Release 1.21.0
[openal-soft.git] / examples / alffplay.cpp
blob6886a42dad785861fb3c00c848a7dc0db1dc867d
1 /*
2 * An example showing how to play a stream sync'd to video, using ffmpeg.
4 * Requires C++14.
5 */
7 #include <condition_variable>
8 #include <functional>
9 #include <algorithm>
10 #include <iostream>
11 #include <utility>
12 #include <iomanip>
13 #include <cstdint>
14 #include <cstring>
15 #include <cstdlib>
16 #include <atomic>
17 #include <cerrno>
18 #include <chrono>
19 #include <cstdio>
20 #include <memory>
21 #include <string>
22 #include <thread>
23 #include <vector>
24 #include <array>
25 #include <cmath>
26 #include <deque>
27 #include <mutex>
28 #include <ratio>
30 extern "C" {
31 #ifdef __GNUC__
32 _Pragma("GCC diagnostic push")
33 _Pragma("GCC diagnostic ignored \"-Wconversion\"")
34 _Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
35 #endif
36 #include "libavcodec/avcodec.h"
37 #include "libavformat/avformat.h"
38 #include "libavformat/avio.h"
39 #include "libavformat/version.h"
40 #include "libavutil/avutil.h"
41 #include "libavutil/error.h"
42 #include "libavutil/frame.h"
43 #include "libavutil/mem.h"
44 #include "libavutil/pixfmt.h"
45 #include "libavutil/rational.h"
46 #include "libavutil/samplefmt.h"
47 #include "libavutil/time.h"
48 #include "libavutil/version.h"
49 #include "libavutil/channel_layout.h"
50 #include "libswscale/swscale.h"
51 #include "libswresample/swresample.h"
53 constexpr auto AVNoPtsValue = AV_NOPTS_VALUE;
54 constexpr auto AVErrorEOF = AVERROR_EOF;
56 struct SwsContext;
57 #ifdef __GNUC__
58 _Pragma("GCC diagnostic pop")
59 #endif
62 #include "SDL.h"
64 #include "AL/alc.h"
65 #include "AL/al.h"
66 #include "AL/alext.h"
68 #include "common/alhelpers.h"
70 extern "C" {
71 /* Undefine this to disable use of experimental extensions. Don't use for
72 * production code! Interfaces and behavior may change prior to being
73 * finalized.
75 #define ALLOW_EXPERIMENTAL_EXTS
77 #ifdef ALLOW_EXPERIMENTAL_EXTS
78 #ifndef AL_SOFT_callback_buffer
79 #define AL_SOFT_callback_buffer
80 typedef unsigned int ALbitfieldSOFT;
81 #define AL_BUFFER_CALLBACK_FUNCTION_SOFT 0x19A0
82 #define AL_BUFFER_CALLBACK_USER_PARAM_SOFT 0x19A1
83 typedef ALsizei (AL_APIENTRY*LPALBUFFERCALLBACKTYPESOFT)(ALvoid *userptr, ALvoid *sampledata, ALsizei numsamples);
84 typedef void (AL_APIENTRY*LPALBUFFERCALLBACKSOFT)(ALuint buffer, ALenum format, ALsizei freq, LPALBUFFERCALLBACKTYPESOFT callback, ALvoid *userptr, ALbitfieldSOFT flags);
85 typedef void (AL_APIENTRY*LPALGETBUFFERPTRSOFT)(ALuint buffer, ALenum param, ALvoid **value);
86 typedef void (AL_APIENTRY*LPALGETBUFFER3PTRSOFT)(ALuint buffer, ALenum param, ALvoid **value1, ALvoid **value2, ALvoid **value3);
87 typedef void (AL_APIENTRY*LPALGETBUFFERPTRVSOFT)(ALuint buffer, ALenum param, ALvoid **values);
88 #endif
89 #endif /* ALLOW_EXPERIMENTAL_EXTS */
92 namespace {
94 inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
96 #ifndef M_PI
97 #define M_PI (3.14159265358979323846)
98 #endif
100 using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
101 using nanoseconds = std::chrono::nanoseconds;
102 using microseconds = std::chrono::microseconds;
103 using milliseconds = std::chrono::milliseconds;
104 using seconds = std::chrono::seconds;
105 using seconds_d64 = std::chrono::duration<double>;
106 using std::chrono::duration_cast;
108 const std::string AppName{"alffplay"};
110 ALenum DirectOutMode{AL_FALSE};
111 bool EnableWideStereo{false};
