Use constexpr variables instead of macros
[openal-soft.git] / alc / effects / pshifter.cpp
blob625edc926321582c39f498397717028879cc8e53
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2018 by Raul Herraiz.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <cmath>
26 #include <complex>
27 #include <cstdlib>
28 #include <iterator>
30 #include "alc/effects/base.h"
31 #include "alcomplex.h"
32 #include "almalloc.h"
33 #include "alnumbers.h"
34 #include "alnumeric.h"
35 #include "alspan.h"
36 #include "core/bufferline.h"
37 #include "core/devformat.h"
38 #include "core/device.h"
39 #include "core/effectslot.h"
40 #include "core/mixer.h"
41 #include "core/mixer/defs.h"
42 #include "intrusive_ptr.h"
44 struct ContextBase;
47 namespace {
49 using uint = unsigned int;
50 using complex_d = std::complex<double>;
52 constexpr size_t StftSize{1024};
53 constexpr size_t StftHalfSize{StftSize >> 1};
54 constexpr size_t OversampleFactor{4};
56 static_assert(StftSize%OversampleFactor == 0, "Factor must be a clean divisor of the size");
57 constexpr size_t StftStep{StftSize / OversampleFactor};
59 /* Define a Hann window, used to filter the STFT input and output. */
60 std::array<double,StftSize> InitHannWindow()
62 std::array<double,StftSize> ret;
63 /* Create lookup table of the Hann window for the desired size. */
64 for(size_t i{0};i < StftHalfSize;i++)
66 constexpr double scale{al::numbers::pi / double{StftSize}};
67 const double val{std::sin((static_cast<double>(i)+0.5) * scale)};
68 ret[i] = ret[StftSize-1-i] = val * val;
70 return ret;
72 alignas(16) const std::array<double,StftSize> HannWindow = InitHannWindow();
75 struct FrequencyBin {
76 double Magnitude;
77 double FreqBin;
81 struct PshifterState final : public EffectState {
82 /* Effect parameters */
83 size_t mCount;
84 size_t mPos;
85 uint mPitchShiftI;
86 double mPitchShift;
88 /* Effects buffers */
89 std::array<double,StftSize> mFIFO;
90 std::array<double,StftHalfSize+1> mLastPhase;
91 std::array<double,StftHalfSize+1> mSumPhase;
92 std::array<double,StftSize> mOutputAccum;
94 std::array<complex_d,StftSize> mFftBuffer;
96 std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer;
97 std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer;
99 alignas(16) FloatBufferLine mBufferOut;
101 /* Effect gains for each output channel */
102 float mCurrentGains[MaxAmbiChannels];
103 float mTargetGains[MaxAmbiChannels];
106 void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
107 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
108 const EffectTarget target) override;
109 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
110 const al::span<FloatBufferLine> samplesOut) override;
112 DEF_NEWDEL(PshifterState)
115 void PshifterState::deviceUpdate(const DeviceBase*, const Buffer&)
117 /* (Re-)initializing parameters and clear the buffers. */
118 mCount = 0;
119 mPos = StftSize - StftStep;
120 mPitchShiftI = MixerFracOne;
121 mPitchShift = 1.0;
123 std::fill(mFIFO.begin(), mFIFO.end(), 0.0);
124 std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0);
125 std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0);
126 std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0);
127 std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{});
128 std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{});
129 std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
131 std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
132 std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
135 void PshifterState::update(const ContextBase*, const EffectSlot *slot,
136 const EffectProps *props, const EffectTarget target)
138 const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune};
139 const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
140 mPitchShiftI = fastf2u(pitch*MixerFracOne);
141 mPitchShift = mPitchShiftI * double{1.0/MixerFracOne};
143 static constexpr auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f});
145 mOutTarget = target.Main->Buffer;
146 ComputePanGains(target.Main, coeffs.data(), slot->Gain, mTargetGains);
149 void PshifterState::process(const size_t samplesToDo,
150 const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
152 /* Pitch shifter engine based on the work of Stephan Bernsee.
153 * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
156 /* Cycle offset per update expected of each frequency bin (bin 0 is none,
157 * bin 1 is x1, bin 2 is x2, etc).
159 constexpr double expected_cycles{al::numbers::pi*2.0 / OversampleFactor};
161 for(size_t base{0u};base < samplesToDo;)
163 const size_t todo{minz(StftStep-mCount, samplesToDo-base)};
165 /* Retrieve the output samples from the FIFO and fill in the new input
166 * samples.
168 auto fifo_iter = mFIFO.begin()+mPos + mCount;
169 std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
170 [](double d) noexcept -> float { return static_cast<float>(d); });
172 std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
173 mCount += todo;
174 base += todo;
176 /* Check whether FIFO buffer is filled with new samples. */
177 if(mCount < StftStep) break;
178 mCount = 0;
179 mPos = (mPos+StftStep) & (mFIFO.size()-1);
181 /* Time-domain signal windowing, store in FftBuffer, and apply a
182 * forward FFT to get the frequency-domain signal.
