULT_DECAY_TIME
};
388 float ModulationTime
{AL_EAXREVERB_DEFAULT_MODULATION_TIME
};
389 float ModulationDepth
{AL_EAXREVERB_DEFAULT_MODULATION_DEPTH
};
390 float HFReference
{AL_EAXREVERB_DEFAULT_HFREFERENCE
};
391 float LFReference
{AL_EAXREVERB_DEFAULT_LFREFERENCE
};
394 /* Master effect filters */
398 } mFilter
[NUM_LINES
];
400 /* Core delay line (early reflections and late reverb tap from this). */
403 /* Tap points for early reflection delay. */
404 size_t mEarlyDelayTap
[NUM_LINES
][2]{};
405 float mEarlyDelayCoeff
[NUM_LINES
][2]{};
407 /* Tap points for late reverb feed and delay. */
408 size_t mLateFeedTap
{};
409 size_t mLateDelayTap
[NUM_LINES
][2]{};
411 /* Coefficients for the all-pass and line scattering matrices. */
415 EarlyReflections mEarly
;
421 /* Maximum number of samples to process at once. */
422 size_t mMaxUpdate
[2]{MAX_UPDATE_SAMPLES
, MAX_UPDATE_SAMPLES
};
424 /* The current write offset for all delay lines. */
427 /* Temporary storage used when processing. */
429 alignas(16) FloatBufferLine mTempLine
{};
430 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mTempSamples
;
432 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mEarlySamples
{};
433 alignas(16) std::array
<ReverbUpdateLine
,NUM_LINES
> mLateSamples
{};
435 using MixOutT
= void (ReverbState::*)(const al::span
<FloatBufferLine
> samplesOut
,
436 const size_t counter
, const size_t offset
, const size_t todo
);
438 MixOutT mMixOut
{&ReverbState::MixOutPlain
};
439 std::array
<float,MAX_AMBI_ORDER
+1> mOrderScales
{};
440 std::array
<std::array
<BandSplitter
,NUM_LINES
>,2> mAmbiSplitter
;
443 static void DoMixRow(const al::span
<float> OutBuffer
, const al::span
<const float> Gains
,
444 const float *InSamples
, const size_t InStride
)
446 std::fill(OutBuffer
.begin(), OutBuffer
.end(), 0.0f
);
447 for(const float gain
: Gains
)
449 const float *RESTRICT input
{al::assume_aligned
<16>(InSamples
)};
450 InSamples
+= InStride
;
452 if(!(std::fabs(gain
) > GAIN_SILENCE_THRESHOLD
))
455 for(float &sample
: OutBuffer
)
457 sample
+= *input
* gain
;
464 void MixOutPlain(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
465 const size_t offset
, const size_t todo
)
469 /* Convert back to B-Format, and mix the results to output. */
470 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), todo
};
471 for(size_t c
{0u};c
< NUM_LINES
;c
++)
473 DoMixRow(tmpspan
, A2B
[c
], mEarlySamples
[0].data(), mEarlySamples
[0].size());
474 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
477 for(size_t c
{0u};c
< NUM_LINES
;c
++)
479 DoMixRow(tmpspan
, A2B
[c
], mLateSamples
[0].data(), mLateSamples
[0].size());
480 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
485 void MixOutAmbiUp(const al::span
<FloatBufferLine
> samplesOut
, const size_t counter
,
486 const size_t offset
, const size_t todo
)
490 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), todo
};
491 for(size_t c
{0u};c
< NUM_LINES
;c
++)
493 DoMixRow(tmpspan
, A2B
[c
], mEarlySamples
[0].data(), mEarlySamples
[0].size());
495 /* Apply scaling to the B-Format's HF response to "upsample" it to
496 * higher-order output.
498 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
499 mAmbiSplitter
[0][c
].processHfScale(tmpspan
, hfscale
);
501 MixSamples(tmpspan
, samplesOut
, mEarly
.CurrentGain
[c
], mEarly
.PanGain
[c
], counter
,
504 for(size_t c
{0u};c
< NUM_LINES
;c
++)
506 DoMixRow(tmpspan
, A2B
[c
], mLateSamples
[0].data(), mLateSamples
[0].size());
508 const float hfscale
{(c
==0) ? mOrderScales
[0] : mOrderScales
[1]};
509 mAmbiSplitter
[1][c
].processHfScale(tmpspan
, hfscale
);
511 MixSamples(tmpspan
, samplesOut
, mLate
.CurrentGain
[c
], mLate
.PanGain
[c
], counter
,
516 void allocLines(const float frequency
);
518 void updateDelayLine(const float earlyDelay
, const float lateDelay
, const float density_mult
,
519 const float decayTime
, const float frequency
);
520 void update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
521 const float earlyGain
, const float lateGain
, const EffectTarget
&target
);
523 void earlyUnfaded(const size_t offset
, const size_t todo
);
524 void earlyFaded(const size_t offset
, const size_t todo
, const float fade
,
525 const float fadeStep
);
527 void lateUnfaded(const size_t offset
, const size_t todo
);
528 void lateFaded(const size_t offset
, const size_t todo
, const float fade
,
529 const float fadeStep
);
531 void deviceUpdate(const ALCdevice
*device
) override
;
532 void update(const ALCcontext
*context
, const ALeffectslot
*slot
, const EffectProps
*props
, const EffectTarget target
) override
;
533 void process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
) override
;
535 DEF_NEWDEL(ReverbState
)
538 /**************************************
540 **************************************/
542 inline float CalcDelayLengthMult(float density
)
543 { return maxf(5.0f
, std::cbrt(density
*DENSITY_SCALE
)); }
545 /* Calculates the delay line metrics and allocates the shared sample buffer
546 * for all lines given the sample rate (frequency).
548 void ReverbState::allocLines(const float frequency
)
550 /* All delay line lengths are calculated to accomodate the full range of
551 * lengths given their respective paramters.
553 size_t totalSamples
{0u};
555 /* Multiplier for the maximum density value, i.e. density=1, which is
556 * actually the least density...
558 const float multiplier
{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY
)};
560 /* The main delay length includes the maximum early reflection delay, the
561 * largest early tap width, the maximum late reverb delay, and the
562 * largest late tap width. Finally, it must also be extended by the
563 * update size (BUFFERSIZE) for block processing.
565 float length
{AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+ EARLY_TAP_LENGTHS
.back()*multiplier
+
566 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
+
567 (LATE_LINE_LENGTHS
.back() - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*multiplier
};
568 totalSamples
+= mDelay
.calcLineLength(length
, totalSamples
, frequency
, BUFFERSIZE
);
570 /* The early vector all-pass line. */
571 length
= EARLY_ALLPASS_LENGTHS
.back() * multiplier
;
572 totalSamples
+= mEarly
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
574 /* The early reflection line. */
575 length
= EARLY_LINE_LENGTHS
.back() * multiplier
;
576 totalSamples
+= mEarly
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
578 /* The late vector all-pass line. */
579 length
= LATE_ALLPASS_LENGTHS
.back() * multiplier
;
580 totalSamples
+= mLate
.VecAp
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 0);
582 /* The modulator's line length is calculated from the maximum modulation
583 * time and depth coefficient, and halfed for the low-to-high frequency
586 constexpr float max_mod_delay
{AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/ 2.0f
};
588 /* The late delay lines are calculated from the largest maximum density
589 * line length, and the maximum modulation delay. An additional sample is
590 * added to keep it stable when there is no modulation.
592 length
= LATE_LINE_LENGTHS
.back()*multiplier
+ max_mod_delay
;
593 totalSamples
+= mLate
.Delay
.calcLineLength(length
, totalSamples
, frequency
, 1);
595 if(totalSamples
!= mSampleBuffer
.size())
596 decltype(mSampleBuffer
)(totalSamples
).swap(mSampleBuffer
);
598 /* Clear the sample buffer. */
599 std::fill(mSampleBuffer
.begin(), mSampleBuffer
.end(), decltype(mSampleBuffer
)::value_type
{});
601 /* Update all delays to reflect the new sample buffer. */
602 mDelay
.realizeLineOffset(mSampleBuffer
.data());
603 mEarly
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
604 mEarly
.Delay
.realizeLineOffset(mSampleBuffer
.data());
605 mLate
.VecAp
.Delay
.realizeLineOffset(mSampleBuffer
.data());
606 mLate
.Delay
.realizeLineOffset(mSampleBuffer
.data());
609 void ReverbState::deviceUpdate(const ALCdevice
*device
)
611 const auto frequency
= static_cast<float>(device
->Frequency
);
613 /* Allocate the delay lines. */
614 allocLines(frequency
);
616 const float multiplier
{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY
)};
618 /* The late feed taps are set a fixed position past the latest delay tap. */
619 mLateFeedTap
= float2uint(
620 (AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+ EARLY_TAP_LENGTHS
.back()*multiplier
) * frequency
);
622 /* Clear filters and gain coefficients since the delay lines were all just
623 * cleared (if not reallocated).