112 bool DisableVideo{false};
113 LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
114 LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
116 #ifdef AL_SOFT_events
117 LPALEVENTCONTROLSOFT alEventControlSOFT;
118 LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
119 #endif
121 #ifdef AL_SOFT_callback_buffer
122 LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
123 #endif
125 const seconds AVNoSyncThreshold{10};
127 #define VIDEO_PICTURE_QUEUE_SIZE 24
129 const seconds_d64 AudioSyncThreshold{0.03};
130 const milliseconds AudioSampleCorrectionMax{50};
131 /* Averaging filter coefficient for audio sync. */
132 #define AUDIO_DIFF_AVG_NB 20
133 const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
134 /* Per-buffer size, in time */
135 constexpr milliseconds AudioBufferTime{20};
136 /* Buffer total size, in time (should be divisible by the buffer time) */
137 constexpr milliseconds AudioBufferTotalTime{800};
138 constexpr auto AudioBufferCount = AudioBufferTotalTime / AudioBufferTime;
140 enum {
141 FF_MOVIE_DONE_EVENT = SDL_USEREVENT
144 enum class SyncMaster {
145 Audio,
146 Video,
147 External,
149 Default = External
153 inline microseconds get_avtime()
154 { return microseconds{av_gettime()}; }
156 /* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
157 struct AVIOContextDeleter {
158 void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
160 using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
162 struct AVFormatCtxDeleter {
163 void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
165 using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
167 struct AVCodecCtxDeleter {
168 void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
170 using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
172 struct AVFrameDeleter {
173 void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
175 using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
177 struct SwrContextDeleter {
178 void operator()(SwrContext *ptr) { swr_free(&ptr); }
180 using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
182 struct SwsContextDeleter {
183 void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
185 using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
188 template<size_t SizeLimit>
189 class PacketQueue {
190 std::mutex mMutex;
191 std::condition_variable mCondVar;
192 std::deque<AVPacket> mPackets;
193 size_t mTotalSize{0};
194 bool mFinished{false};
196 AVPacket *getPacket(std::unique_lock<std::mutex> &lock)
198 while(mPackets.empty() && !mFinished)
199 mCondVar.wait(lock);
200 return mPackets.empty() ? nullptr : &mPackets.front();
203 void pop()
205 AVPacket *pkt = &mPackets.front();
206 mTotalSize -= static_cast<unsigned int>(pkt->size);
207 av_packet_unref(pkt);
208 mPackets.pop_front();
211 public:
212 ~PacketQueue()
214 for(AVPacket &pkt : mPackets)
215 av_packet_unref(&pkt);
216 mPackets.clear();
217 mTotalSize = 0;
220 int sendTo(AVCodecContext *codecctx)
222 std::unique_lock<std::mutex> lock{mMutex};
224 AVPacket *pkt{getPacket(lock)};
225 if(!pkt) return avcodec_send_packet(codecctx, nullptr);
227 const int ret{avcodec_send_packet(codecctx, pkt)};
228 if(ret != AVERROR(EAGAIN))
230 if(ret < 0)
231 std::cerr<< "Failed to send packet: "<<ret <<std::endl;
232 pop();
234 return ret;
237 void setFinished()
240 std::lock_guard<std::mutex> _{mMutex};
241 mFinished = true;
243 mCondVar.notify_one();
246 bool put(const AVPacket *pkt)
