Simplify clearing an array
[openal-soft.git] / examples / alffplay.cpp
blobabffee857bc8f30f8f715723ec01f261805777d7
1 /*
2 * An example showing how to play a stream sync'd to video, using ffmpeg.
4 * Requires C++14.
5 */
7 #include <condition_variable>
8 #include <functional>
9 #include <algorithm>
10 #include <iostream>
11 #include <utility>
12 #include <iomanip>
13 #include <cstdint>
14 #include <cstring>
15 #include <cstdlib>
16 #include <atomic>
17 #include <cerrno>
18 #include <chrono>
19 #include <cstdio>
20 #include <memory>
21 #include <string>
22 #include <thread>
23 #include <vector>
24 #include <array>
25 #include <cmath>
26 #include <deque>
27 #include <mutex>
28 #include <ratio>
30 extern "C" {
31 #ifdef __GNUC__
32 _Pragma("GCC diagnostic push")
33 _Pragma("GCC diagnostic ignored \"-Wconversion\"")
34 _Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
35 #endif
36 #include "libavcodec/avcodec.h"
37 #include "libavformat/avformat.h"
38 #include "libavformat/avio.h"
39 #include "libavformat/version.h"
40 #include "libavutil/avutil.h"
41 #include "libavutil/error.h"
42 #include "libavutil/frame.h"
43 #include "libavutil/mem.h"
44 #include "libavutil/pixfmt.h"
45 #include "libavutil/rational.h"
46 #include "libavutil/samplefmt.h"
47 #include "libavutil/time.h"
48 #include "libavutil/version.h"
49 #include "libavutil/channel_layout.h"
50 #include "libswscale/swscale.h"
51 #include "libswresample/swresample.h"
53 constexpr auto AVNoPtsValue = AV_NOPTS_VALUE;
54 constexpr auto AVErrorEOF = AVERROR_EOF;
56 struct SwsContext;
57 #ifdef __GNUC__
58 _Pragma("GCC diagnostic pop")
59 #endif
62 #include "SDL.h"
64 #include "AL/alc.h"
65 #include "AL/al.h"
66 #include "AL/alext.h"
68 #include "common/alhelpers.h"
70 extern "C" {
71 /* Undefine this to disable use of experimental extensions. Don't use for
72 * production code! Interfaces and behavior may change prior to being
73 * finalized.
75 #define ALLOW_EXPERIMENTAL_EXTS
77 #ifdef ALLOW_EXPERIMENTAL_EXTS
78 #ifndef AL_SOFT_events
79 #define AL_SOFT_events 1
80 #define AL_EVENT_CALLBACK_FUNCTION_SOFT 0x1220
81 #define AL_EVENT_CALLBACK_USER_PARAM_SOFT 0x1221
82 #define AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT 0x1222
83 #define AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT 0x1223
84 #define AL_EVENT_TYPE_ERROR_SOFT 0x1224
85 #define AL_EVENT_TYPE_PERFORMANCE_SOFT 0x1225
86 #define AL_EVENT_TYPE_DEPRECATED_SOFT 0x1226
87 #define AL_EVENT_TYPE_DISCONNECTED_SOFT 0x1227
88 typedef void (AL_APIENTRY*ALEVENTPROCSOFT)(ALenum eventType, ALuint object, ALuint param,
89 ALsizei length, const ALchar *message,
90 void *userParam);
91 typedef void (AL_APIENTRY*LPALEVENTCONTROLSOFT)(ALsizei count, const ALenum *types, ALboolean enable);
92 typedef void (AL_APIENTRY*LPALEVENTCALLBACKSOFT)(ALEVENTPROCSOFT callback, void *userParam);
93 typedef void* (AL_APIENTRY*LPALGETPOINTERSOFT)(ALenum pname);
94 typedef void (AL_APIENTRY*LPALGETPOINTERVSOFT)(ALenum pname, void **values);
95 #endif
97 #ifndef AL_SOFT_callback_buffer
98 #define AL_SOFT_callback_buffer
99 typedef unsigned int ALbitfieldSOFT;
100 #define AL_BUFFER_CALLBACK_FUNCTION_SOFT 0x19A0
101 #define AL_BUFFER_CALLBACK_USER_PARAM_SOFT 0x19A1
102 typedef ALsizei (AL_APIENTRY*LPALBUFFERCALLBACKTYPESOFT)(ALvoid *userptr, ALvoid *sampledata, ALsizei numsamples);
103 typedef void (AL_APIENTRY*LPALBUFFERCALLBACKSOFT)(ALuint buffer, ALenum format, ALsizei freq, LPALBUFFERCALLBACKTYPESOFT callback, ALvoid *userptr, ALbitfieldSOFT flags);
104 typedef void (AL_APIENTRY*LPALGETBUFFERPTRSOFT)(ALuint buffer, ALenum param, ALvoid **value);
105 typedef void (AL_APIENTRY*LPALGETBUFFER3PTRSOFT)(ALuint buffer, ALenum param, ALvoid **value1, ALvoid **value2, ALvoid **value3);
106 typedef void (AL_APIENTRY*LPALGETBUFFERPTRVSOFT)(ALuint buffer, ALenum param, ALvoid **values);
107 #endif
108 #endif /* ALLOW_EXPERIMENTAL_EXTS */
111 namespace {
113 inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
115 #ifndef M_PI
116 #define M_PI (3.14159265358979323846)
117 #endif
119 using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
120 using nanoseconds = std::chrono::nanoseconds;
121 using microseconds = std::chrono::microseconds;
122 using milliseconds = std::chrono::milliseconds;
123 using seconds = std::chrono::seconds;
124 using seconds_d64 = std::chrono::duration<double>;
125 using std::chrono::duration_cast;
127 const std::string AppName{"alffplay"};
129 ALenum DirectOutMode{AL_FALSE};
130 bool EnableWideStereo{false};
131 bool DisableVideo{false};
132 LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
133 LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
135 #ifdef AL_SOFT_events
136 LPALEVENTCONTROLSOFT alEventControlSOFT;
137 LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
138 #endif
140 #ifdef AL_SOFT_callback_buffer
141 LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
142 #endif
144 const seconds AVNoSyncThreshold{10};
146 #define VIDEO_PICTURE_QUEUE_SIZE 24
148 const seconds_d64 AudioSyncThreshold{0.03};
149 const milliseconds AudioSampleCorrectionMax{50};
150 /* Averaging filter coefficient for audio sync. */
151 #define AUDIO_DIFF_AVG_NB 20
152 const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
153 /* Per-buffer size, in time */
154 constexpr milliseconds AudioBufferTime{20};
155 /* Buffer total size, in time (should be divisible by the buffer time) */
156 constexpr milliseconds AudioBufferTotalTime{800};
157 constexpr auto AudioBufferCount = AudioBufferTotalTime / AudioBufferTime;
159 enum {
160 FF_MOVIE_DONE_EVENT = SDL_USEREVENT
163 enum class SyncMaster {
164 Audio,
165 Video,
166 External,
168 Default = External
172 inline microseconds get_avtime()
173 { return microseconds{av_gettime()}; }
175 /* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
176 struct AVIOContextDeleter {
177 void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
179 using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
181 struct AVFormatCtxDeleter {
182 void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
184 using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
186 struct AVCodecCtxDeleter {
187 void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
189 using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
191 struct AVFrameDeleter {
192 void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
194 using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
196 struct SwrContextDeleter {
197 void operator()(SwrContext *ptr) { swr_free(&ptr); }
199 using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
201 struct SwsContextDeleter {
202 void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
204 using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
207 template<size_t SizeLimit>
208 class PacketQueue {
209 std::mutex mMutex;
210 std::condition_variable mCondVar;
211 std::deque<AVPacket> mPackets;
212 size_t mTotalSize{0};
213 bool mFinished{false};
215 AVPacket *getPacket(std::unique_lock<std::mutex> &lock)
217 while(mPackets.empty() && !mFinished)
218 mCondVar.wait(lock);
219 return mPackets.empty() ? nullptr : &mPackets.front();
222 void pop()
224 AVPacket *pkt = &mPackets.front();
225 mTotalSize -= static_cast<unsigned int>(pkt->size);