625 for(auto &filter
: mFilter
)
631 for(auto &coeff
: mEarlyDelayCoeff
)
632 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
633 for(auto &coeff
: mEarly
.Coeff
)
634 std::fill(std::begin(coeff
), std::end(coeff
), 0.0f
);
636 mLate
.DensityGain
[0] = 0.0f
;
637 mLate
.DensityGain
[1] = 0.0f
;
638 for(auto &t60
: mLate
.T60
)
640 t60
.MidGain
[0] = 0.0f
;
641 t60
.MidGain
[1] = 0.0f
;
642 t60
.HFFilter
.clear();
643 t60
.LFFilter
.clear();
648 std::fill(std::begin(mLate
.Mod
.Depth
), std::end(mLate
.Mod
.Depth
), 0.0f
);
650 for(auto &gains
: mEarly
.CurrentGain
)
651 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
652 for(auto &gains
: mEarly
.PanGain
)
653 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
654 for(auto &gains
: mLate
.CurrentGain
)
655 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
656 for(auto &gains
: mLate
.PanGain
)
657 std::fill(std::begin(gains
), std::end(gains
), 0.0f
);
659 /* Reset fading and offset base. */
661 std::fill(std::begin(mMaxUpdate
), std::end(mMaxUpdate
), MAX_UPDATE_SAMPLES
);
664 if(device
->mAmbiOrder
> 1)
666 mMixOut
= &ReverbState::MixOutAmbiUp
;
667 mOrderScales
= BFormatDec::GetHFOrderScales(1, device
->mAmbiOrder
);
671 mMixOut
= &ReverbState::MixOutPlain
;
672 mOrderScales
.fill(1.0f
);
674 mAmbiSplitter
[0][0].init(400.0f
/ frequency
);
675 std::fill(mAmbiSplitter
[0].begin()+1, mAmbiSplitter
[0].end(), mAmbiSplitter
[0][0]);
676 std::fill(mAmbiSplitter
[1].begin(), mAmbiSplitter
[1].end(), mAmbiSplitter
[0][0]);
679 /**************************************
681 **************************************/
683 /* Calculate a decay coefficient given the length of each cycle and the time
684 * until the decay reaches -60 dB.
686 inline float CalcDecayCoeff(const float length
, const float decayTime
)
687 { return std::pow(REVERB_DECAY_GAIN
, length
/decayTime
); }
689 /* Calculate a decay length from a coefficient and the time until the decay
692 inline float CalcDecayLength(const float coeff
, const float decayTime
)
694 constexpr float log10_decaygain
{-3.0f
/*std::log10(REVERB_DECAY_GAIN)=std::log10(0.001f)*/};
695 return std::log10(coeff
) * decayTime
/ log10_decaygain
;
698 /* Calculate an attenuation to be applied to the input of any echo models to
699 * compensate for modal density and decay time.
701 inline float CalcDensityGain(const float a
)
703 /* The energy of a signal can be obtained by finding the area under the
704 * squared signal. This takes the form of Sum(x_n^2), where x is the
705 * amplitude for the sample n.
707 * Decaying feedback matches exponential decay of the form Sum(a^n),
708 * where a is the attenuation coefficient, and n is the sample. The area
709 * under this decay curve can be calculated as: 1 / (1 - a).
711 * Modifying the above equation to find the area under the squared curve
712 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
713 * calculated by inverting the square root of this approximation,
714 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
716 return std::sqrt(1.0f
- a
*a
);
719 /* Calculate the scattering matrix coefficients given a diffusion factor. */
720 inline void CalcMatrixCoeffs(const float diffusion
, float *x
, float *y
)
722 /* The matrix is of order 4, so n is sqrt(4 - 1). */
723 constexpr float n
{1.73205080756887719318f
/*std::sqrt(3.0f)*/};
724 const float t
{diffusion
* std::atan(n
)};
726 /* Calculate the first mixing matrix coefficient. */
728 /* Calculate the second mixing matrix coefficient. */
729 *y
= std::sin(t
) / n
;
732 /* Calculate the limited HF ratio for use with the late reverb low-pass
735 float CalcLimitedHfRatio(const float hfRatio
, const float airAbsorptionGainHF
,
736 const float decayTime
)
738 /* Find the attenuation due to air absorption in dB (converting delay
739 * time to meters using the speed of sound). Then reversing the decay
740 * equation, solve for HF ratio. The delay length is cancelled out of
741 * the equation, so it can be calculated once for all lines.
743 float limitRatio
{1.0f
/ SPEEDOFSOUNDMETRESPERSEC
/
744 CalcDecayLength(airAbsorptionGainHF
, decayTime
)};
746 /* Using the limit calculated above, apply the upper bound to the HF ratio. */
747 return minf(limitRatio
, hfRatio
);
751 /* Calculates the 3-band T60 damping coefficients for a particular delay line
752 * of specified length, using a combination of two shelf filter sections given
753 * decay times for each band split at two reference frequencies.
755 void T60Filter::calcCoeffs(const float length
, const float lfDecayTime
,
756 const float mfDecayTime
, const float hfDecayTime
, const float lf0norm
,
759 const float mfGain
{CalcDecayCoeff(length
, mfDecayTime
)};
760 const float lfGain
{CalcDecayCoeff(length
, lfDecayTime
) / mfGain
};
761 const float hfGain
{CalcDecayCoeff(length
, hfDecayTime
) / mfGain
};
764 LFFilter
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, lfGain
, 1.0f
);
765 HFFilter
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, hfGain
, 1.0f
);
768 /* Update the early reflection line lengths and gain coefficients. */
769 void EarlyReflections::updateLines(const float density_mult
, const float diffusion
,
770 const float decayTime
, const float frequency
)
772 constexpr float sqrt1_2
{0.70710678118654752440f
/*1.0f/std::sqrt(2.0f)*/};
774 /* Calculate the all-pass feed-back/forward coefficient. */
775 VecAp
.Coeff
= diffusion
*diffusion
* sqrt1_2
;
777 for(size_t i
{0u};i
< NUM_LINES
;i
++)
779 /* Calculate the delay length of each all-pass line. */
780 float length
{EARLY_ALLPASS_LENGTHS
[i
] * density_mult
};
781 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
783 /* Calculate the delay length of each delay line. */
784 length
= EARLY_LINE_LENGTHS
[i
] * density_mult
;
785 Offset
[i
][1] = float2uint(length
* frequency
);
787 /* Calculate the gain (coefficient) for each line. */
788 Coeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
792 /* Update the EAX modulation step and depth. Keep in mind that this kind of
793 * vibrato is additive and not multiplicative as one may expect. The downswing
794 * will sound stronger than the upswing.
796 void Modulation::updateModulator(float modTime
, float modDepth
, float frequency
)
798 /* Modulation is calculated in two parts.
800 * The modulation time effects the sinus rate, altering the speed of
801 * frequency changes. An index is incremented for each sample with an
802 * appropriate step size to generate an LFO, which will vary the feedback
805 Step
= maxu(fastf2u(MOD_FRACONE
/ (frequency
* modTime
)), 1);
807 /* The modulation depth effects the amount of frequency change over the
808 * range of the sinus. It needs to be scaled by the modulation time so that
809 * a given depth produces a consistent change in frequency over all ranges
810 * of time. Since the depth is applied to a sinus value, it needs to be
811 * halved once for the sinus range and again for the sinus swing in time
812 * (half of it is spent decreasing the frequency, half is spent increasing
815 if(modTime
>= AL_EAXREVERB_DEFAULT_MODULATION_TIME
)
817 /* To cancel the effects of a long period modulation on the late
818 * reverberation, the amount of pitch should be varied (decreased)
819 * according to the modulation time. The natural form is varying
820 * inversely, in fact resulting in an invariant.
822 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* AL_EAXREVERB_DEFAULT_MODULATION_TIME
*
823 modDepth
* frequency
;
826 Depth
[1] = MODULATION_DEPTH_COEFF
/ 4.0f
* modTime
* modDepth
* frequency
;
829 /* Update the late reverb line lengths and T60 coefficients. */
830 void LateReverb::updateLines(const float density_mult
, const float diffusion
,
831 const float lfDecayTime
, const float mfDecayTime
, const float hfDecayTime
,
832 const float lf0norm
, const float hf0norm
, const float frequency
)
834 /* Scaling factor to convert the normalized reference frequencies from
835 * representing 0...freq to 0...max_reference.
837 const float norm_weight_factor
{frequency
/ AL_EAXREVERB_MAX_HFREFERENCE
};
839 const float late_allpass_avg
{
840 std::accumulate(LATE_ALLPASS_LENGTHS
.begin(), LATE_ALLPASS_LENGTHS
.end(), 0.0f
) /
843 /* To compensate for changes in modal density and decay time of the late
844 * reverb signal, the input is attenuated based on the maximal energy of
845 * the outgoing signal. This approximation is used to keep the apparent
846 * energy of the signal equal for all ranges of density and decay time.
848 * The average length of the delay lines is used to calculate the
849 * attenuation coefficient.
851 float length
{std::accumulate(LATE_LINE_LENGTHS
.begin(), LATE_LINE_LENGTHS
.end(), 0.0f
) /
852 float{NUM_LINES
} + late_allpass_avg
};
853 length
*= density_mult
;
854 /* The density gain calculation uses an average decay time weighted by
855 * approximate bandwidth. This attempts to compensate for losses of energy
856 * that reduce decay time due to scattering into highly attenuated bands.
858 const float decayTimeWeighted
{
859 lf0norm
*norm_weight_factor
*lfDecayTime
+
860 (hf0norm
- lf0norm
)*norm_weight_factor
*mfDecayTime
+
861 (1.0f
- hf0norm
*norm_weight_factor
)*hfDecayTime
};
862 DensityGain
[1] = CalcDensityGain(CalcDecayCoeff(length
, decayTimeWeighted
));
864 /* Calculate the all-pass feed-back/forward coefficient. */
865 constexpr float sqrt1_2
{0.70710678118654752440f
/*1.0f/std::sqrt(2.0f)*/};
866 VecAp
.Coeff
= diffusion
*diffusion
* sqrt1_2
;
868 for(size_t i
{0u};i
< NUM_LINES
;i
++)
870 /* Calculate the delay length of each all-pass line. */
871 length
= LATE_ALLPASS_LENGTHS
[i
] * density_mult
;
872 VecAp
.Offset
[i
][1] = float2uint(length
* frequency
);
874 /* Calculate the delay length of each feedback delay line. */
875 length
= LATE_LINE_LENGTHS
[i
] * density_mult
;
876 Offset
[i
][1] = float2uint(length
*frequency
+ 0.5f
);
878 /* Approximate the absorption that the vector all-pass would exhibit
879 * given the current diffusion so we don't have to process a full T60
880 * filter for each of its four lines. Also include the average
881 * modulation delay (depth is half the max delay in samples).