249 std::unique_lock<std::mutex> lock{mMutex};
250 if(mTotalSize >= SizeLimit)
251 return false;
253 mPackets.push_back(AVPacket{});
254 if(av_packet_ref(&mPackets.back(), pkt) != 0)
256 mPackets.pop_back();
257 return true;
260 mTotalSize += static_cast<unsigned int>(mPackets.back().size);
262 mCondVar.notify_one();
263 return true;
268 struct MovieState;
270 struct AudioState {
271 MovieState &mMovie;
273 AVStream *mStream{nullptr};
274 AVCodecCtxPtr mCodecCtx;
276 PacketQueue<2*1024*1024> mPackets;
278 /* Used for clock difference average computation */
279 seconds_d64 mClockDiffAvg{0};
281 /* Time of the next sample to be buffered */
282 nanoseconds mCurrentPts{0};
284 /* Device clock time that the stream started at. */
285 nanoseconds mDeviceStartTime{nanoseconds::min()};
287 /* Decompressed sample frame, and swresample context for conversion */
288 AVFramePtr mDecodedFrame;
289 SwrContextPtr mSwresCtx;
291 /* Conversion format, for what gets fed to OpenAL */
292 uint64_t mDstChanLayout{0};
293 AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
295 /* Storage of converted samples */
296 uint8_t *mSamples{nullptr};
297 int mSamplesLen{0}; /* In samples */
298 int mSamplesPos{0};
299 int mSamplesMax{0};
301 std::unique_ptr<uint8_t[]> mBufferData;
302 size_t mBufferDataSize{0};
303 std::atomic<size_t> mReadPos{0};
304 std::atomic<size_t> mWritePos{0};
306 /* OpenAL format */
307 ALenum mFormat{AL_NONE};
308 ALuint mFrameSize{0};
310 std::mutex mSrcMutex;
311 std::condition_variable mSrcCond;
312 std::atomic_flag mConnected;
313 ALuint mSource{0};
314 std::array<ALuint,AudioBufferCount> mBuffers{};
315 ALuint mBufferIdx{0};
317 AudioState(MovieState &movie) : mMovie(movie)
318 { mConnected.test_and_set(std::memory_order_relaxed); }
319 ~AudioState()
321 if(mSource)
322 alDeleteSources(1, &mSource);
323 if(mBuffers[0])
324 alDeleteBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
326 av_freep(&mSamples);
329 #ifdef AL_SOFT_events
330 static void AL_APIENTRY EventCallback(ALenum eventType, ALuint object, ALuint param,
331 ALsizei length, const ALchar *message, void *userParam);
332 #endif
333 #ifdef AL_SOFT_callback_buffer
334 static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size)
335 { return static_cast<AudioState*>(userptr)->bufferCallback(data, size); }
336 ALsizei bufferCallback(void *data, ALsizei size);
337 #endif
339 nanoseconds getClockNoLock();
340 nanoseconds getClock()
342 std::lock_guard<std::mutex> lock{mSrcMutex};
343 return getClockNoLock();
346 bool startPlayback();
348 int getSync();
349 int decodeFrame();
350 bool readAudio(uint8_t *samples, unsigned int length, int &sample_skip);
351 void readAudio(int sample_skip);
353 int handler();
356 struct VideoState {
357 MovieState &mMovie;
359 AVStream *mStream{nullptr};
360 AVCodecCtxPtr mCodecCtx;
362 PacketQueue<14*1024*1024> mPackets;
364 /* The pts of the currently displayed frame, and the time (av_gettime) it
365 * was last updated - used to have running video pts
367 nanoseconds mDisplayPts{0};
368 microseconds mDisplayPtsTime{microseconds::min()};
369 std::mutex mDispPtsMutex;
371 /* Swscale context for format conversion */
372 SwsContextPtr mSwscaleCtx;
374 struct Picture {
375 AVFramePtr mFrame{};
376 nanoseconds mPts{nanoseconds::min()};
378 std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
379 std::atomic<size_t> mPictQRead{0u}, mPictQWrite{1u};
380 std::mutex mPictQMutex;
381 std::condition_variable mPictQCond;