226 av_packet_unref(pkt);
227 mPackets.pop_front();
230 public:
231 ~PacketQueue()
233 for(AVPacket &pkt : mPackets)
234 av_packet_unref(&pkt);
235 mPackets.clear();
236 mTotalSize = 0;
239 int sendTo(AVCodecContext *codecctx)
241 std::unique_lock<std::mutex> lock{mMutex};
243 AVPacket *pkt{getPacket(lock)};
244 if(!pkt) return avcodec_send_packet(codecctx, nullptr);
246 const int ret{avcodec_send_packet(codecctx, pkt)};
247 if(ret != AVERROR(EAGAIN))
249 if(ret < 0)
250 std::cerr<< "Failed to send packet: "<<ret <<std::endl;
251 pop();
253 return ret;
256 void setFinished()
259 std::lock_guard<std::mutex> _{mMutex};
260 mFinished = true;
262 mCondVar.notify_one();
265 bool put(const AVPacket *pkt)
268 std::unique_lock<std::mutex> lock{mMutex};
269 if(mTotalSize >= SizeLimit)
270 return false;
272 mPackets.push_back(AVPacket{});
273 if(av_packet_ref(&mPackets.back(), pkt) != 0)
275 mPackets.pop_back();
276 return true;
279 mTotalSize += static_cast<unsigned int>(mPackets.back().size);
281 mCondVar.notify_one();
282 return true;
287 struct MovieState;
289 struct AudioState {
290 MovieState &mMovie;
292 AVStream *mStream{nullptr};
293 AVCodecCtxPtr mCodecCtx;
295 PacketQueue<2*1024*1024> mPackets;
297 /* Used for clock difference average computation */
298 seconds_d64 mClockDiffAvg{0};
300 /* Time of the next sample to be buffered */
301 nanoseconds mCurrentPts{0};
303 /* Device clock time that the stream started at. */
304 nanoseconds mDeviceStartTime{nanoseconds::min()};
306 /* Decompressed sample frame, and swresample context for conversion */
307 AVFramePtr mDecodedFrame;
308 SwrContextPtr mSwresCtx;
310 /* Conversion format, for what gets fed to OpenAL */
311 uint64_t mDstChanLayout{0};
312 AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
314 /* Storage of converted samples */
315 uint8_t *mSamples{nullptr};
316 int mSamplesLen{0}; /* In samples */
317 int mSamplesPos{0};
318 int mSamplesMax{0};
320 std::unique_ptr<uint8_t[]> mBufferData;
321 size_t mBufferDataSize{0};
322 std::atomic<size_t> mReadPos{0};
323 std::atomic<size_t> mWritePos{0};
325 /* OpenAL format */
326 ALenum mFormat{AL_NONE};
327 ALuint mFrameSize{0};
329 std::mutex mSrcMutex;
330 std::condition_variable mSrcCond;
331 std::atomic_flag mConnected;
332 ALuint mSource{0};
333 std::array<ALuint,AudioBufferCount> mBuffers{};
334 ALuint mBufferIdx{0};
336 AudioState(MovieState &movie) : mMovie(movie)
337 { mConnected.test_and_set(std::memory_order_relaxed); }
338 ~AudioState()
340 if(mSource)
341 alDeleteSources(1, &mSource);
342 if(mBuffers[0])
343 alDeleteBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
345 av_freep(&mSamples);
348 #ifdef AL_SOFT_events
349 static void AL_APIENTRY EventCallback(ALenum eventType, ALuint object, ALuint param,
350 ALsizei length, const ALchar *message, void *userParam);
351 #endif
352 #ifdef AL_SOFT_callback_buffer
353 static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size)
354 { return static_cast<AudioState*>(userptr)->bufferCallback(data, size); }
355 ALsizei bufferCallback(void *data, ALsizei size);
356 #endif
358 nanoseconds getClockNoLock();
359 nanoseconds getClock()
361 std::lock_guard<std::mutex> lock{mSrcMutex};
362 return getClockNoLock();
365 bool startPlayback();
367 int getSync();
368 int decodeFrame();
369 bool readAudio(uint8_t *samples, unsigned int length, int &sample_skip);
370 void readAudio(int sample_skip);
372 int handler();
375 struct VideoState {
376 MovieState &mMovie;
378 AVStream *mStream{nullptr};
379 AVCodecCtxPtr mCodecCtx;
381 PacketQueue<14*1024*1024> mPackets;
383 /* The pts of the currently displayed frame, and the time (av_gettime) it
384 * was last updated - used to have running video pts
386 nanoseconds mDisplayPts{0};
387 microseconds mDisplayPtsTime{microseconds::min()};
388 std::mutex mDispPtsMutex;
390 /* Swscale context for format conversion */
391 SwsContextPtr mSwscaleCtx;
393 struct Picture {
394 AVFramePtr mFrame{};
395 nanoseconds mPts{nanoseconds::min()};
397 std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
398 std::atomic<size_t> mPictQRead{0u}, mPictQWrite{1u};
399 std::mutex mPictQMutex;
400 std::condition_variable mPictQCond;
402 SDL_Texture *mImage{nullptr};
403 int mWidth{0}, mHeight{0}; /* Logical image size (actual size may be larger) */
404 bool mFirstUpdate{true};
406 std::atomic<bool> mEOS{false};
407 std::atomic<bool> mFinalUpdate{false};
409 VideoState(MovieState &movie) : mMovie(movie) { }
410 ~VideoState()
412 if(mImage)
413 SDL_DestroyTexture(mImage);
414 mImage = nullptr;
417 nanoseconds getClock();
419 void display(SDL_Window *screen, SDL_Renderer *renderer);
420 void updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw);
421 int handler();
424 struct MovieState {
425 AVIOContextPtr mIOContext;
426 AVFormatCtxPtr mFormatCtx;
428 SyncMaster mAVSyncType{SyncMaster::Default};
430 microseconds mClockBase{microseconds::min()};
432 std::atomic<bool> mQuit{false};
434 AudioState mAudio;
435 VideoState mVideo;
437 std::thread mParseThread;
438 std::thread mAudioThread;
439 std::thread mVideoThread;
441 std::string mFilename;
443 MovieState(std::string fname)
444 : mAudio(*this), mVideo(*this), mFilename(std::move(fname))
446 ~MovieState()
448 mQuit = true;
449 if(mParseThread.joinable())
450 mParseThread.join();
453 static int decode_interrupt_cb(void *ctx);
454 bool prepare();
455 void setTitle(SDL_Window *window);
457 nanoseconds getClock();
459 nanoseconds getMasterClock();
461 nanoseconds getDuration();
463 int streamComponentOpen(unsigned int stream_index);
464 int parse_handler();
468 nanoseconds AudioState::getClockNoLock()
470 // The audio clock is the timestamp of the sample currently being heard.
471 if(alcGetInteger64vSOFT)
473 // If device start time = min, we aren't playing yet.
474 if(mDeviceStartTime == nanoseconds::min())
475 return nanoseconds::zero();
477 // Get the current device clock time and latency.
478 auto device = alcGetContextsDevice(alcGetCurrentContext());
479 ALCint64SOFT devtimes[2]{0,0};
480 alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes);
481 auto latency = nanoseconds{devtimes[1]};
482 auto device_time = nanoseconds{devtimes[0]};
484 // The clock is simply the current device time relative to the recorded
485 // start time. We can also subtract the latency to get more a accurate
486 // position of where the audio device actually is in the output stream.
487 return device_time - mDeviceStartTime - latency;
490 if(mBufferDataSize > 0)
492 if(mDeviceStartTime == nanoseconds::min())
493 return nanoseconds::zero();
495 /* With a callback buffer and no device clock, mDeviceStartTime is
496 * actually the timestamp of the first sample frame played. The audio
497 * clock, then, is that plus the current source offset.
499 ALint64SOFT offset[2];
500 if(alGetSourcei64vSOFT)
501 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
502 else
504 ALint ioffset;
505 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
506 offset[0] = ALint64SOFT{ioffset} << 32;
507 offset[1] = 0;
509 /* NOTE: The source state must be checked last, in case an underrun
510 * occurs and the source stops between getting the state and retrieving
511 * the offset+latency.