883 length
+= lerp(LATE_ALLPASS_LENGTHS
[i
], late_allpass_avg
, diffusion
)*density_mult
+
884 Mod
.Depth
[1]/frequency
;
886 /* Calculate the T60 damping coefficients for each line. */
887 T60
[i
].calcCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
, lf0norm
, hf0norm
);
892 /* Update the offsets for the main effect delay line. */
893 void ReverbState::updateDelayLine(const float earlyDelay
, const float lateDelay
,
894 const float density_mult
, const float decayTime
, const float frequency
)
896 /* Early reflection taps are decorrelated by means of an average room
897 * reflection approximation described above the definition of the taps.
898 * This approximation is linear and so the above density multiplier can
899 * be applied to adjust the width of the taps. A single-band decay
900 * coefficient is applied to simulate initial attenuation and absorption.
902 * Late reverb taps are based on the late line lengths to allow a zero-
903 * delay path and offsets that would continue the propagation naturally
904 * into the late lines.
906 for(size_t i
{0u};i
< NUM_LINES
;i
++)
908 float length
{EARLY_TAP_LENGTHS
[i
]*density_mult
};
909 mEarlyDelayTap
[i
][1] = float2uint((earlyDelay
+length
) * frequency
);
910 mEarlyDelayCoeff
[i
][1] = CalcDecayCoeff(length
, decayTime
);
912 length
= (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
.front())/float{NUM_LINES
}*density_mult
+
914 mLateDelayTap
[i
][1] = mLateFeedTap
+ float2uint(length
* frequency
);
918 /* Creates a transform matrix given a reverb vector. The vector pans the reverb
919 * reflections toward the given direction, using its magnitude (up to 1) as a
920 * focal strength. This function results in a B-Format transformation matrix
921 * that spatially focuses the signal in the desired direction.
923 alu::Matrix
GetTransformFromVector(const float *vec
)
925 constexpr float sqrt3
{1.73205080756887719318f
};
927 /* Normalize the panning vector according to the N3D scale, which has an
928 * extra sqrt(3) term on the directional components. Converting from OpenAL
929 * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
930 * that the reverb panning vectors use left-handed coordinates, unlike the
931 * rest of OpenAL which use right-handed. This is fixed by negating Z,
932 * which cancels out with the B-Format Z negation.
935 float mag
{std::sqrt(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2])};
938 norm
[0] = vec
[0] / mag
* -sqrt3
;
939 norm
[1] = vec
[1] / mag
* sqrt3
;
940 norm
[2] = vec
[2] / mag
* sqrt3
;
945 /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
946 * term. There's no need to renormalize the magnitude since it would
947 * just be reapplied in the matrix.
949 norm
[0] = vec
[0] * -sqrt3
;
950 norm
[1] = vec
[1] * sqrt3
;
951 norm
[2] = vec
[2] * sqrt3
;
955 1.0f
, 0.0f
, 0.0f
, 0.0f
,
956 norm
[0], 1.0f
-mag
, 0.0f
, 0.0f
,
957 norm
[1], 0.0f
, 1.0f
-mag
, 0.0f
,
958 norm
[2], 0.0f
, 0.0f
, 1.0f
-mag
962 /* Update the early and late 3D panning gains. */
963 void ReverbState::update3DPanning(const float *ReflectionsPan
, const float *LateReverbPan
,
964 const float earlyGain
, const float lateGain
, const EffectTarget
&target
)
966 /* Create matrices that transform a B-Format signal according to the
969 const alu::Matrix earlymat
{GetTransformFromVector(ReflectionsPan
)};
970 const alu::Matrix latemat
{GetTransformFromVector(LateReverbPan
)};
972 mOutTarget
= target
.Main
->Buffer
;
973 for(size_t i
{0u};i
< NUM_LINES
;i
++)
975 const float coeffs
[MAX_AMBI_CHANNELS
]{earlymat
[0][i
], earlymat
[1][i
], earlymat
[2][i
],
977 ComputePanGains(target
.Main
, coeffs
, earlyGain
, mEarly
.PanGain
[i
]);
979 for(size_t i
{0u};i
< NUM_LINES
;i
++)
981 const float coeffs
[MAX_AMBI_CHANNELS
]{latemat
[0][i
], latemat
[1][i
], latemat
[2][i
],
983 ComputePanGains(target
.Main
, coeffs
, lateGain
, mLate
.PanGain
[i
]);
987 void ReverbState::update(const ALCcontext
*Context
, const ALeffectslot
*Slot
, const EffectProps
*props
, const EffectTarget target
)
989 const ALCdevice
*Device
{Context
->mDevice
.get()};
990 const auto frequency
= static_cast<float>(Device
->Frequency
);
992 /* Calculate the master filters */
993 float hf0norm
{minf(props
->Reverb
.HFReference
/frequency
, 0.49f
)};
994 mFilter
[0].Lp
.setParamsFromSlope(BiquadType::HighShelf
, hf0norm
, props
->Reverb
.GainHF
, 1.0f
);
995 float lf0norm
{minf(props
->Reverb
.LFReference
/frequency
, 0.49f
)};
996 mFilter
[0].Hp
.setParamsFromSlope(BiquadType::LowShelf
, lf0norm
, props
->Reverb
.GainLF
, 1.0f
);
997 for(size_t i
{1u};i
< NUM_LINES
;i
++)
999 mFilter
[i
].Lp
.copyParamsFrom(mFilter
[0].Lp
);
1000 mFilter
[i
].Hp
.copyParamsFrom(mFilter
[0].Hp
);
1003 /* The density-based room size (delay length) multiplier. */
1004 const float density_mult
{CalcDelayLengthMult(props
->Reverb
.Density
)};
1006 /* Update the main effect delay and associated taps. */
1007 updateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
1008 density_mult
, props
->Reverb
.DecayTime
, frequency
);
1010 /* Update the early lines. */
1011 mEarly
.updateLines(density_mult
, props
->Reverb
.Diffusion
, props
->Reverb
.DecayTime
, frequency
);
1013 /* Get the mixing matrix coefficients. */
1014 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &mMixX
, &mMixY
);
1016 /* If the HF limit parameter is flagged, calculate an appropriate limit
1017 * based on the air absorption parameter.
1019 float hfRatio
{props
->Reverb
.DecayHFRatio
};
1020 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1021 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
1022 props
->Reverb
.DecayTime
);
1024 /* Calculate the LF/HF decay times. */
1025 const float lfDecayTime
{clampf(props
->Reverb
.DecayTime
* props
->Reverb
.DecayLFRatio
,
1026 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
)};
1027 const float hfDecayTime
{clampf(props
->Reverb
.DecayTime
* hfRatio
,
1028 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
)};
1030 /* Update the modulator rate and depth. */
1031 mLate
.Mod
.updateModulator(props
->Reverb
.ModulationTime
, props
->Reverb
.ModulationDepth
,
1034 /* Update the late lines. */
1035 mLate
.updateLines(density_mult
, props
->Reverb
.Diffusion
, lfDecayTime
,
1036 props
->Reverb
.DecayTime
, hfDecayTime
, lf0norm
, hf0norm
, frequency
);
1038 /* Update early and late 3D panning. */
1039 const float gain
{props
->Reverb
.Gain
* Slot
->Params
.Gain
* ReverbBoost
};
1040 update3DPanning(props
->Reverb
.ReflectionsPan
, props
->Reverb
.LateReverbPan
,
1041 props
->Reverb
.ReflectionsGain
*gain
, props
->Reverb
.LateReverbGain
*gain
, target
);
1043 /* Calculate the max update size from the smallest relevant delay. */
1044 mMaxUpdate
[1] = minz(MAX_UPDATE_SAMPLES
, minz(mEarly
.Offset
[0][1], mLate
.Offset
[0][1]));
1046 /* Determine if delay-line cross-fading is required. Density is essentially
1047 * a master control for the feedback delays, so changes the offsets of many
1050 mDoFading
|= (mParams
.Density
!= props
->Reverb
.Density
||
1051 /* Diffusion and decay times influences the decay rate (gain) of the
1052 * late reverb T60 filter.
1054 mParams
.Diffusion
!= props
->Reverb
.Diffusion
||
1055 mParams
.DecayTime
!= props
->Reverb
.DecayTime
||
1056 mParams
.HFDecayTime
!= hfDecayTime
||
1057 mParams
.LFDecayTime
!= lfDecayTime
||
1058 /* Modulation time and depth both require fading the modulation delay. */
1059 mParams
.ModulationTime
!= props
->Reverb
.ModulationTime
||
1060 mParams
.ModulationDepth
!= props
->Reverb
.ModulationDepth
||
1061 /* HF/LF References control the weighting used to calculate the density
1064 mParams
.HFReference
!= props
->Reverb
.HFReference
||
1065 mParams
.LFReference
!= props
->Reverb
.LFReference
);
1068 mParams
.Density
= props
->Reverb
.Density
;
1069 mParams
.Diffusion
= props
->Reverb
.Diffusion
;
1070 mParams
.DecayTime
= props
->Reverb
.DecayTime
;
1071 mParams
.HFDecayTime
= hfDecayTime
;
1072 mParams
.LFDecayTime
= lfDecayTime
;
1073 mParams
.ModulationTime
= props
->Reverb
.ModulationTime
;
1074 mParams
.ModulationDepth
= props
->Reverb
.ModulationDepth
;
1075 mParams
.HFReference
= props
->Reverb
.HFReference
;
1076 mParams
.LFReference
= props
->Reverb
.LFReference
;
1081 /**************************************
1082 * Effect Processing *
1083 **************************************/
1085 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1086 * for both the below vector all-pass model and to perform modal feed-back
1087 * delay network (FDN) mixing.