383 SDL_Texture *mImage{nullptr};
384 int mWidth{0}, mHeight{0}; /* Logical image size (actual size may be larger) */
385 bool mFirstUpdate{true};
387 std::atomic<bool> mEOS{false};
388 std::atomic<bool> mFinalUpdate{false};
390 VideoState(MovieState &movie) : mMovie(movie) { }
391 ~VideoState()
393 if(mImage)
394 SDL_DestroyTexture(mImage);
395 mImage = nullptr;
398 nanoseconds getClock();
400 void display(SDL_Window *screen, SDL_Renderer *renderer);
401 void updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw);
402 int handler();
405 struct MovieState {
406 AVIOContextPtr mIOContext;
407 AVFormatCtxPtr mFormatCtx;
409 SyncMaster mAVSyncType{SyncMaster::Default};
411 microseconds mClockBase{microseconds::min()};
413 std::atomic<bool> mQuit{false};
415 AudioState mAudio;
416 VideoState mVideo;
418 std::thread mParseThread;
419 std::thread mAudioThread;
420 std::thread mVideoThread;
422 std::string mFilename;
424 MovieState(std::string fname)
425 : mAudio(*this), mVideo(*this), mFilename(std::move(fname))
427 ~MovieState()
429 mQuit = true;
430 if(mParseThread.joinable())
431 mParseThread.join();
434 static int decode_interrupt_cb(void *ctx);
435 bool prepare();
436 void setTitle(SDL_Window *window);
438 nanoseconds getClock();
440 nanoseconds getMasterClock();
442 nanoseconds getDuration();
444 int streamComponentOpen(unsigned int stream_index);
445 int parse_handler();
449 nanoseconds AudioState::getClockNoLock()
451 // The audio clock is the timestamp of the sample currently being heard.
452 if(alcGetInteger64vSOFT)
454 // If device start time = min, we aren't playing yet.
455 if(mDeviceStartTime == nanoseconds::min())
456 return nanoseconds::zero();
458 // Get the current device clock time and latency.
459 auto device = alcGetContextsDevice(alcGetCurrentContext());
460 ALCint64SOFT devtimes[2]{0,0};
461 alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes);
462 auto latency = nanoseconds{devtimes[1]};
463 auto device_time = nanoseconds{devtimes[0]};
465 // The clock is simply the current device time relative to the recorded
466 // start time. We can also subtract the latency to get more a accurate
467 // position of where the audio device actually is in the output stream.
468 return device_time - mDeviceStartTime - latency;
471 if(mBufferDataSize > 0)
473 if(mDeviceStartTime == nanoseconds::min())
474 return nanoseconds::zero();
476 /* With a callback buffer and no device clock, mDeviceStartTime is
477 * actually the timestamp of the first sample frame played. The audio
478 * clock, then, is that plus the current source offset.
480 ALint64SOFT offset[2];
481 if(alGetSourcei64vSOFT)
482 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
483 else
485 ALint ioffset;
486 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
487 offset[0] = ALint64SOFT{ioffset} << 32;
488 offset[1] = 0;
490 /* NOTE: The source state must be checked last, in case an underrun
491 * occurs and the source stops between getting the state and retrieving
492 * the offset+latency.
494 ALint status;
495 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
497 nanoseconds pts{};
498 if(status == AL_PLAYING || status == AL_PAUSED)
499 pts = mDeviceStartTime - nanoseconds{offset[1]} +
500 duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
501 else
503 /* If the source is stopped, the pts of the next sample to be heard
504 * is the pts of the next sample to be buffered, minus the amount
505 * already in the buffer ready to play.