513 ALint status;
514 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
516 nanoseconds pts{};
517 if(status == AL_PLAYING || status == AL_PAUSED)
518 pts = mDeviceStartTime - nanoseconds{offset[1]} +
519 duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
520 else
522 /* If the source is stopped, the pts of the next sample to be heard
523 * is the pts of the next sample to be buffered, minus the amount
524 * already in the buffer ready to play.
526 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
527 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
528 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
529 roffset};
531 pts = mCurrentPts - nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
534 return pts;
537 /* The source-based clock is based on 4 components:
538 * 1 - The timestamp of the next sample to buffer (mCurrentPts)
539 * 2 - The length of the source's buffer queue
540 * (AudioBufferTime*AL_BUFFERS_QUEUED)
541 * 3 - The offset OpenAL is currently at in the source (the first value
542 * from AL_SAMPLE_OFFSET_LATENCY_SOFT)
543 * 4 - The latency between OpenAL and the DAC (the second value from
544 * AL_SAMPLE_OFFSET_LATENCY_SOFT)
546 * Subtracting the length of the source queue from the next sample's
547 * timestamp gives the timestamp of the sample at the start of the source
548 * queue. Adding the source offset to that results in the timestamp for the
549 * sample at OpenAL's current position, and subtracting the source latency
550 * from that gives the timestamp of the sample currently at the DAC.
552 nanoseconds pts{mCurrentPts};
553 if(mSource)
555 ALint64SOFT offset[2];
556 if(alGetSourcei64vSOFT)
557 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
558 else
560 ALint ioffset;
561 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
562 offset[0] = ALint64SOFT{ioffset} << 32;
563 offset[1] = 0;
565 ALint queued, status;
566 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
567 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
569 /* If the source is AL_STOPPED, then there was an underrun and all
570 * buffers are processed, so ignore the source queue. The audio thread
571 * will put the source into an AL_INITIAL state and clear the queue
572 * when it starts recovery.
574 if(status != AL_STOPPED)
576 pts -= AudioBufferTime*queued;
577 pts += duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
579 /* Don't offset by the latency if the source isn't playing. */
580 if(status == AL_PLAYING)
581 pts -= nanoseconds{offset[1]};
584 return std::max(pts, nanoseconds::zero());
587 bool AudioState::startPlayback()
589 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
590 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
591 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
592 roffset};
594 if(mBufferDataSize > 0)
596 if(readable == 0)
597 return false;
598 if(!alcGetInteger64vSOFT)
599 mDeviceStartTime = mCurrentPts -
600 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
602 else
604 ALint queued{};
605 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
606 if(queued == 0) return false;
609 alSourcePlay(mSource);
610 if(alcGetInteger64vSOFT)
612 /* Subtract the total buffer queue time from the current pts to get the
613 * pts of the start of the queue.
615 int64_t srctimes[2]{0,0};
616 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes);
617 auto device_time = nanoseconds{srctimes[1]};
618 auto src_offset = duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
619 mCodecCtx->sample_rate;
621 /* The mixer may have ticked and incremented the device time and sample
622 * offset, so subtract the source offset from the device time to get
623 * the device time the source started at. Also subtract startpts to get
624 * the device time the stream would have started at to reach where it
625 * is now.
627 if(mBufferDataSize > 0)
629 nanoseconds startpts{mCurrentPts -
630 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate};
631 mDeviceStartTime = device_time - src_offset - startpts;
633 else
635 nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
636 mDeviceStartTime = device_time - src_offset - startpts;
639 return true;
642 int AudioState::getSync()
644 if(mMovie.mAVSyncType == SyncMaster::Audio)
645 return 0;
647 auto ref_clock = mMovie.getMasterClock();
648 auto diff = ref_clock - getClockNoLock();
650 if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
652 /* Difference is TOO big; reset accumulated average */
653 mClockDiffAvg = seconds_d64::zero();
654 return 0;
657 /* Accumulate the diffs */
658 mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
659 auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
660 if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
661 return 0;
663 /* Constrain the per-update difference to avoid exceedingly large skips */
664 diff = std::min<nanoseconds>(diff, AudioSampleCorrectionMax);
665 return static_cast<int>(duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
668 int AudioState::decodeFrame()
670 while(!mMovie.mQuit.load(std::memory_order_relaxed))
672 int ret;
673 while((ret=avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get())) == AVERROR(EAGAIN))
674 mPackets.sendTo(mCodecCtx.get());
675 if(ret != 0)
677 if(ret == AVErrorEOF) break;
678 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
679 continue;
682 if(mDecodedFrame->nb_samples <= 0)
683 continue;
685 /* If provided, update w/ pts */
686 if(mDecodedFrame->best_effort_timestamp != AVNoPtsValue)
687 mCurrentPts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
688 static_cast<double>(mDecodedFrame->best_effort_timestamp)});
690 if(mDecodedFrame->nb_samples > mSamplesMax)
692 av_freep(&mSamples);
693 av_samples_alloc(&mSamples, nullptr, mCodecCtx->channels, mDecodedFrame->nb_samples,
694 mDstSampleFmt, 0);
695 mSamplesMax = mDecodedFrame->nb_samples;
697 /* Return the amount of sample frames converted */
698 int data_size{swr_convert(mSwresCtx.get(), &mSamples, mDecodedFrame->nb_samples,
699 const_cast<const uint8_t**>(mDecodedFrame->data), mDecodedFrame->nb_samples)};
701 av_frame_unref(mDecodedFrame.get());
702 return data_size;
705 return 0;
708 /* Duplicates the sample at in to out, count times. The frame size is a
709 * multiple of the template type size.
711 template<typename T>
712 static void sample_dup(uint8_t *out, const uint8_t *in, size_t count, size_t frame_size)
714 auto *sample = reinterpret_cast<const T*>(in);
715 auto *dst = reinterpret_cast<T*>(out);
716 if(frame_size == sizeof(T))
717 std::fill_n(dst, count, *sample);
718 else
720 /* NOTE: frame_size is a multiple of sizeof(T). */
721 size_t type_mult{frame_size / sizeof(T)};
722 size_t i{0};
723 std::generate_n(dst, count*type_mult,
724 [sample,type_mult,&i]() -> T
726 T ret = sample[i];
727 i = (i+1)%type_mult;
728 return ret;
735 bool AudioState::readAudio(uint8_t *samples, unsigned int length, int &sample_skip)
737 unsigned int audio_size{0};
739 /* Read the next chunk of data, refill the buffer, and queue it
740 * on the source */
741 length /= mFrameSize;
742 while(mSamplesLen > 0 && audio_size < length)
744 unsigned int rem{length - audio_size};
745 if(mSamplesPos >= 0)
747 const auto len = static_cast<unsigned int>(mSamplesLen - mSamplesPos);
748 if(rem > len) rem = len;
749 std::copy_n(mSamples + static_cast<unsigned int>(mSamplesPos)*mFrameSize,
750 rem*mFrameSize, samples);
752 else
754 rem = std::min(rem, static_cast<unsigned int>(-mSamplesPos));
756 /* Add samples by copying the first sample */
757 if((mFrameSize&7) == 0)
758 sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
759 else if((mFrameSize&3) == 0)
760 sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
761 else if((mFrameSize&1) == 0)
762 sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
763 else
764 sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
767 mSamplesPos += rem;
768 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
769 samples += rem*mFrameSize;
770 audio_size += rem;
772 while(mSamplesPos >= mSamplesLen)
774 int frame_len = decodeFrame();
775 if(frame_len <= 0) break;
777 mSamplesLen = frame_len;
778 mSamplesPos = std::min(mSamplesLen, sample_skip);
779 sample_skip -= mSamplesPos;
781 // Adjust the device start time and current pts by the amount we're
782 // skipping/duplicating, so that the clock remains correct for the
783 // current stream position.