1089 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1090 * matrix with a single unitary rotational parameter:
1092 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1097 * The rotation is constructed from the effect's diffusion parameter,
1102 * Where a, b, and c are the coefficient y with differing signs, and d is the
1103 * coefficient x. The final matrix is thus:
1105 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1106 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1107 * [ y, -y, x, y ] x = cos(t)
1108 * [ -y, -y, -y, x ] y = sin(t) / n
1110 * Any square orthogonal matrix with an order that is a power of two will
1111 * work (where ^T is transpose, ^-1 is inverse):
1115 * Using that knowledge, finding an appropriate matrix can be accomplished
1116 * naively by searching all combinations of:
1120 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1121 * whose combination of signs are being iterated.
1123 inline auto VectorPartialScatter(const std::array
<float,NUM_LINES
> &RESTRICT in
,
1124 const float xCoeff
, const float yCoeff
) -> std::array
<float,NUM_LINES
>
1126 return std::array
<float,NUM_LINES
>{{
1127 xCoeff
*in
[0] + yCoeff
*( in
[1] + -in
[2] + in
[3]),
1128 xCoeff
*in
[1] + yCoeff
*(-in
[0] + in
[2] + in
[3]),
1129 xCoeff
*in
[2] + yCoeff
*( in
[0] + -in
[1] + in
[3]),
1130 xCoeff
*in
[3] + yCoeff
*(-in
[0] + -in
[1] + -in
[2] )
1134 /* Utilizes the above, but reverses the input channels. */
1135 void VectorScatterRevDelayIn(const DelayLineI delay
, size_t offset
, const float xCoeff
,
1136 const float yCoeff
, const al::span
<const ReverbUpdateLine
,NUM_LINES
> in
, const size_t count
)
1140 for(size_t i
{0u};i
< count
;)
1142 offset
&= delay
.Mask
;
1143 size_t td
{minz(delay
.Mask
+1 - offset
, count
-i
)};
1145 std::array
<float,NUM_LINES
> f
;
1146 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1147 f
[NUM_LINES
-1-j
] = in
[j
][i
];
1150 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1155 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1156 * filter to the 4-line input.
1158 * It works by vectorizing a regular all-pass filter and replacing the delay
1159 * element with a scattering matrix (like the one above) and a diagonal
1160 * matrix of delay elements.
1162 * Two static specializations are used for transitional (cross-faded) delay
1163 * line processing and non-transitional processing.
1165 void VecAllpass::processUnfaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1166 const float xCoeff
, const float yCoeff
, const size_t todo
)
1168 const DelayLineI delay
{Delay
};
1169 const float feedCoeff
{Coeff
};
1173 size_t vap_offset
[NUM_LINES
];
1174 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1175 vap_offset
[j
] = offset
- Offset
[j
][0];
1176 for(size_t i
{0u};i
< todo
;)
1178 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1179 vap_offset
[j
] &= delay
.Mask
;
1180 offset
&= delay
.Mask
;
1182 size_t maxoff
{offset
};
1183 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1184 maxoff
= maxz(maxoff
, vap_offset
[j
]);
1185 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1188 std::array
<float,NUM_LINES
> f
;
1189 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1191 const float input
{samples
[j
][i
]};
1192 const float out
{delay
.Line
[vap_offset
[j
]++][j
] - feedCoeff
*input
};
1193 f
[j
] = input
+ feedCoeff
*out
;
1195 samples
[j
][i
] = out
;
1199 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1203 void VecAllpass::processFaded(const al::span
<ReverbUpdateLine
,NUM_LINES
> samples
, size_t offset
,
1204 const float xCoeff
, const float yCoeff
, float fadeCount
, const float fadeStep
,
1207 const DelayLineI delay
{Delay
};
1208 const float feedCoeff
{Coeff
};
1212 size_t vap_offset
[NUM_LINES
][2];
1213 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1215 vap_offset
[j
][0] = offset
- Offset
[j
][0];
1216 vap_offset
[j
][1] = offset
- Offset
[j
][1];
1218 for(size_t i
{0u};i
< todo
;)
1220 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1222 vap_offset
[j
][0] &= delay
.Mask
;
1223 vap_offset
[j
][1] &= delay
.Mask
;
1225 offset
&= delay
.Mask
;
1227 size_t maxoff
{offset
};
1228 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1229 maxoff
= maxz(maxoff
, maxz(vap_offset
[j
][0], vap_offset
[j
][1]));
1230 size_t td
{minz(delay
.Mask
+1 - maxoff
, todo
- i
)};
1234 const float fade
{fadeCount
* fadeStep
};
1236 std::array
<float,NUM_LINES
> f
;
1237 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1238 f
[j
] = delay
.Line
[vap_offset
[j
][0]++][j
]*(1.0f
-fade
) +
1239 delay
.Line
[vap_offset
[j
][1]++][j
]*fade
;
1241 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1243 const float input
{samples
[j
][i
]};
1244 const float out
{f
[j
] - feedCoeff
*input
};
1245 f
[j
] = input
+ feedCoeff
*out
;
1247 samples
[j
][i
] = out
;
1251 delay
.Line
[offset
++] = VectorPartialScatter(f
, xCoeff
, yCoeff
);
1256 /* This generates early reflections.
1258 * This is done by obtaining the primary reflections (those arriving from the
1259 * same direction as the source) from the main delay line. These are
1260 * attenuated and all-pass filtered (based on the diffusion parameter).
1262 * The early lines are then fed in reverse (according to the approximately
1263 * opposite spatial location of the A-Format lines) to create the secondary
1264 * reflections (those arriving from the opposite direction as the source).
1266 * The early response is then completed by combining the primary reflections
1267 * with the delayed and attenuated output from the early lines.
1269 * Finally, the early response is reversed, scattered (based on diffusion),
1270 * and fed into the late reverb section of the main delay line.
1272 * Two static specializations are used for transitional (cross-faded) delay
1273 * line processing and non-transitional processing.
1275 void ReverbState::earlyUnfaded(const size_t offset
, const size_t todo
)
1277 const DelayLineI early_delay
{mEarly
.Delay
};
1278 const DelayLineI main_delay
{mDelay
};
1279 const float mixX
{mMixX
};
1280 const float mixY
{mMixY
};
1284 /* First, load decorrelated samples from the main delay line as the primary
1287 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1289 size_t early_delay_tap
{offset
- mEarlyDelayTap
[j
][0]};
1290 const float coeff
{mEarlyDelayCoeff
[j
][0]};
1291 for(size_t i
{0u};i
< todo
;)
1293 early_delay_tap
&= main_delay
.Mask
;
1294 size_t td
{minz(main_delay
.Mask
+1 - early_delay_tap
, todo
- i
)};
1296 mTempSamples
[j
][i
++] = main_delay
.Line
[early_delay_tap
++][j
] * coeff
;
1301 /* Apply a vector all-pass, to help color the initial reflections based on
1302 * the diffusion strength.
1304 mEarly
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1306 /* Apply a delay and bounce to generate secondary reflections, combine with
1307 * the primary reflections and write out the result for mixing.
1309 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1311 size_t feedb_tap
{offset
- mEarly
.Offset
[j
][0]};
1312 const float feedb_coeff
{mEarly
.Coeff
[j
][0]};
1313 float *out
{mEarlySamples
[j
].data()};
1315 for(size_t i
{0u};i
< todo
;)
1317 feedb_tap
&= early_delay
.Mask
;
1318 size_t td
{minz(early_delay
.Mask
+1 - feedb_tap
, todo
- i
)};
1320 out
[i
] = mTempSamples
[j
][i
] + early_delay
.Line
[feedb_tap
++][j
]*feedb_coeff
;
1325 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1326 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1328 /* Also write the result back to the main delay line for the late reverb
1329 * stage to pick up at the appropriate time, appplying a scatter and
1330 * bounce to improve the initial diffusion in the late reverb.