184 for(size_t src{mPos}, k{0u};src < StftSize;++src,++k)
185 mFftBuffer[k] = mFIFO[src] * HannWindow[k];
186 for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k)
187 mFftBuffer[k] = mFIFO[src] * HannWindow[k];
188 forward_fft(al::as_span(mFftBuffer));
190 /* Analyze the obtained data. Since the real FFT is symmetric, only
191 * StftHalfSize+1 samples are needed.
193 for(size_t k{0u};k < StftHalfSize+1;k++)
195 const double magnitude{std::abs(mFftBuffer[k])};
196 const double phase{std::arg(mFftBuffer[k])};
198 /* Compute the phase difference from the last update and subtract
199 * the expected phase difference for this bin.
201 * When oversampling, the expected per-update offset increments by
202 * 1/OversampleFactor for every frequency bin. So, the offset wraps
203 * every 'OversampleFactor' bin.
205 const auto bin_offset = static_cast<double>(k % OversampleFactor);
206 double tmp{(phase - mLastPhase[k]) - bin_offset*expected_cycles};
207 /* Store the actual phase for the next update. */
208 mLastPhase[k] = phase;
210 /* Normalize from pi, and wrap the delta between -1 and +1. */
211 tmp *= al::numbers::inv_pi;
212 int qpd{double2int(tmp)};
213 tmp -= qpd + (qpd%2);
215 /* Get deviation from bin frequency (-0.5 to +0.5), and account for
216 * oversampling.
218 tmp *= 0.5 * OversampleFactor;
220 /* Compute the k-th partials' frequency bin target and store the
221 * magnitude and frequency bin in the analysis buffer. We don't
222 * need the "true frequency" since it's a linear relationship with
223 * the bin.
225 mAnalysisBuffer[k].Magnitude = magnitude;
226 mAnalysisBuffer[k].FreqBin = static_cast<double>(k) + tmp;
229 /* Shift the frequency bins according to the pitch adjustment,
230 * accumulating the magnitudes of overlapping frequency bins.
232 std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
234 constexpr size_t bin_limit{((StftHalfSize+1)<<MixerFracBits) - MixerFracHalf - 1};
235 const size_t bin_count{minz(StftHalfSize+1, bin_limit/mPitchShiftI + 1)};
236 for(size_t k{0u};k < bin_count;k++)
238 const size_t j{(k*mPitchShiftI + MixerFracHalf) >> MixerFracBits};
240 /* If more than two bins end up together, use the target frequency
241 * bin for the one with the dominant magnitude. There might be a
242 * better way to handle this, but it's better than last-index-wins.
244 if(mAnalysisBuffer[k].Magnitude > mSynthesisBuffer[j].Magnitude)
245 mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift;
246 mSynthesisBuffer[j].Magnitude += mAnalysisBuffer[k].Magnitude;
249 /* Reconstruct the frequency-domain signal from the adjusted frequency
250 * bins.
252 for(size_t k{0u};k < StftHalfSize+1;k++)
254 /* Calculate the actual delta phase for this bin's target frequency
255 * bin, and accumulate it to get the actual bin phase.
257 double tmp{mSumPhase[k] + mSynthesisBuffer[k].FreqBin*expected_cycles};
259 /* Wrap between -pi and +pi for the sum. If mSumPhase is left to
260 * grow indefinitely, it will lose precision and produce less exact
261 * phase over time.
263 int qpd{double2int(tmp * al::numbers::inv_pi)};
264 tmp -= al::numbers::pi * (qpd + (qpd%2));
265 mSumPhase[k] = tmp;
267 mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k]);
269 for(size_t k{StftHalfSize+1};k < StftSize;++k)
270 mFftBuffer[k] = std::conj(mFftBuffer[StftSize-k]);
272 /* Apply an inverse FFT to get the time-domain signal, and accumulate
273 * for the output with windowing.
275 inverse_fft(al::as_span(mFftBuffer));
277 static constexpr double scale{4.0 / OversampleFactor / StftSize};
278 for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k)
279 mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * scale;
280 for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k)
281 mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * scale;
283 /* Copy out the accumulated result, then clear for the next iteration. */
284 std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos);
285 std::fill_n(mOutputAccum.begin() + mPos, StftStep, 0.0);
288 /* Now, mix the processed sound data to the output. */
289 MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
290 maxz(samplesToDo, 512), 0);
294 struct PshifterStateFactory final : public EffectStateFactory {
295 al::intrusive_ptr<EffectState> create() override
296 { return al::intrusive_ptr<EffectState>{new PshifterState{}}; }
299 } // namespace
301 EffectStateFactory *PshifterStateFactory_getFactory()
303 static PshifterStateFactory PshifterFactory{};
304 return &PshifterFactory;