784 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
785 mDeviceStartTime -= skip;
786 mCurrentPts += skip;
787 continue;
790 if(audio_size <= 0)
791 return false;
793 if(audio_size < length)
795 const unsigned int rem{length - audio_size};
796 std::fill_n(samples, rem*mFrameSize,
797 (mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
798 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
799 audio_size += rem;
801 return true;
804 void AudioState::readAudio(int sample_skip)
806 size_t woffset{mWritePos.load(std::memory_order_acquire)};
807 while(mSamplesLen > 0)
809 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
811 if(mSamplesPos < 0)
813 size_t rem{(((roffset > woffset) ? roffset-1
814 : ((roffset == 0) ? mBufferDataSize-1
815 : mBufferDataSize)) - woffset) / mFrameSize};
816 rem = std::min<size_t>(rem, static_cast<ALuint>(-mSamplesPos));
817 if(rem == 0) break;
819 auto *splout{&mBufferData[woffset]};
820 if((mFrameSize&7) == 0)
821 sample_dup<uint64_t>(splout, mSamples, rem, mFrameSize);
822 else if((mFrameSize&3) == 0)
823 sample_dup<uint32_t>(splout, mSamples, rem, mFrameSize);
824 else if((mFrameSize&1) == 0)
825 sample_dup<uint16_t>(splout, mSamples, rem, mFrameSize);
826 else
827 sample_dup<uint8_t>(splout, mSamples, rem, mFrameSize);
828 woffset += rem * mFrameSize;
829 if(woffset == mBufferDataSize)
830 woffset = 0;
831 mWritePos.store(woffset, std::memory_order_release);
832 mSamplesPos += static_cast<int>(rem);
833 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
834 continue;
837 const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
838 const size_t nbytes{static_cast<ALuint>(mSamplesLen)*size_t{mFrameSize} -
839 boffset};
840 if(roffset > woffset)
842 const size_t writable{roffset-woffset-1};
843 if(writable < nbytes) break;
845 memcpy(&mBufferData[woffset], mSamples+boffset, nbytes);
846 woffset += nbytes;
848 else
850 const size_t writable{mBufferDataSize+roffset-woffset-1};
851 if(writable < nbytes) break;
853 const size_t todo1{std::min<size_t>(nbytes, mBufferDataSize-woffset)};
854 const size_t todo2{nbytes - todo1};
856 memcpy(&mBufferData[woffset], mSamples+boffset, todo1);
857 woffset += todo1;
858 if(woffset == mBufferDataSize)
860 woffset = 0;
861 if(todo2 > 0)
863 memcpy(&mBufferData[woffset], mSamples+boffset+todo1, todo2);
864 woffset += todo2;
868 mWritePos.store(woffset, std::memory_order_release);
869 mCurrentPts += nanoseconds{seconds{mSamplesLen-mSamplesPos}} / mCodecCtx->sample_rate;
871 do {
872 mSamplesLen = decodeFrame();
873 if(mSamplesLen <= 0) break;
875 mSamplesPos = std::min(mSamplesLen, sample_skip);
876 sample_skip -= mSamplesPos;
878 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
879 mDeviceStartTime -= skip;
880 mCurrentPts += skip;
881 } while(mSamplesPos >= mSamplesLen);
886 #ifdef AL_SOFT_events
887 void AL_APIENTRY AudioState::EventCallback(ALenum eventType, ALuint object, ALuint param,
888 ALsizei length, const ALchar *message, void *userParam)
890 auto self = static_cast<AudioState*>(userParam);
892 if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
894 /* Temporarily lock the source mutex to ensure it's not between
895 * checking the processed count and going to sleep.
897 std::unique_lock<std::mutex>{self->mSrcMutex}.unlock();
898 self->mSrcCond.notify_one();
899 return;
902 std::cout<< "\n---- AL Event on AudioState "<<self<<" ----\nEvent: ";
903 switch(eventType)
905 case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: std::cout<< "Buffer completed"; break;
906 case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: std::cout<< "Source state changed"; break;
907 case AL_EVENT_TYPE_ERROR_SOFT: std::cout<< "API error"; break;
908 case AL_EVENT_TYPE_PERFORMANCE_SOFT: std::cout<< "Performance"; break;
909 case AL_EVENT_TYPE_DEPRECATED_SOFT: std::cout<< "Deprecated"; break;
910 case AL_EVENT_TYPE_DISCONNECTED_SOFT: std::cout<< "Disconnected"; break;
911 default:
912 std::cout<< "0x"<<std::hex<<std::setw(4)<<std::setfill('0')<<eventType<<std::dec<<
913 std::setw(0)<<std::setfill(' '); break;
915 std::cout<< "\n"
916 "Object ID: "<<object<<"\n"
917 "Parameter: "<<param<<"\n"
918 "Message: "<<std::string{message, static_cast<ALuint>(length)}<<"\n----"<<
919 std::endl;
921 if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
924 std::lock_guard<std::mutex> lock{self->mSrcMutex};
925 self->mConnected.clear(std::memory_order_release);
927 self->mSrcCond.notify_one();
930 #endif
932 #ifdef AL_SOFT_callback_buffer
933 ALsizei AudioState::bufferCallback(void *data, ALsizei size)
935 ALsizei got{0};
937 size_t roffset{mReadPos.load(std::memory_order_acquire)};
938 while(got < size)
940 const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
941 if(woffset == roffset) break;
943 size_t todo{((woffset < roffset) ? mBufferDataSize : woffset) - roffset};
944 todo = std::min<size_t>(todo, static_cast<ALuint>(size-got));
946 memcpy(data, &mBufferData[roffset], todo);
947 data = static_cast<ALbyte*>(data) + todo;
948 got += static_cast<ALsizei>(todo);
950 roffset += todo;
951 if(roffset == mBufferDataSize)
952 roffset = 0;
954 mReadPos.store(roffset, std::memory_order_release);
956 return got;
958 #endif
960 int AudioState::handler()
962 std::unique_lock<std::mutex> srclock{mSrcMutex, std::defer_lock};
963 milliseconds sleep_time{AudioBufferTime / 3};
964 ALenum fmt;
966 #ifdef AL_SOFT_events
967 const std::array<ALenum,6> evt_types{{
968 AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
969 AL_EVENT_TYPE_ERROR_SOFT, AL_EVENT_TYPE_PERFORMANCE_SOFT, AL_EVENT_TYPE_DEPRECATED_SOFT,
970 AL_EVENT_TYPE_DISCONNECTED_SOFT}};
971 if(alEventControlSOFT)
973 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_TRUE);
974 alEventCallbackSOFT(EventCallback, this);
975 sleep_time = AudioBufferTotalTime;
977 #endif
978 #ifdef AL_SOFT_bformat_ex
979 const bool has_bfmt_ex{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE};
980 ALenum ambi_layout{AL_FUMA_SOFT};
981 ALenum ambi_scale{AL_FUMA_SOFT};
982 #endif
984 /* Find a suitable format for OpenAL. */
985 mDstChanLayout = 0;
986 mFormat = AL_NONE;
987 if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) &&
988 alIsExtensionPresent("AL_EXT_FLOAT32"))
990 mDstSampleFmt = AV_SAMPLE_FMT_FLT;
991 mFrameSize = 4;
992 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
993 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
994 (fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1)
996 mDstChanLayout = mCodecCtx->channel_layout;
997 mFrameSize *= 8;
998 mFormat = fmt;
1000 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1001 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1002 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1003 (fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1)
1005 mDstChanLayout = mCodecCtx->channel_layout;
1006 mFrameSize *= 6;
1007 mFormat = fmt;
1009 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1011 mDstChanLayout = mCodecCtx->channel_layout;
1012 mFrameSize *= 1;
1013 mFormat = AL_FORMAT_MONO_FLOAT32;
1015 /* Assume 3D B-Format (ambisonics) if the channel layout is blank and
1016 * there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
1017 * have no way to specify if the source is actually B-Format (let alone
1018 * if it's 2D or 3D).
1020 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1021 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1022 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32")) != AL_NONE && fmt != -1)
1024 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1025 if((order+1)*(order+1) == mCodecCtx->channels ||
1026 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1028 /* OpenAL only supports first-order with AL_EXT_BFORMAT, which
1029 * is 4 channels for 3D buffers.