1332 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1333 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1335 void ReverbState::earlyFaded(const size_t offset
, const size_t todo
, const float fade
,
1336 const float fadeStep
)
1338 const DelayLineI early_delay
{mEarly
.Delay
};
1339 const DelayLineI main_delay
{mDelay
};
1340 const float mixX
{mMixX
};
1341 const float mixY
{mMixY
};
1345 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1347 size_t early_delay_tap0
{offset
- mEarlyDelayTap
[j
][0]};
1348 size_t early_delay_tap1
{offset
- mEarlyDelayTap
[j
][1]};
1349 const float oldCoeff
{mEarlyDelayCoeff
[j
][0]};
1350 const float oldCoeffStep
{-oldCoeff
* fadeStep
};
1351 const float newCoeffStep
{mEarlyDelayCoeff
[j
][1] * fadeStep
};
1352 float fadeCount
{fade
};
1354 for(size_t i
{0u};i
< todo
;)
1356 early_delay_tap0
&= main_delay
.Mask
;
1357 early_delay_tap1
&= main_delay
.Mask
;
1358 size_t td
{minz(main_delay
.Mask
+1 - maxz(early_delay_tap0
, early_delay_tap1
), todo
-i
)};
1361 const float fade0
{oldCoeff
+ oldCoeffStep
*fadeCount
};
1362 const float fade1
{newCoeffStep
*fadeCount
};
1363 mTempSamples
[j
][i
++] =
1364 main_delay
.Line
[early_delay_tap0
++][j
]*fade0
+
1365 main_delay
.Line
[early_delay_tap1
++][j
]*fade1
;
1370 mEarly
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1372 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1374 size_t feedb_tap0
{offset
- mEarly
.Offset
[j
][0]};
1375 size_t feedb_tap1
{offset
- mEarly
.Offset
[j
][1]};
1376 const float feedb_oldCoeff
{mEarly
.Coeff
[j
][0]};
1377 const float feedb_oldCoeffStep
{-feedb_oldCoeff
* fadeStep
};
1378 const float feedb_newCoeffStep
{mEarly
.Coeff
[j
][1] * fadeStep
};
1379 float *out
{mEarlySamples
[j
].data()};
1380 float fadeCount
{fade
};
1382 for(size_t i
{0u};i
< todo
;)
1384 feedb_tap0
&= early_delay
.Mask
;
1385 feedb_tap1
&= early_delay
.Mask
;
1386 size_t td
{minz(early_delay
.Mask
+1 - maxz(feedb_tap0
, feedb_tap1
), todo
- i
)};
1390 const float fade0
{feedb_oldCoeff
+ feedb_oldCoeffStep
*fadeCount
};
1391 const float fade1
{feedb_newCoeffStep
*fadeCount
};
1392 out
[i
] = mTempSamples
[j
][i
] +
1393 early_delay
.Line
[feedb_tap0
++][j
]*fade0
+
1394 early_delay
.Line
[feedb_tap1
++][j
]*fade1
;
1399 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1400 early_delay
.write(offset
, NUM_LINES
-1-j
, mTempSamples
[j
].data(), todo
);
1402 const size_t late_feed_tap
{offset
- mLateFeedTap
};
1403 VectorScatterRevDelayIn(main_delay
, late_feed_tap
, mixX
, mixY
, mEarlySamples
, todo
);
1407 void Modulation::calcDelays(size_t todo
)
1409 constexpr float inv_scale
{MOD_FRACONE
/ al::MathDefs
<float>::Tau()};
1411 const ALuint step
{Step
};
1412 const float depth
{Depth
[0]};
1413 for(size_t i
{0};i
< todo
;++i
)
1416 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) / inv_scale
)};
1417 ModDelays
[i
] = (lfo
+1.0f
) * depth
;
1422 void Modulation::calcFadedDelays(size_t todo
, float fadeCount
, float fadeStep
)
1424 constexpr float inv_scale
{MOD_FRACONE
/ al::MathDefs
<float>::Tau()};
1426 const ALuint step
{Step
};
1427 const float depth
{Depth
[0]};
1428 const float depthStep
{(Depth
[1]-depth
) * fadeStep
};
1429 for(size_t i
{0};i
< todo
;++i
)
1433 const float lfo
{std::sin(static_cast<float>(idx
&MOD_FRACMASK
) / inv_scale
)};
1434 ModDelays
[i
] = (lfo
+1.0f
) * (depth
+ depthStep
*fadeCount
);
1440 /* This generates the reverb tail using a modified feed-back delay network
1443 * Results from the early reflections are mixed with the output from the
1444 * modulated late delay lines.
1446 * The late response is then completed by T60 and all-pass filtering the mix.
1448 * Finally, the lines are reversed (so they feed their opposite directions)
1449 * and scattered with the FDN matrix before re-feeding the delay lines.
1451 * Two variations are made, one for for transitional (cross-faded) delay line
1452 * processing and one for non-transitional processing.
1454 void ReverbState::lateUnfaded(const size_t offset
, const size_t todo
)
1456 const DelayLineI late_delay
{mLate
.Delay
};
1457 const DelayLineI main_delay
{mDelay
};
1458 const float mixX
{mMixX
};
1459 const float mixY
{mMixY
};
1463 /* First, calculate the modulated delays for the late feedback. */
1464 mLate
.Mod
.calcDelays(todo
);
1466 /* Next, load decorrelated samples from the main and feedback delay lines.
1467 * Filter the signal to apply its frequency-dependent decay.
1469 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1471 size_t late_delay_tap
{offset
- mLateDelayTap
[j
][0]};
1472 size_t late_feedb_tap
{offset
- mLate
.Offset
[j
][0]};
1473 const float midGain
{mLate
.T60
[j
].MidGain
[0]};
1474 const float densityGain
{mLate
.DensityGain
[0] * midGain
};
1476 for(size_t i
{0u};i
< todo
;)
1478 late_delay_tap
&= main_delay
.Mask
;
1479 size_t td
{minz(todo
- i
, main_delay
.Mask
+1 - late_delay_tap
)};
1481 /* Calculate the read offset and fraction between it and the
1484 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1485 const size_t delay
{float2uint(fdelay
)};
1486 const float frac
{fdelay
- static_cast<float>(delay
)};
1488 /* Feed the delay line with the late feedback sample, and get
1489 * the two samples crossed by the delayed offset.
1491 const float out0
{late_delay
.Line
[(late_feedb_tap
-delay
) & late_delay
.Mask
][j
]};
1492 const float out1
{late_delay
.Line
[(late_feedb_tap
-delay
-1) & late_delay
.Mask
][j
]};
1495 /* The output is obtained by linearly interpolating the two
1496 * samples that were acquired above, and combined with the main
1499 mTempSamples
[j
][i
] = lerp(out0
, out1
, frac
)*midGain
+
1500 main_delay
.Line
[late_delay_tap
++][j
]*densityGain
;
1504 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1507 /* Apply a vector all-pass to improve micro-surface diffusion, and write
1508 * out the results for mixing.
1510 mLate
.VecAp
.processUnfaded(mTempSamples
, offset
, mixX
, mixY
, todo
);
1511 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1512 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1514 /* Finally, scatter and bounce the results to refeed the feedback buffer. */
1515 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1517 void ReverbState::lateFaded(const size_t offset
, const size_t todo
, const float fade
,
1518 const float fadeStep
)
1520 const DelayLineI late_delay
{mLate
.Delay
};
1521 const DelayLineI main_delay
{mDelay
};
1522 const float mixX
{mMixX
};
1523 const float mixY
{mMixY
};
1527 mLate
.Mod
.calcFadedDelays(todo
, fade
, fadeStep
);
1529 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1531 const float oldMidGain
{mLate
.T60
[j
].MidGain
[0]};
1532 const float midGain
{mLate
.T60
[j
].MidGain
[1]};
1533 const float oldMidStep
{-oldMidGain
* fadeStep
};
1534 const float midStep
{midGain
* fadeStep
};
1535 const float oldDensityGain
{mLate
.DensityGain
[0] * oldMidGain
};
1536 const float densityGain
{mLate
.DensityGain
[1] * midGain
};
1537 const float oldDensityStep
{-oldDensityGain
* fadeStep
};
1538 const float densityStep
{densityGain
* fadeStep
};
1539 size_t late_delay_tap0
{offset
- mLateDelayTap
[j
][0]};
1540 size_t late_delay_tap1
{offset
- mLateDelayTap
[j
][1]};
1541 size_t late_feedb_tap0
{offset
- mLate
.Offset
[j
][0]};
1542 size_t late_feedb_tap1
{offset
- mLate
.Offset
[j
][1]};
1543 float fadeCount
{fade
};
1545 for(size_t i
{0u};i
< todo
;)
1547 late_delay_tap0
&= main_delay
.Mask
;
1548 late_delay_tap1
&= main_delay
.Mask
;
1549 size_t td
{minz(todo
- i
, main_delay
.Mask
+1 - maxz(late_delay_tap0
, late_delay_tap1
))};
1553 const float fdelay
{mLate
.Mod
.ModDelays
[i
]};
1554 const size_t delay
{float2uint(fdelay
)};
1555 const float frac
{fdelay
- static_cast<float>(delay
)};
1557 const float out00
{late_delay
.Line
[(late_feedb_tap0
-delay
) & late_delay
.Mask
][j
]};
1558 const float out01
{late_delay
.Line
[(late_feedb_tap0
-delay
-1) & late_delay
.Mask
][j
]};
1560 const float out10
{late_delay
.Line
[(late_feedb_tap1
-delay
) & late_delay
.Mask
][j
]};
1561 const float out11
{late_delay
.Line
[(late_feedb_tap1
-delay
-1) & late_delay
.Mask
][j
]};
1564 const float fade0
{oldDensityGain
+ oldDensityStep
*fadeCount
};
1565 const float fade1
{densityStep
*fadeCount
};
1566 const float gfade0
{oldMidGain
+ oldMidStep
*fadeCount
};
1567 const float gfade1
{midStep
*fadeCount
};
1568 mTempSamples
[j
][i
] = lerp(out00
, out01
, frac
)*gfade0
+
1569 lerp(out10
, out11
, frac
)*gfade1
+
1570 main_delay
.Line
[late_delay_tap0
++][j
]*fade0
+
1571 main_delay
.Line
[late_delay_tap1
++][j
]*fade1
;
1575 mLate
.T60
[j
].process({mTempSamples
[j
].data(), todo
});
1578 mLate
.VecAp
.processFaded(mTempSamples
, offset
, mixX
, mixY
, fade
, fadeStep
, todo
);
1579 for(size_t j
{0u};j
< NUM_LINES
;j
++)
1580 std::copy_n(mTempSamples
[j
].begin(), todo
, mLateSamples
[j
].begin());
1582 VectorScatterRevDelayIn(late_delay
, offset
, mixX
, mixY
, mTempSamples
, todo
);
1585 void ReverbState::process(const size_t samplesToDo
, const al::span
<const FloatBufferLine
> samplesIn
, const al::span
<FloatBufferLine
> samplesOut
)
1587 size_t offset
{mOffset
};
1589 ASSUME(samplesToDo
> 0);
1591 /* Convert B-Format to A-Format for processing. */
1592 const size_t numInput
{minz(samplesIn
.size(), NUM_LINES
)};
1593 const al::span
<float> tmpspan
{al::assume_aligned
<16>(mTempLine
.data()), samplesToDo
};
1594 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1596 std::fill(tmpspan
.begin(), tmpspan
.end(), 0.0f
);
1597 for(size_t i
{0};i
< numInput
;++i
)
1599 const float gain
{B2A
[c
][i
]};
1600 const float *RESTRICT input
{al::assume_aligned
<16>(samplesIn
[i
].data())};
1602 for(float &sample
: tmpspan
)
1604 sample
+= *input
* gain
;
1609 /* Band-pass the incoming samples and feed the initial delay line. */
1610 DualBiquad
{mFilter
[c
].Lp
, mFilter
[c
].Hp
}.process(tmpspan
, tmpspan
.data());
1611 mDelay
.write(offset
, c
, tmpspan
.cbegin(), samplesToDo
);
1614 /* Process reverb for these samples. */
1615 if LIKELY(!mDoFading
)
1617 for(size_t base
{0};base
< samplesToDo
;)
1619 /* Calculate the number of samples we can do this iteration. */
1620 size_t todo
{minz(samplesToDo
- base
, mMaxUpdate
[0])};
1621 /* Some mixers require maintaining a 4-sample alignment, so ensure
1622 * that if it's not the last iteration.