507 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
508 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
509 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
510 roffset};
512 pts = mCurrentPts - nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
515 return pts;
518 /* The source-based clock is based on 4 components:
519 * 1 - The timestamp of the next sample to buffer (mCurrentPts)
520 * 2 - The length of the source's buffer queue
521 * (AudioBufferTime*AL_BUFFERS_QUEUED)
522 * 3 - The offset OpenAL is currently at in the source (the first value
523 * from AL_SAMPLE_OFFSET_LATENCY_SOFT)
524 * 4 - The latency between OpenAL and the DAC (the second value from
525 * AL_SAMPLE_OFFSET_LATENCY_SOFT)
527 * Subtracting the length of the source queue from the next sample's
528 * timestamp gives the timestamp of the sample at the start of the source
529 * queue. Adding the source offset to that results in the timestamp for the
530 * sample at OpenAL's current position, and subtracting the source latency
531 * from that gives the timestamp of the sample currently at the DAC.
533 nanoseconds pts{mCurrentPts};
534 if(mSource)
536 ALint64SOFT offset[2];
537 if(alGetSourcei64vSOFT)
538 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
539 else
541 ALint ioffset;
542 alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
543 offset[0] = ALint64SOFT{ioffset} << 32;
544 offset[1] = 0;
546 ALint queued, status;
547 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
548 alGetSourcei(mSource, AL_SOURCE_STATE, &status);
550 /* If the source is AL_STOPPED, then there was an underrun and all
551 * buffers are processed, so ignore the source queue. The audio thread
552 * will put the source into an AL_INITIAL state and clear the queue
553 * when it starts recovery.
555 if(status != AL_STOPPED)
557 pts -= AudioBufferTime*queued;
558 pts += duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
560 /* Don't offset by the latency if the source isn't playing. */
561 if(status == AL_PLAYING)
562 pts -= nanoseconds{offset[1]};
565 return std::max(pts, nanoseconds::zero());
568 bool AudioState::startPlayback()
570 const size_t woffset{mWritePos.load(std::memory_order_acquire)};
571 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
572 const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
573 roffset};
575 if(mBufferDataSize > 0)
577 if(readable == 0)
578 return false;
579 if(!alcGetInteger64vSOFT)
580 mDeviceStartTime = mCurrentPts -
581 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
583 else
585 ALint queued{};
586 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
587 if(queued == 0) return false;
590 alSourcePlay(mSource);
591 if(alcGetInteger64vSOFT)
593 /* Subtract the total buffer queue time from the current pts to get the
594 * pts of the start of the queue.
596 int64_t srctimes[2]{0,0};
597 alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes);
598 auto device_time = nanoseconds{srctimes[1]};
599 auto src_offset = duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
600 mCodecCtx->sample_rate;
602 /* The mixer may have ticked and incremented the device time and sample
603 * offset, so subtract the source offset from the device time to get
604 * the device time the source started at. Also subtract startpts to get
605 * the device time the stream would have started at to reach where it
606 * is now.
608 if(mBufferDataSize > 0)
610 nanoseconds startpts{mCurrentPts -
611 nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate};
612 mDeviceStartTime = device_time - src_offset - startpts;
614 else
616 nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
617 mDeviceStartTime = device_time - src_offset - startpts;
620 return true;
623 int AudioState::getSync()
625 if(mMovie.mAVSyncType == SyncMaster::Audio)
626 return 0;
628 auto ref_clock = mMovie.getMasterClock();
629 auto diff = ref_clock - getClockNoLock();
631 if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
633 /* Difference is TOO big; reset accumulated average */
634 mClockDiffAvg = seconds_d64::zero();
635 return 0;
638 /* Accumulate the diffs */
639 mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
640 auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
641 if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
642 return 0;
644 /* Constrain the per-update difference to avoid exceedingly large skips */
645 diff = std::min<nanoseconds>(diff, AudioSampleCorrectionMax);
646 return static_cast<int>(duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
649 int AudioState::decodeFrame()
651 while(!mMovie.mQuit.load(std::memory_order_relaxed))
653 int ret;
654 while((ret=avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get())) == AVERROR(EAGAIN))
655 mPackets.sendTo(mCodecCtx.get());
656 if(ret != 0)
658 if(ret == AVErrorEOF) break;
659 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
660 continue;
663 if(mDecodedFrame->nb_samples <= 0)
664 continue;
666 /* If provided, update w/ pts */
667 if(mDecodedFrame->best_effort_timestamp != AVNoPtsValue)
668 mCurrentPts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
669 static_cast<double>(mDecodedFrame->best_effort_timestamp)});
671 if(mDecodedFrame->nb_samples > mSamplesMax)
673 av_freep(&mSamples);
674 av_samples_alloc(&mSamples, nullptr, mCodecCtx->channels, mDecodedFrame->nb_samples,
675 mDstSampleFmt, 0);
676 mSamplesMax = mDecodedFrame->nb_samples;
678 /* Return the amount of sample frames converted */
679 int data_size{swr_convert(mSwresCtx.get(), &mSamples, mDecodedFrame->nb_samples,
680 const_cast<const uint8_t**>(mDecodedFrame->data), mDecodedFrame->nb_samples)};
682 av_frame_unref(mDecodedFrame.get());
683 return data_size;
686 return 0;
689 /* Duplicates the sample at in to out, count times. The frame size is a
690 * multiple of the template type size.