1031 mFrameSize *= 4;
1032 mFormat = fmt;
1035 if(!mFormat)
1037 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1038 mFrameSize *= 2;
1039 mFormat = AL_FORMAT_STEREO_FLOAT32;
1042 if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
1044 mDstSampleFmt = AV_SAMPLE_FMT_U8;
1045 mFrameSize = 1;
1046 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1047 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1048 (fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1)
1050 mDstChanLayout = mCodecCtx->channel_layout;
1051 mFrameSize *= 8;
1052 mFormat = fmt;
1054 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1055 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1056 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1057 (fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1)
1059 mDstChanLayout = mCodecCtx->channel_layout;
1060 mFrameSize *= 6;
1061 mFormat = fmt;
1063 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1065 mDstChanLayout = mCodecCtx->channel_layout;
1066 mFrameSize *= 1;
1067 mFormat = AL_FORMAT_MONO8;
1069 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1070 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1071 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D8")) != AL_NONE && fmt != -1)
1073 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1074 if((order+1)*(order+1) == mCodecCtx->channels ||
1075 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1077 mFrameSize *= 4;
1078 mFormat = fmt;
1081 if(!mFormat)
1083 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1084 mFrameSize *= 2;
1085 mFormat = AL_FORMAT_STEREO8;
1088 if(!mFormat)
1090 mDstSampleFmt = AV_SAMPLE_FMT_S16;
1091 mFrameSize = 2;
1092 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1093 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1094 (fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1)
1096 mDstChanLayout = mCodecCtx->channel_layout;
1097 mFrameSize *= 8;
1098 mFormat = fmt;
1100 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1101 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1102 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1103 (fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1)
1105 mDstChanLayout = mCodecCtx->channel_layout;
1106 mFrameSize *= 6;
1107 mFormat = fmt;
1109 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1111 mDstChanLayout = mCodecCtx->channel_layout;
1112 mFrameSize *= 1;
1113 mFormat = AL_FORMAT_MONO16;
1115 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1116 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1117 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D16")) != AL_NONE && fmt != -1)
1119 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1120 if((order+1)*(order+1) == mCodecCtx->channels ||
1121 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1123 mFrameSize *= 4;
1124 mFormat = fmt;
1127 if(!mFormat)
1129 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1130 mFrameSize *= 2;
1131 mFormat = AL_FORMAT_STEREO16;
1134 void *samples{nullptr};
1135 ALsizei buffer_len{0};
1137 mSamples = nullptr;
1138 mSamplesMax = 0;
1139 mSamplesPos = 0;
1140 mSamplesLen = 0;
1142 mDecodedFrame.reset(av_frame_alloc());
1143 if(!mDecodedFrame)
1145 std::cerr<< "Failed to allocate audio frame" <<std::endl;
1146 goto finish;
1149 if(!mDstChanLayout)
1151 /* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
1152 * we have to drop any extra channels.
1154 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1155 (1_i64<<4)-1, mDstSampleFmt, mCodecCtx->sample_rate,
1156 (1_i64<<mCodecCtx->channels)-1, mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1157 0, nullptr));
1159 /* Note that ffmpeg/libavcodec has no method to check the ambisonic
1160 * channel order and normalization, so we can only assume AmbiX as the
1161 * defacto-standard. This is not true for .amb files, which use FuMa.
1163 std::vector<double> mtx(64*64, 0.0);
1164 #ifdef AL_SOFT_bformat_ex
1165 ambi_layout = AL_ACN_SOFT;
1166 ambi_scale = AL_SN3D_SOFT;
1167 if(has_bfmt_ex)
1169 /* An identity matrix that doesn't remix any channels. */
1170 std::cout<< "Found AL_SOFT_bformat_ex" <<std::endl;
1171 mtx[0 + 0*64] = 1.0;
1172 mtx[1 + 1*64] = 1.0;
1173 mtx[2 + 2*64] = 1.0;
1174 mtx[3 + 3*64] = 1.0;
1176 else
1177 #endif
1179 std::cout<< "Found AL_EXT_BFORMAT" <<std::endl;
1180 /* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
1181 * ordering and normalization, so a custom matrix is needed to
1182 * scale and reorder the source from AmbiX.
1184 mtx[0 + 0*64] = std::sqrt(0.5);
1185 mtx[3 + 1*64] = 1.0;
1186 mtx[1 + 2*64] = 1.0;
1187 mtx[2 + 3*64] = 1.0;
1189 swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
1191 else
1192 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1193 static_cast<int64_t>(mDstChanLayout), mDstSampleFmt, mCodecCtx->sample_rate,
1194 mCodecCtx->channel_layout ? static_cast<int64_t>(mCodecCtx->channel_layout)
1195 : av_get_default_channel_layout(mCodecCtx->channels),
1196 mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1197 0, nullptr));
1198 if(!mSwresCtx || swr_init(mSwresCtx.get()) != 0)
1200 std::cerr<< "Failed to initialize audio converter" <<std::endl;
1201 goto finish;
1204 alGenBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
1205 alGenSources(1, &mSource);
1207 if(DirectOutMode)
1208 alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, DirectOutMode);
1209 if(EnableWideStereo)
1211 const float angles[2]{static_cast<float>(M_PI / 3.0), static_cast<float>(-M_PI / 3.0)};
1212 alSourcefv(mSource, AL_STEREO_ANGLES, angles);
1214 #ifdef AL_SOFT_bformat_ex
1215 if(has_bfmt_ex)
1217 for(ALuint bufid : mBuffers)
1219 alBufferi(bufid, AL_AMBISONIC_LAYOUT_SOFT, ambi_layout);
1220 alBufferi(bufid, AL_AMBISONIC_SCALING_SOFT, ambi_scale);
1223 #endif
1225 if(alGetError() != AL_NO_ERROR)
1226 goto finish;
1228 #ifdef AL_SOFT_callback_buffer
1229 if(alBufferCallbackSOFT)
1231 alBufferCallbackSOFT(mBuffers[0], mFormat, mCodecCtx->sample_rate, bufferCallbackC, this,
1233 alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffers[0]));
1234 if(alGetError() != AL_NO_ERROR)
1236 fprintf(stderr, "Failed to set buffer callback\n");
1237 alSourcei(mSource, AL_BUFFER, 0);
1238 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1239 AudioBufferTime).count() * mFrameSize);
1241 else
1243 mBufferDataSize = static_cast<size_t>(duration_cast<seconds>(mCodecCtx->sample_rate *
1244 AudioBufferTotalTime).count()) * mFrameSize;
1245 mBufferData.reset(new uint8_t[mBufferDataSize]);
1246 mReadPos.store(0, std::memory_order_relaxed);
1247 mWritePos.store(0, std::memory_order_relaxed);
1249 ALCint refresh{};
1250 alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
1251 sleep_time = milliseconds{seconds{1}} / refresh;
1254 else
1255 #endif
1256 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1257 AudioBufferTime).count() * mFrameSize);
1258 if(buffer_len > 0)
1259 samples = av_malloc(static_cast<ALuint>(buffer_len));
1261 /* Prefill the codec buffer. */
1262 do {
1263 const int ret{mPackets.sendTo(mCodecCtx.get())};
1264 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1265 break;
1266 } while(1);
1268 srclock.lock();
1269 if(alcGetInteger64vSOFT)
1271 int64_t devtime{};
1272 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT,
1273 1, &devtime);
1274 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1277 mSamplesLen = decodeFrame();
1278 if(mSamplesLen > 0)
1280 mSamplesPos = std::min(mSamplesLen, getSync());
1282 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
1283 mDeviceStartTime -= skip;
1284 mCurrentPts += skip;
1287 while(!mMovie.mQuit.load(std::memory_order_relaxed)
1288 && mConnected.test_and_set(std::memory_order_relaxed))
1290 ALenum state;
1291 if(mBufferDataSize > 0)
1293 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1294 readAudio(getSync());
1296 else
1298 ALint processed, queued;
1300 /* First remove any processed buffers. */
1301 alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
1302 while(processed > 0)
1304 ALuint bid;
1305 alSourceUnqueueBuffers(mSource, 1, &bid);
1306 --processed;
1309 /* Refill the buffer queue. */
1310 int sync_skip{getSync()};
1311 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
1312 while(static_cast<ALuint>(queued) < mBuffers.size())
1314 /* Read the next chunk of data, filling the buffer, and queue
1315 * it on the source.