1624 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1627 /* Generate non-faded early reflections and late reverb. */
1628 earlyUnfaded(offset
, todo
);
1629 lateUnfaded(offset
, todo
);
1631 /* Finally, mix early reflections and late reverb. */
1632 (this->*mMixOut
)(samplesOut
, samplesToDo
-base
, base
, todo
);
1640 const float fadeStep
{1.0f
/ static_cast<float>(samplesToDo
)};
1641 for(size_t base
{0};base
< samplesToDo
;)
1643 size_t todo
{minz(samplesToDo
- base
, minz(mMaxUpdate
[0], mMaxUpdate
[1]))};
1644 if(base
+todo
< samplesToDo
) todo
&= ~size_t{3};
1647 /* Generate cross-faded early reflections and late reverb. */
1648 auto fadeCount
= static_cast<float>(base
);
1649 earlyFaded(offset
, todo
, fadeCount
, fadeStep
);
1650 lateFaded(offset
, todo
, fadeCount
, fadeStep
);
1652 (this->*mMixOut
)(samplesOut
, samplesToDo
-base
, base
, todo
);
1658 /* Update the cross-fading delay line taps. */
1659 for(size_t c
{0u};c
< NUM_LINES
;c
++)
1661 mEarlyDelayTap
[c
][0] = mEarlyDelayTap
[c
][1];
1662 mEarlyDelayCoeff
[c
][0] = mEarlyDelayCoeff
[c
][1];
1663 mLateDelayTap
[c
][0] = mLateDelayTap
[c
][1];
1664 mEarly
.VecAp
.Offset
[c
][0] = mEarly
.VecAp
.Offset
[c
][1];
1665 mEarly
.Offset
[c
][0] = mEarly
.Offset
[c
][1];
1666 mEarly
.Coeff
[c
][0] = mEarly
.Coeff
[c
][1];
1667 mLate
.Offset
[c
][0] = mLate
.Offset
[c
][1];
1668 mLate
.T60
[c
].MidGain
[0] = mLate
.T60
[c
].MidGain
[1];
1669 mLate
.VecAp
.Offset
[c
][0] = mLate
.VecAp
.Offset
[c
][1];
1671 mLate
.DensityGain
[0] = mLate
.DensityGain
[1];
1672 mLate
.Mod
.Depth
[0] = mLate
.Mod
.Depth
[1];
1673 mMaxUpdate
[0] = mMaxUpdate
[1];
1680 void EAXReverb_setParami(EffectProps
*props
, ALenum param
, int val
)
1684 case AL_EAXREVERB_DECAY_HFLIMIT
:
1685 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_EAXREVERB_MAX_DECAY_HFLIMIT
))
1686 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb decay hflimit out of range"};
1687 props
->Reverb
.DecayHFLimit
= val
!= AL_FALSE
;
1691 throw effect_exception
{AL_INVALID_ENUM
, "Invalid EAX reverb integer property 0x%04x",
1695 void EAXReverb_setParamiv(EffectProps
*props
, ALenum param
, const int *vals
)
1696 { EAXReverb_setParami(props
, param
, vals
[0]); }
1697 void EAXReverb_setParamf(EffectProps
*props
, ALenum param
, float val
)
1701 case AL_EAXREVERB_DENSITY
:
1702 if(!(val
>= AL_EAXREVERB_MIN_DENSITY
&& val
<= AL_EAXREVERB_MAX_DENSITY
))
1703 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb density out of range"};
1704 props
->Reverb
.Density
= val
;
1707 case AL_EAXREVERB_DIFFUSION
:
1708 if(!(val
>= AL_EAXREVERB_MIN_DIFFUSION
&& val
<= AL_EAXREVERB_MAX_DIFFUSION
))
1709 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb diffusion out of range"};
1710 props
->Reverb
.Diffusion
= val
;
1713 case AL_EAXREVERB_GAIN
:
1714 if(!(val
>= AL_EAXREVERB_MIN_GAIN
&& val
<= AL_EAXREVERB_MAX_GAIN
))
1715 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb gain out of range"};
1716 props
->Reverb
.Gain
= val
;
1719 case AL_EAXREVERB_GAINHF
:
1720 if(!(val
>= AL_EAXREVERB_MIN_GAINHF
&& val
<= AL_EAXREVERB_MAX_GAINHF
))
1721 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb gainhf out of range"};
1722 props
->Reverb
.GainHF
= val
;
1725 case AL_EAXREVERB_GAINLF
:
1726 if(!(val
>= AL_EAXREVERB_MIN_GAINLF
&& val
<= AL_EAXREVERB_MAX_GAINLF
))
1727 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb gainlf out of range"};
1728 props
->Reverb
.GainLF
= val
;
1731 case AL_EAXREVERB_DECAY_TIME
:
1732 if(!(val
>= AL_EAXREVERB_MIN_DECAY_TIME
&& val
<= AL_EAXREVERB_MAX_DECAY_TIME
))
1733 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb decay time out of range"};
1734 props
->Reverb
.DecayTime
= val
;
1737 case AL_EAXREVERB_DECAY_HFRATIO
:
1738 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_HFRATIO
))
1739 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb decay hfratio out of range"};
1740 props
->Reverb
.DecayHFRatio
= val
;
1743 case AL_EAXREVERB_DECAY_LFRATIO
:
1744 if(!(val
>= AL_EAXREVERB_MIN_DECAY_LFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_LFRATIO
))
1745 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb decay lfratio out of range"};
1746 props
->Reverb
.DecayLFRatio
= val
;
1749 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1750 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_GAIN
))
1751 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb reflections gain out of range"};
1752 props
->Reverb
.ReflectionsGain
= val
;
1755 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1756 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
))
1757 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb reflections delay out of range"};
1758 props
->Reverb
.ReflectionsDelay
= val
;
1761 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1762 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_GAIN
))
1763 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb late reverb gain out of range"};
1764 props
->Reverb
.LateReverbGain
= val
;
1767 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1768 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_DELAY
))
1769 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb late reverb delay out of range"};
1770 props
->Reverb
.LateReverbDelay
= val
;
1773 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1774 if(!(val
>= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF
))
1775 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb air absorption gainhf out of range"};
1776 props
->Reverb
.AirAbsorptionGainHF
= val
;
1779 case AL_EAXREVERB_ECHO_TIME
:
1780 if(!(val
>= AL_EAXREVERB_MIN_ECHO_TIME
&& val
<= AL_EAXREVERB_MAX_ECHO_TIME
))
1781 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb echo time out of range"};
1782 props
->Reverb
.EchoTime
= val
;
1785 case AL_EAXREVERB_ECHO_DEPTH
:
1786 if(!(val
>= AL_EAXREVERB_MIN_ECHO_DEPTH
&& val
<= AL_EAXREVERB_MAX_ECHO_DEPTH
))
1787 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb echo depth out of range"};
1788 props
->Reverb
.EchoDepth
= val
;
1791 case AL_EAXREVERB_MODULATION_TIME
:
1792 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_TIME
&& val
<= AL_EAXREVERB_MAX_MODULATION_TIME
))
1793 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb modulation time out of range"};
1794 props
->Reverb
.ModulationTime
= val
;
1797 case AL_EAXREVERB_MODULATION_DEPTH
:
1798 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_DEPTH
&& val
<= AL_EAXREVERB_MAX_MODULATION_DEPTH
))
1799 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb modulation depth out of range"};
1800 props
->Reverb
.ModulationDepth
= val
;
1803 case AL_EAXREVERB_HFREFERENCE
:
1804 if(!(val
>= AL_EAXREVERB_MIN_HFREFERENCE
&& val
<= AL_EAXREVERB_MAX_HFREFERENCE
))
1805 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb hfreference out of range"};
1806 props
->Reverb
.HFReference
= val
;
1809 case AL_EAXREVERB_LFREFERENCE
:
1810 if(!(val
>= AL_EAXREVERB_MIN_LFREFERENCE
&& val
<= AL_EAXREVERB_MAX_LFREFERENCE
))
1811 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb lfreference out of range"};
1812 props
->Reverb
.LFReference
= val
;
1815 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1816 if(!(val
>= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR
))
1817 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb room rolloff factor out of range"};
1818 props
->Reverb
.RoomRolloffFactor
= val
;
1822 throw effect_exception
{AL_INVALID_ENUM
, "Invalid EAX reverb float property 0x%04x", param
};
1825 void EAXReverb_setParamfv(EffectProps
*props
, ALenum param
, const float *vals
)
1829 case AL_EAXREVERB_REFLECTIONS_PAN
:
1830 if(!(std::isfinite(vals
[0]) && std::isfinite(vals
[1]) && std::isfinite(vals
[2])))
1831 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb reflections pan out of range"};
1832 props
->Reverb
.ReflectionsPan
[0] = vals
[0];
1833 props
->Reverb
.ReflectionsPan
[1] = vals
[1];
1834 props
->Reverb
.ReflectionsPan
[2] = vals
[2];
1836 case AL_EAXREVERB_LATE_REVERB_PAN
:
1837 if(!(std::isfinite(vals
[0]) && std::isfinite(vals
[1]) && std::isfinite(vals
[2])))
1838 throw effect_exception
{AL_INVALID_VALUE
, "EAX Reverb late reverb pan out of range"};
1839 props
->Reverb
.LateReverbPan
[0] = vals
[0];
1840 props
->Reverb
.LateReverbPan
[1] = vals
[1];
1841 props
->Reverb
.LateReverbPan
[2] = vals
[2];
1845 EAXReverb_setParamf(props
, param
, vals
[0]);
1850 void EAXReverb_getParami(const EffectProps
*props
, ALenum param
, int *val
)
1854 case AL_EAXREVERB_DECAY_HFLIMIT
:
1855 *val
= props
->Reverb
.DecayHFLimit
;
1859 throw effect_exception
{AL_INVALID_ENUM
, "Invalid EAX reverb integer property 0x%04x",
1863 void EAXReverb_getParamiv(const EffectProps
*props
, ALenum param
, int *vals
)
1864 { EAXReverb_getParami(props
, param
, vals
); }
1865 void EAXReverb_getParamf(const EffectProps
*props
, ALenum param
, float *val
)
1869 case AL_EAXREVERB_DENSITY
:
1870 *val
= props
->Reverb
.Density
;
1873 case AL_EAXREVERB_DIFFUSION
:
1874 *val
= props
->Reverb
.Diffusion
;
1877 case AL_EAXREVERB_GAIN
:
1878 *val
= props
->Reverb
.Gain
;
1881 case AL_EAXREVERB_GAINHF
:
1882 *val
= props
->Reverb
.GainHF
;
1885 case AL_EAXREVERB_GAINLF
:
1886 *val
= props
->Reverb
.GainLF
;
1889 case AL_EAXREVERB_DECAY_TIME
:
1890 *val
= props
->Reverb
.DecayTime
;
1893 case AL_EAXREVERB_DECAY_HFRATIO
:
1894 *val
= props
->Reverb
.DecayHFRatio
;
1897 case AL_EAXREVERB_DECAY_LFRATIO
:
1898 *val
= props
->Reverb
.DecayLFRatio
;
1901 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1902 *val
= props
->Reverb
.ReflectionsGain
;
1905 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1906 *val
= props
->Reverb
.ReflectionsDelay
;
1909 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1910 *val
= props
->Reverb
.LateReverbGain
;
1913 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1914 *val
= props
->Reverb
.LateReverbDelay
;
1917 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1918 *val
= props
->Reverb
.AirAbsorptionGainHF
;
1921 case AL_EAXREVERB_ECHO_TIME
:
1922 *val
= props
->Reverb
.EchoTime
;
1925 case AL_EAXREVERB_ECHO_DEPTH
:
1926 *val
= props
->Reverb
.EchoDepth
;
1929 case AL_EAXREVERB_MODULATION_TIME
:
1930 *val
= props
->Reverb
.ModulationTime
;
1933 case AL_EAXREVERB_MODULATION_DEPTH
:
1934 *val
= props
->Reverb
.ModulationDepth
;
1937 case AL_EAXREVERB_HFREFERENCE
:
1938 *val
= props
->Reverb
.HFReference
;
1941 case AL_EAXREVERB_LFREFERENCE
:
1942 *val
= props
->Reverb
.LFReference
;
1945 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1946 *val
= props
->Reverb
.RoomRolloffFactor
;
1950 throw effect_exception
{AL_INVALID_ENUM
, "Invalid EAX reverb float property 0x%04x", param
};
1953 void EAXReverb_getParamfv(const EffectProps
*props
, ALenum param
, float *vals
)
1957 case AL_EAXREVERB_REFLECTIONS_PAN
:
1958 vals
[0] = props
->Reverb
.ReflectionsPan
[0];
1959 vals
[1] = props
->Reverb
.ReflectionsPan
[1];
1960 vals
[2] = props
->Reverb
.ReflectionsPan
[2];
1962 case AL_EAXREVERB_LATE_REVERB_PAN
:
1963 vals
[0] = props
->Reverb
.LateReverbPan
[0];
1964 vals
[1] = props
->Reverb
.LateReverbPan
[1];
1965 vals
[2] = props
->Reverb
.LateReverbPan
[2];
1969 EAXReverb_getParamf(props
, param
, vals
);
1974 DEFINE_ALEFFECT_VTABLE(EAXReverb
);
1977 struct ReverbStateFactory final
: public EffectStateFactory
{
1978 EffectState
*create() override
{ return new ReverbState
{}; }
1979 EffectProps
getDefaultProps() const noexcept override
;
1980 const EffectVtable
*getEffectVtable() const noexcept override
{ return &EAXReverb_vtable
; }
1983 EffectProps
ReverbStateFactory::getDefaultProps() const noexcept
1985 EffectProps props
{};
1986 props
.Reverb
.Density
= AL_EAXREVERB_DEFAULT_DENSITY
;
1987 props
.Reverb
.Diffusion
= AL_EAXREVERB_DEFAULT_DIFFUSION
;
1988 props
.Reverb
.Gain
= AL_EAXREVERB_DEFAULT_GAIN
;
1989 props
.Reverb
.GainHF
= AL_EAXREVERB_DEFAULT_GAINHF
;
1990 props
.Reverb
.GainLF
= AL_EAXREVERB_DEFAULT_GAINLF
;
1991 props
.Reverb
.DecayTime
= AL_EAXREVERB_DEFAULT_DECAY_TIME
;
1992 props
.Reverb
.DecayHFRatio
= AL_EAXREVERB_DEFAULT_DECAY_HFRATIO
;
1993 props
.Reverb
.DecayLFRatio
= AL_EAXREVERB_DEFAULT_DECAY_LFRATIO
;
1994 props
.Reverb
.ReflectionsGain
= AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN
;
1995 props
.Reverb
.ReflectionsDelay
= AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY
;
1996 props
.Reverb
.ReflectionsPan
[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1997 props
.Reverb
.ReflectionsPan
[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1998 props
.Reverb
.ReflectionsPan
[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ
;
1999 props
.Reverb
.LateReverbGain
= AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN
;
2000 props
.Reverb
.LateReverbDelay
= AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY
;
2001 props
.Reverb
.LateReverbPan
[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
2002 props
.Reverb
.LateReverbPan
[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
2003 props
.Reverb
.LateReverbPan
[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ
;
2004 props
.Reverb
.EchoTime
= AL_EAXREVERB_DEFAULT_ECHO_TIME
;
2005 props
.Reverb
.EchoDepth
= AL_EAXREVERB_DEFAULT_ECHO_DEPTH
;
2006 props
.Reverb
.ModulationTime
= AL_EAXREVERB_DEFAULT_MODULATION_TIME
;
2007 props
.Reverb
.ModulationDepth
= AL_EAXREVERB_DEFAULT_MODULATION_DEPTH
;
2008 props
.Reverb
.AirAbsorptionGainHF
= AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF
;
2009 props
.Reverb
.HFReference
= AL_EAXREVERB_DEFAULT_HFREFERENCE
;
2010 props
.Reverb
.LFReference
= AL_EAXREVERB_DEFAULT_LFREFERENCE
;
2011 props
.Reverb
.RoomRolloffFactor
= AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR
;
2012 props
.Reverb
.DecayHFLimit
= AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT
;
2017 void StdReverb_setParami(EffectProps
*props
, ALenum param
, int val
)
2021 case AL_REVERB_DECAY_HFLIMIT
:
2022 if(!(val
>= AL_REVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_REVERB_MAX_DECAY_HFLIMIT
))
2023 throw effect_exception
{AL_INVALID_VALUE
, "Reverb decay hflimit out of range"};
2024 props
->Reverb
.DecayHFLimit
= val
!= AL_FALSE
;
2028 throw effect_exception
{AL_INVALID_ENUM
, "Invalid reverb integer property 0x%04x", param
};
2031 void StdReverb_setParamiv(EffectProps
*props
, ALenum param
, const int *vals
)
2032 { StdReverb_setParami(props
, param
, vals
[0]); }
2033 void StdReverb_setParamf(EffectProps