1317 const bool got_audio{readAudio(static_cast<uint8_t*>(samples),
1318 static_cast<ALuint>(buffer_len), sync_skip)};
1319 if(!got_audio) break;
1321 const ALuint bufid{mBuffers[mBufferIdx]};
1322 mBufferIdx = static_cast<ALuint>((mBufferIdx+1) % mBuffers.size());
1324 alBufferData(bufid, mFormat, samples, buffer_len, mCodecCtx->sample_rate);
1325 alSourceQueueBuffers(mSource, 1, &bufid);
1326 ++queued;
1329 /* Check that the source is playing. */
1330 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1331 if(state == AL_STOPPED)
1333 /* AL_STOPPED means there was an underrun. Clear the buffer
1334 * queue since this likely means we're late, and rewind the
1335 * source to get it back into an AL_INITIAL state.
1337 alSourceRewind(mSource);
1338 alSourcei(mSource, AL_BUFFER, 0);
1339 if(alcGetInteger64vSOFT)
1341 /* Also update the device start time with the current
1342 * device clock, so the decoder knows we're running behind.
1344 int64_t devtime{};
1345 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
1346 ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
1347 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1349 continue;
1353 /* (re)start the source if needed, and wait for a buffer to finish */
1354 if(state != AL_PLAYING && state != AL_PAUSED)
1356 if(!startPlayback())
1357 break;
1359 if(alGetError() != AL_NO_ERROR)
1360 return false;
1362 mSrcCond.wait_for(srclock, sleep_time);
1365 alSourceRewind(mSource);
1366 alSourcei(mSource, AL_BUFFER, 0);
1367 srclock.unlock();
1369 finish:
1370 av_freep(&samples);
1372 #ifdef AL_SOFT_events
1373 if(alEventControlSOFT)
1375 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_FALSE);
1376 alEventCallbackSOFT(nullptr, nullptr);
1378 #endif
1380 return 0;
1384 nanoseconds VideoState::getClock()
1386 /* NOTE: This returns incorrect times while not playing. */
1387 std::lock_guard<std::mutex> _{mDispPtsMutex};
1388 if(mDisplayPtsTime == microseconds::min())
1389 return nanoseconds::zero();
1390 auto delta = get_avtime() - mDisplayPtsTime;
1391 return mDisplayPts + delta;
1394 /* Called by VideoState::updateVideo to display the next video frame. */
1395 void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer)
1397 if(!mImage)
1398 return;
1400 double aspect_ratio;
1401 int win_w, win_h;
1402 int w, h, x, y;
1404 if(mCodecCtx->sample_aspect_ratio.num == 0)
1405 aspect_ratio = 0.0;
1406 else
1408 aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width /
1409 mCodecCtx->height;
1411 if(aspect_ratio <= 0.0)
1412 aspect_ratio = static_cast<double>(mCodecCtx->width) / mCodecCtx->height;
1414 SDL_GetWindowSize(screen, &win_w, &win_h);
1415 h = win_h;
1416 w = (static_cast<int>(std::rint(h * aspect_ratio)) + 3) & ~3;
1417 if(w > win_w)
1419 w = win_w;
1420 h = (static_cast<int>(std::rint(w / aspect_ratio)) + 3) & ~3;
1422 x = (win_w - w) / 2;
1423 y = (win_h - h) / 2;
1425 SDL_Rect src_rect{ 0, 0, mWidth, mHeight };
1426 SDL_Rect dst_rect{ x, y, w, h };
1427 SDL_RenderCopy(renderer, mImage, &src_rect, &dst_rect);
1428 SDL_RenderPresent(renderer);
1431 /* Called regularly on the main thread where the SDL_Renderer was created. It
1432 * handles updating the textures of decoded frames and displaying the latest
1433 * frame.
1435 void VideoState::updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw)
1437 size_t read_idx{mPictQRead.load(std::memory_order_relaxed)};
1438 Picture *vp{&mPictQ[read_idx]};
1440 auto clocktime = mMovie.getMasterClock();
1441 bool updated{false};
1442 while(1)
1444 size_t next_idx{(read_idx+1)%mPictQ.size()};
1445 if(next_idx == mPictQWrite.load(std::memory_order_acquire))
1446 break;
1447 Picture *nextvp{&mPictQ[next_idx]};
1448 if(clocktime < nextvp->mPts)
1449 break;
1451 vp = nextvp;
1452 updated = true;
1453 read_idx = next_idx;
1455 if(mMovie.mQuit.load(std::memory_order_relaxed))
1457 if(mEOS)
1458 mFinalUpdate = true;
1459 mPictQRead.store(read_idx, std::memory_order_release);
1460 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1461 mPictQCond.notify_one();
1462 return;
1465 if(updated)
1467 mPictQRead.store(read_idx, std::memory_order_release);
1468 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1469 mPictQCond.notify_one();
1471 /* allocate or resize the buffer! */
1472 bool fmt_updated{false};
1473 if(!mImage || mWidth != mCodecCtx->width || mHeight != mCodecCtx->height)
1475 fmt_updated = true;
1476 if(mImage)
1477 SDL_DestroyTexture(mImage);
1478 mImage = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
1479 mCodecCtx->coded_width, mCodecCtx->coded_height);
1480 if(!mImage)
1481 std::cerr<< "Failed to create YV12 texture!" <<std::endl;
1482 mWidth = mCodecCtx->width;
1483 mHeight = mCodecCtx->height;
1485 if(mFirstUpdate && mWidth > 0 && mHeight > 0)
1487 /* For the first update, set the window size to the video size. */
1488 mFirstUpdate = false;
1490 int w{mWidth};
1491 int h{mHeight};
1492 if(mCodecCtx->sample_aspect_ratio.den != 0)
1494 double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio);
1495 if(aspect_ratio >= 1.0)
1496 w = static_cast<int>(w*aspect_ratio + 0.5);
1497 else if(aspect_ratio > 0.0)
1498 h = static_cast<int>(h/aspect_ratio + 0.5);
1500 SDL_SetWindowSize(screen, w, h);
1504 if(mImage)
1506 AVFrame *frame{vp->mFrame.get()};
1507 void *pixels{nullptr};
1508 int pitch{0};
1510 if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
1511 SDL_UpdateYUVTexture(mImage, nullptr,
1512 frame->data[0], frame->linesize[0],
1513 frame->data[1], frame->linesize[1],
1514 frame->data[2], frame->linesize[2]
1516 else if(SDL_LockTexture(mImage, nullptr, &pixels, &pitch) != 0)
1517 std::cerr<< "Failed to lock texture" <<std::endl;
1518 else
1520 // Convert the image into YUV format that SDL uses
1521 int coded_w{mCodecCtx->coded_width};
1522 int coded_h{mCodecCtx->coded_height};
1523 int w{mCodecCtx->width};
1524 int h{mCodecCtx->height};
1525 if(!mSwscaleCtx || fmt_updated)
1527 mSwscaleCtx.reset(sws_getContext(
1528 w, h, mCodecCtx->pix_fmt,
1529 w, h, AV_PIX_FMT_YUV420P, 0,
1530 nullptr, nullptr, nullptr
1534 /* point pict at the queue */
1535 uint8_t *pict_data[3];
1536 pict_data[0] = static_cast<uint8_t*>(pixels);
1537 pict_data[1] = pict_data[0] + coded_w*coded_h;
1538 pict_data[2] = pict_data[1] + coded_w*coded_h/4;
1540 int pict_linesize[3];
1541 pict_linesize[0] = pitch;
1542 pict_linesize[1] = pitch / 2;
1543 pict_linesize[2] = pitch / 2;
1545 sws_scale(mSwscaleCtx.get(), reinterpret_cast<uint8_t**>(frame->data), frame->linesize,
1546 0, h, pict_data, pict_linesize);
1547 SDL_UnlockTexture(mImage);
1551 redraw = true;
1554 if(redraw)
1556 /* Show the picture! */
1557 display(screen, renderer);
1560 if(updated)
1562 auto disp_time = get_avtime();
1564 std::lock_guard<std::mutex> _{mDispPtsMutex};
1565 mDisplayPts = vp->mPts;
1566 mDisplayPtsTime = disp_time;
1568 if(mEOS.load(std::memory_order_acquire))
1570 if((read_idx+1)%mPictQ.size() == mPictQWrite.load(std::memory_order_acquire))
1572 mFinalUpdate = true;
1573 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1574 mPictQCond.notify_one();
1579 int VideoState::handler()
1581 std::for_each(mPictQ.begin(), mPictQ.end(),
1582 [](Picture &pict) -> void
1583 { pict.mFrame = AVFramePtr{av_frame_alloc()}; });
1585 /* Prefill the codec buffer. */
1586 do {
1587 const int ret{mPackets.sendTo(mCodecCtx.get())};
1588 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1589 break;
1590 } while(1);
1593 std::lock_guard<std::mutex> _{mDispPtsMutex};
1594 mDisplayPtsTime = get_avtime();
1597 auto current_pts = nanoseconds::zero();
1598 while(!mMovie.mQuit.load(std::memory_order_relaxed))
1600 size_t write_idx{mPictQWrite.load(std::memory_order_relaxed)};
1601 Picture *vp{&mPictQ[write_idx]};
1603 /* Retrieve video frame. */
1604 AVFrame *decoded_frame{vp->mFrame.get()};
1605 int ret;
1606 while((ret=avcodec_receive_frame(mCodecCtx.get(), decoded_frame)) == AVERROR(EAGAIN))
1607 mPackets.sendTo(mCodecCtx.get());
1608 if(ret != 0)
1610 if(ret == AVErrorEOF) break;
1611 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
1612 continue;
1615 /* Get the PTS for this frame. */
1616 if(decoded_frame->best_effort_timestamp != AVNoPtsValue)
1617 current_pts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
1618 static_cast<double>(decoded_frame->best_effort_timestamp)});
1619 vp->mPts = current_pts;
1621 /* Update the video clock to the next expected PTS. */
1622 auto frame_delay = av_q2d(mCodecCtx->time_base);
1623 frame_delay += decoded_frame->repeat_pict * (frame_delay * 0.5);
1624 current_pts += duration_cast<nanoseconds>(seconds_d64{frame_delay});
1626 /* Put the frame in the queue to be loaded into a texture and displayed
1627 * by the rendering thread.