*props
, ALenum param
, float val
)
2037 case AL_REVERB_DENSITY
:
2038 if(!(val
>= AL_REVERB_MIN_DENSITY
&& val
<= AL_REVERB_MAX_DENSITY
))
2039 throw effect_exception
{AL_INVALID_VALUE
, "Reverb density out of range"};
2040 props
->Reverb
.Density
= val
;
2043 case AL_REVERB_DIFFUSION
:
2044 if(!(val
>= AL_REVERB_MIN_DIFFUSION
&& val
<= AL_REVERB_MAX_DIFFUSION
))
2045 throw effect_exception
{AL_INVALID_VALUE
, "Reverb diffusion out of range"};
2046 props
->Reverb
.Diffusion
= val
;
2049 case AL_REVERB_GAIN
:
2050 if(!(val
>= AL_REVERB_MIN_GAIN
&& val
<= AL_REVERB_MAX_GAIN
))
2051 throw effect_exception
{AL_INVALID_VALUE
, "Reverb gain out of range"};
2052 props
->Reverb
.Gain
= val
;
2055 case AL_REVERB_GAINHF
:
2056 if(!(val
>= AL_REVERB_MIN_GAINHF
&& val
<= AL_REVERB_MAX_GAINHF
))
2057 throw effect_exception
{AL_INVALID_VALUE
, "Reverb gainhf out of range"};
2058 props
->Reverb
.GainHF
= val
;
2061 case AL_REVERB_DECAY_TIME
:
2062 if(!(val
>= AL_REVERB_MIN_DECAY_TIME
&& val
<= AL_REVERB_MAX_DECAY_TIME
))
2063 throw effect_exception
{AL_INVALID_VALUE
, "Reverb decay time out of range"};
2064 props
->Reverb
.DecayTime
= val
;
2067 case AL_REVERB_DECAY_HFRATIO
:
2068 if(!(val
>= AL_REVERB_MIN_DECAY_HFRATIO
&& val
<= AL_REVERB_MAX_DECAY_HFRATIO
))
2069 throw effect_exception
{AL_INVALID_VALUE
, "Reverb decay hfratio out of range"};
2070 props
->Reverb
.DecayHFRatio
= val
;
2073 case AL_REVERB_REFLECTIONS_GAIN
:
2074 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_REVERB_MAX_REFLECTIONS_GAIN
))
2075 throw effect_exception
{AL_INVALID_VALUE
, "Reverb reflections gain out of range"};
2076 props
->Reverb
.ReflectionsGain
= val
;
2079 case AL_REVERB_REFLECTIONS_DELAY
:
2080 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_REVERB_MAX_REFLECTIONS_DELAY
))
2081 throw effect_exception
{AL_INVALID_VALUE
, "Reverb reflections delay out of range"};
2082 props
->Reverb
.ReflectionsDelay
= val
;
2085 case AL_REVERB_LATE_REVERB_GAIN
:
2086 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_REVERB_MAX_LATE_REVERB_GAIN
))
2087 throw effect_exception
{AL_INVALID_VALUE
, "Reverb late reverb gain out of range"};
2088 props
->Reverb
.LateReverbGain
= val
;
2091 case AL_REVERB_LATE_REVERB_DELAY
:
2092 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_REVERB_MAX_LATE_REVERB_DELAY
))
2093 throw effect_exception
{AL_INVALID_VALUE
, "Reverb late reverb delay out of range"};
2094 props
->Reverb
.LateReverbDelay
= val
;
2097 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
2098 if(!(val
>= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF
))
2099 throw effect_exception
{AL_INVALID_VALUE
, "Reverb air absorption gainhf out of range"};
2100 props
->Reverb
.AirAbsorptionGainHF
= val
;
2103 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
2104 if(!(val
>= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR
))
2105 throw effect_exception
{AL_INVALID_VALUE
, "Reverb room rolloff factor out of range"};
2106 props
->Reverb
.RoomRolloffFactor
= val
;
2110 throw effect_exception
{AL_INVALID_ENUM
, "Invalid reverb float property 0x%04x", param
};
2113 void StdReverb_setParamfv(EffectProps
*props
, ALenum param
, const float *vals
)
2114 { StdReverb_setParamf(props
, param
, vals
[0]); }
2116 void StdReverb_getParami(const EffectProps
*props
, ALenum param
, int *val
)
2120 case AL_REVERB_DECAY_HFLIMIT
:
2121 *val
= props
->Reverb
.DecayHFLimit
;
2125 throw effect_exception
{AL_INVALID_ENUM
, "Invalid reverb integer property 0x%04x", param
};
2128 void StdReverb_getParamiv(const EffectProps
*props
, ALenum param
, int *vals
)
2129 { StdReverb_getParami(props
, param
, vals
); }
2130 void StdReverb_getParamf(const EffectProps
*props
, ALenum param
, float *val
)
2134 case AL_REVERB_DENSITY
:
2135 *val
= props
->Reverb
.Density
;
2138 case AL_REVERB_DIFFUSION
:
2139 *val
= props
->Reverb
.Diffusion
;
2142 case AL_REVERB_GAIN
:
2143 *val
= props
->Reverb
.Gain
;
2146 case AL_REVERB_GAINHF
:
2147 *val
= props
->Reverb
.GainHF
;
2150 case AL_REVERB_DECAY_TIME
:
2151 *val
= props
->Reverb
.DecayTime
;
2154 case AL_REVERB_DECAY_HFRATIO
:
2155 *val
= props
->Reverb
.DecayHFRatio
;
2158 case AL_REVERB_REFLECTIONS_GAIN
:
2159 *val
= props
->Reverb
.ReflectionsGain
;
2162 case AL_REVERB_REFLECTIONS_DELAY
:
2163 *val
= props
->Reverb
.ReflectionsDelay
;
2166 case AL_REVERB_LATE_REVERB_GAIN
:
2167 *val
= props
->Reverb
.LateReverbGain
;
2170 case AL_REVERB_LATE_REVERB_DELAY
:
2171 *val
= props
->Reverb
.LateReverbDelay
;
2174 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
2175 *val
= props
->Reverb
.AirAbsorptionGainHF
;
2178 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
2179 *val
= props
->Reverb
.RoomRolloffFactor
;
2183 throw effect_exception
{AL_INVALID_ENUM
, "Invalid reverb float property 0x%04x", param
};
2186 void StdReverb_getParamfv(const EffectProps
*props
, ALenum param
, float *vals
)
2187 { StdReverb_getParamf(props
, param
, vals
); }
2189 DEFINE_ALEFFECT_VTABLE(StdReverb
);
2192 struct StdReverbStateFactory final
: public EffectStateFactory
{
2193 EffectState
*create() override
{ return new ReverbState
{}; }
2194 EffectProps
getDefaultProps() const noexcept override
;
2195 const EffectVtable
*getEffectVtable() const noexcept override
{ return &StdReverb_vtable
; }
2198 EffectProps
StdReverbStateFactory::getDefaultProps() const noexcept
2200 EffectProps props
{};
2201 props
.Reverb
.Density
= AL_REVERB_DEFAULT_DENSITY
;
2202 props
.Reverb
.Diffusion
= AL_REVERB_DEFAULT_DIFFUSION
;
2203 props
.Reverb
.Gain
= AL_REVERB_DEFAULT_GAIN
;
2204 props
.Reverb
.GainHF
= AL_REVERB_DEFAULT_GAINHF
;
2205 props
.Reverb
.GainLF
= 1.0f
;
2206 props
.Reverb
.DecayTime
= AL_REVERB_DEFAULT_DECAY_TIME
;
2207 props
.Reverb
.DecayHFRatio
= AL_REVERB_DEFAULT_DECAY_HFRATIO
;
2208 props
.Reverb
.DecayLFRatio
= 1.0f
;
2209 props
.Reverb
.ReflectionsGain
= AL_REVERB_DEFAULT_REFLECTIONS_GAIN
;
2210 props
.Reverb
.ReflectionsDelay
= AL_REVERB_DEFAULT_REFLECTIONS_DELAY
;
2211 props
.Reverb
.ReflectionsPan
[0] = 0.0f
;
2212 props
.Reverb
.ReflectionsPan
[1] = 0.0f
;
2213 props
.Reverb
.ReflectionsPan
[2] = 0.0f
;
2214 props
.Reverb
.LateReverbGain
= AL_REVERB_DEFAULT_LATE_REVERB_GAIN
;
2215 props
.Reverb
.LateReverbDelay
= AL_REVERB_DEFAULT_LATE_REVERB_DELAY
;
2216 props
.Reverb
.LateReverbPan
[0] = 0.0f
;
2217 props
.Reverb
.LateReverbPan
[1] = 0.0f
;
2218 props
.Reverb
.LateReverbPan
[2] = 0.0f
;
2219 props
.Reverb
.EchoTime
= 0.25f
;
2220 props
.Reverb
.EchoDepth
= 0.0f
;
2221 props
.Reverb
.ModulationTime
= 0.25f
;
2222 props
.Reverb
.ModulationDepth
= 0.0f
;
2223 props
.Reverb
.AirAbsorptionGainHF
= AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF
;
2224 props
.Reverb
.HFReference
= 5000.0f
;
2225 props
.Reverb
.LFReference
= 250.0f
;
2226 props
.Reverb
.RoomRolloffFactor
= AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR
;
2227 props
.Reverb
.DecayHFLimit
= AL_REVERB_DEFAULT_DECAY_HFLIMIT
;
2233 EffectStateFactory
*ReverbStateFactory_getFactory()
2235 static ReverbStateFactory ReverbFactory
{};
2236 return &ReverbFactory
;
2239 EffectStateFactory
*StdReverbStateFactory_getFactory()
2241 static StdReverbStateFactory ReverbFactory
{};
2242 return &ReverbFactory
;