1629 write_idx = (write_idx+1)%mPictQ.size();
1630 mPictQWrite.store(write_idx, std::memory_order_release);
1632 /* Send a packet now so it's hopefully ready by the time it's needed. */
1633 mPackets.sendTo(mCodecCtx.get());
1635 if(write_idx == mPictQRead.load(std::memory_order_acquire))
1637 /* Wait until we have space for a new pic */
1638 std::unique_lock<std::mutex> lock{mPictQMutex};
1639 while(write_idx == mPictQRead.load(std::memory_order_acquire) &&
1640 !mMovie.mQuit.load(std::memory_order_relaxed))
1641 mPictQCond.wait(lock);
1644 mEOS = true;
1646 std::unique_lock<std::mutex> lock{mPictQMutex};
1647 while(!mFinalUpdate) mPictQCond.wait(lock);
1649 return 0;
1653 int MovieState::decode_interrupt_cb(void *ctx)
1655 return static_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
1658 bool MovieState::prepare()
1660 AVIOContext *avioctx{nullptr};
1661 AVIOInterruptCB intcb{decode_interrupt_cb, this};
1662 if(avio_open2(&avioctx, mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr))
1664 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1665 return false;
1667 mIOContext.reset(avioctx);
1669 /* Open movie file. If avformat_open_input fails it will automatically free
1670 * this context, so don't set it onto a smart pointer yet.
1672 AVFormatContext *fmtctx{avformat_alloc_context()};
1673 fmtctx->pb = mIOContext.get();
1674 fmtctx->interrupt_callback = intcb;
1675 if(avformat_open_input(&fmtctx, mFilename.c_str(), nullptr, nullptr) != 0)
1677 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1678 return false;
1680 mFormatCtx.reset(fmtctx);
1682 /* Retrieve stream information */
1683 if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
1685 std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
1686 return false;
1689 /* Dump information about file onto standard error */
1690 av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
1692 mParseThread = std::thread{std::mem_fn(&MovieState::parse_handler), this};
1693 return true;
1696 void MovieState::setTitle(SDL_Window *window)
1698 auto pos1 = mFilename.rfind('/');
1699 auto pos2 = mFilename.rfind('\\');
1700 auto fpos = ((pos1 == std::string::npos) ? pos2 :
1701 (pos2 == std::string::npos) ? pos1 :
1702 std::max(pos1, pos2)) + 1;
1703 SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
1706 nanoseconds MovieState::getClock()
1708 if(mClockBase == microseconds::min())
1709 return nanoseconds::zero();
1710 return get_avtime() - mClockBase;
1713 nanoseconds MovieState::getMasterClock()
1715 if(mAVSyncType == SyncMaster::Video)
1716 return mVideo.getClock();
1717 if(mAVSyncType == SyncMaster::Audio)
1718 return mAudio.getClock();
1719 return getClock();
1722 nanoseconds MovieState::getDuration()
1723 { return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
1725 int MovieState::streamComponentOpen(unsigned int stream_index)
1727 if(stream_index >= mFormatCtx->nb_streams)
1728 return -1;
1730 /* Get a pointer to the codec context for the stream, and open the
1731 * associated codec.
1733 AVCodecCtxPtr avctx{avcodec_alloc_context3(nullptr)};
1734 if(!avctx) return -1;
1736 if(avcodec_parameters_to_context(avctx.get(), mFormatCtx->streams[stream_index]->codecpar))
1737 return -1;
1739 AVCodec *codec{avcodec_find_decoder(avctx->codec_id)};
1740 if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
1742 std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
1743 << " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
1744 return -1;
1747 /* Initialize and start the media type handler */
1748 switch(avctx->codec_type)
1750 case AVMEDIA_TYPE_AUDIO:
1751 mAudio.mStream = mFormatCtx->streams[stream_index];
1752 mAudio.mCodecCtx = std::move(avctx);
1753 break;
1755 case AVMEDIA_TYPE_VIDEO:
1756 mVideo.mStream = mFormatCtx->streams[stream_index];
1757 mVideo.mCodecCtx = std::move(avctx);
1758 break;
1760 default:
1761 return -1;
1764 return static_cast<int>(stream_index);
1767 int MovieState::parse_handler()
1769 auto &audio_queue = mAudio.mPackets;
1770 auto &video_queue = mVideo.mPackets;
1772 int video_index{-1};
1773 int audio_index{-1};
1775 /* Find the first video and audio streams */
1776 for(unsigned int i{0u};i < mFormatCtx->nb_streams;i++)
1778 auto codecpar = mFormatCtx->streams[i]->codecpar;
1779 if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && !DisableVideo && video_index < 0)
1780 video_index = streamComponentOpen(i);
1781 else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
1782 audio_index = streamComponentOpen(i);
1785 if(video_index < 0 && audio_index < 0)
1787 std::cerr<< mFilename<<": could not open codecs" <<std::endl;
1788 mQuit = true;
1791 /* Set the base time 750ms ahead of the current av time. */
1792 mClockBase = get_avtime() + milliseconds{750};
1794 if(audio_index >= 0)
1795 mAudioThread = std::thread{std::mem_fn(&AudioState::handler), &mAudio};
1796 if(video_index >= 0)
1797 mVideoThread = std::thread{std::mem_fn(&VideoState::handler), &mVideo};
1799 /* Main packet reading/dispatching loop */
1800 while(!mQuit.load(std::memory_order_relaxed))
1802 AVPacket packet;
1803 if(av_read_frame(mFormatCtx.get(), &packet) < 0)
1804 break;
1806 /* Copy the packet into the queue it's meant for. */
1807 if(packet.stream_index == video_index)
1809 while(!mQuit.load(std::memory_order_acquire) && !video_queue.put(&packet))
1810 std::this_thread::sleep_for(milliseconds{100});
1812 else if(packet.stream_index == audio_index)
1814 while(!mQuit.load(std::memory_order_acquire) && !audio_queue.put(&packet))
1815 std::this_thread::sleep_for(milliseconds{100});
1818 av_packet_unref(&packet);
1820 /* Finish the queues so the receivers know nothing more is coming. */
1821 if(mVideo.mCodecCtx) video_queue.setFinished();
1822 if(mAudio.mCodecCtx) audio_queue.setFinished();
1824 /* all done - wait for it */
1825 if(mVideoThread.joinable())
1826 mVideoThread.join();
1827 if(mAudioThread.joinable())
1828 mAudioThread.join();
1830 mVideo.mEOS = true;
1831 std::unique_lock<std::mutex> lock{mVideo.mPictQMutex};
1832 while(!mVideo.mFinalUpdate)
1833 mVideo.mPictQCond.wait(lock);
1834 lock.unlock();
1836 SDL_Event evt{};
1837 evt.user.type = FF_MOVIE_DONE_EVENT;
1838 SDL_PushEvent(&evt);
1840 return 0;
1844 // Helper class+method to print the time with human-readable formatting.
1845 struct PrettyTime {
1846 seconds mTime;
1848 std::ostream &operator<<(std::ostream &os, const PrettyTime &rhs)
1850 using hours = std::chrono::hours;
1851 using minutes = std::chrono::minutes;
1853 seconds t{rhs.mTime};
1854 if(t.count() < 0)
1856 os << '-';
1857 t *= -1;
1860 // Only handle up to hour formatting
1861 if(t >= hours{1})
1862 os << duration_cast<hours>(t).count() << 'h' << std::setfill('0') << std::setw(2)
1863 << (duration_cast<minutes>(t).count() % 60) << 'm';
1864 else
1865 os << duration_cast<minutes>(t).count() << 'm' << std::setfill('0');
1866 os << std::setw(2) << (duration_cast<seconds>(t).count() % 60) << 's' << std::setw(0)
1867 << std::setfill(' ');
1868 return os;
1871 } // namespace
1874 int main(int argc, char *argv[])
1876 std::unique_ptr<MovieState> movState;
1878 if(argc < 2)
1880 std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
1881 return 1;
1883 /* Register all formats and codecs */
1884 #if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
1885 av_register_all();
1886 #endif
1887 /* Initialize networking protocols */
1888 avformat_network_init();
1890 if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS))
1892 std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
1893 return 1;
1896 /* Make a window to put our video */
1897 SDL_Window *screen{SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE)};
1898 if(!screen)
1900 std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
1901 return 1;
1903 /* Make a renderer to handle the texture image surface and rendering. */
1904 Uint32 render_flags{SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC};
1905 SDL_Renderer *renderer{SDL_CreateRenderer(screen, -1, render_flags)};
1906 if(renderer)
1908 SDL_RendererInfo rinf{};
1909 bool ok{false};
1911 /* Make sure the renderer supports IYUV textures. If not, fallback to a
1912 * software renderer. */
1913 if(SDL_GetRendererInfo(renderer, &rinf) == 0)
1915 for(Uint32 i{0u};!ok && i < rinf.num_texture_formats;i++)
1916 ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
1918 if(!ok)
1920 std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
1921 SDL_DestroyRenderer(renderer);
1922 renderer = nullptr;
1925 if(!renderer)
1927 render_flags = SDL_RENDERER_SOFTWARE | SDL_RENDERER_PRESENTVSYNC;
1928 renderer = SDL_CreateRenderer(screen, -1, render_flags);
1930 if(!renderer)
1932 std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
1933 return 1;
1935 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
1936 SDL_RenderFillRect(renderer, nullptr);
1937 SDL_RenderPresent(renderer);
1939 /* Open an audio device */
1940 ++argv; --argc;
1941 if(InitAL(&argv, &argc))
1943 std::cerr<< "Failed to set up audio device" <<std::endl;
1944 return 1;
1948 auto device = alcGetContextsDevice(alcGetCurrentContext());
1949 if(alcIsExtensionPresent(device, "ALC_SOFT_device_clock"))
1951 std::cout<< "Found ALC_SOFT_device_clock" <<std::endl;
1952 alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
1953 alcGetProcAddress(device, "alcGetInteger64vSOFT")
1958 if(alIsExtensionPresent("AL_SOFT_source_latency"))
1960 std::cout<< "Found AL_SOFT_source_latency" <<std::endl;
1961 alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
1962 alGetProcAddress("alGetSourcei64vSOFT")
1965 #ifdef AL_SOFT_events
1966 if(alIsExtensionPresent("AL_SOFTX_events"))
1968 std::cout<< "Found AL_SOFT_events" <<std::endl;
1969 alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
1970 alGetProcAddress("alEventControlSOFT"));
1971 alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
1972 alGetProcAddress("alEventCallbackSOFT"));
1974 #endif
1975 #ifdef AL_SOFT_callback_buffer
1976 if(alIsExtensionPresent("AL_SOFTX_callback_buffer"))
1978 std::cout<< "Found AL_SOFT_callback_buffer" <<std::endl;
1979 alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
1980 alGetProcAddress("alBufferCallbackSOFT"));
1982 #endif
1984 int fileidx{0};
1985 for(;fileidx < argc;++fileidx)
1987 if(strcmp(argv[fileidx], "-direct") == 0)
1989 if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
1991 std::cout<< "Found AL_SOFT_direct_channels_remix" <<std::endl;
1992 DirectOutMode = AL_REMIX_UNMATCHED_SOFT;
1994 else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
1996 std::cout<< "Found AL_SOFT_direct_channels" <<std::endl;
1997 DirectOutMode = AL_DROP_UNMATCHED_SOFT;
1999 else
2000 std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
2002 else if(strcmp(argv[fileidx], "-wide") == 0)
2004 if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
2005 std::cerr<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl;
2006 else
2008 std::cout<< "Found AL_EXT_STEREO_ANGLES" <<std::endl;
2009 EnableWideStereo = true;
2012 else if(strcmp(argv[fileidx], "-novideo") == 0)
2013 DisableVideo = true;
2014 else
2015 break;
2018 while(fileidx < argc && !movState)
2020 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
2021 if(!movState->prepare()) movState = nullptr;
2023 if(!movState)
2025 std::cerr<< "Could not start a video" <<std::endl;
2026 return 1;
2028 movState->setTitle(screen);
2030 /* Default to going to the next movie at the end of one. */
2031 enum class EomAction {
2032 Next, Quit
2033 } eom_action{EomAction::Next};
2034 seconds last_time{seconds::min()};
2035 while(1)
2037 SDL_Event event{};
2038 int have_evt{SDL_WaitEventTimeout(&event, 10)};
2040 auto cur_time = std::chrono::duration_cast<seconds>(movState->getMasterClock());
2041 if(cur_time != last_time)
2043 auto end_time = std::chrono::duration_cast<seconds>(movState->getDuration());
2044 std::cout<< " \r "<<PrettyTime{cur_time}<<" / "<<PrettyTime{end_time} <<std::flush;
2045 last_time = cur_time;
2048 bool force_redraw{false};
2049 if(have_evt) do {
2050 switch(event.type)
2052 case SDL_KEYDOWN:
2053 switch(event.key.keysym.sym)
2055 case SDLK_ESCAPE:
2056 movState->mQuit = true;
2057 eom_action = EomAction::Quit;
2058 break;
2060 case SDLK_n:
2061 movState->mQuit = true;
2062 eom_action = EomAction::Next;
2063 break;
2065 default:
2066 break;
2068 break;
2070 case SDL_WINDOWEVENT:
2071 switch(event.window.event)
2073 case SDL_WINDOWEVENT_RESIZED:
2074 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
2075 SDL_RenderFillRect(renderer, nullptr);
2076 force_redraw = true;
2077 break;
2079 case SDL_WINDOWEVENT_EXPOSED:
2080 force_redraw = true;
2081 break;
2083 default:
2084 break;
2086 break;
2088 case SDL_QUIT:
2089 movState->mQuit = true;
2090 eom_action = EomAction::Quit;
2091 break;
2093 case FF_MOVIE_DONE_EVENT:
2094 std::cout<<'\n';
2095 last_time = seconds::min();
2096 if(eom_action != EomAction::Quit)
2098 movState = nullptr;
2099 while(fileidx < argc && !movState)
2101 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
2102 if(!movState->prepare()) movState = nullptr;
2104 if(movState)
2106 movState->setTitle(screen);
2107 break;
2111 /* Nothing more to play. Shut everything down and quit. */
2112 movState = nullptr;
2114 CloseAL();
2116 SDL_DestroyRenderer(renderer);
2117 renderer = nullptr;
2118 SDL_DestroyWindow(screen);
2119 screen = nullptr;
2121 SDL_Quit();
2122 exit(0);
2124 default:
2125 break;
2127 } while(SDL_PollEvent(&event));
2129 movState->mVideo.updateVideo(screen, renderer, force_redraw);
2132 std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
2133 return 1;