692 template<typename T>
693 static void sample_dup(uint8_t *out, const uint8_t *in, size_t count, size_t frame_size)
695 auto *sample = reinterpret_cast<const T*>(in);
696 auto *dst = reinterpret_cast<T*>(out);
697 if(frame_size == sizeof(T))
698 std::fill_n(dst, count, *sample);
699 else
701 /* NOTE: frame_size is a multiple of sizeof(T). */
702 size_t type_mult{frame_size / sizeof(T)};
703 size_t i{0};
704 std::generate_n(dst, count*type_mult,
705 [sample,type_mult,&i]() -> T
707 T ret = sample[i];
708 i = (i+1)%type_mult;
709 return ret;
716 bool AudioState::readAudio(uint8_t *samples, unsigned int length, int &sample_skip)
718 unsigned int audio_size{0};
720 /* Read the next chunk of data, refill the buffer, and queue it
721 * on the source */
722 length /= mFrameSize;
723 while(mSamplesLen > 0 && audio_size < length)
725 unsigned int rem{length - audio_size};
726 if(mSamplesPos >= 0)
728 const auto len = static_cast<unsigned int>(mSamplesLen - mSamplesPos);
729 if(rem > len) rem = len;
730 std::copy_n(mSamples + static_cast<unsigned int>(mSamplesPos)*mFrameSize,
731 rem*mFrameSize, samples);
733 else
735 rem = std::min(rem, static_cast<unsigned int>(-mSamplesPos));
737 /* Add samples by copying the first sample */
738 if((mFrameSize&7) == 0)
739 sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
740 else if((mFrameSize&3) == 0)
741 sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
742 else if((mFrameSize&1) == 0)
743 sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
744 else
745 sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
748 mSamplesPos += rem;
749 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
750 samples += rem*mFrameSize;
751 audio_size += rem;
753 while(mSamplesPos >= mSamplesLen)
755 int frame_len = decodeFrame();
756 if(frame_len <= 0) break;
758 mSamplesLen = frame_len;
759 mSamplesPos = std::min(mSamplesLen, sample_skip);
760 sample_skip -= mSamplesPos;
762 // Adjust the device start time and current pts by the amount we're
763 // skipping/duplicating, so that the clock remains correct for the
764 // current stream position.
765 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
766 mDeviceStartTime -= skip;
767 mCurrentPts += skip;
768 continue;
771 if(audio_size <= 0)
772 return false;
774 if(audio_size < length)
776 const unsigned int rem{length - audio_size};
777 std::fill_n(samples, rem*mFrameSize,
778 (mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
779 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
780 audio_size += rem;
782 return true;
785 void AudioState::readAudio(int sample_skip)
787 size_t woffset{mWritePos.load(std::memory_order_acquire)};
788 while(mSamplesLen > 0)
790 const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
792 if(mSamplesPos < 0)
794 size_t rem{(((roffset > woffset) ? roffset-1
795 : ((roffset == 0) ? mBufferDataSize-1
796 : mBufferDataSize)) - woffset) / mFrameSize};
797 rem = std::min<size_t>(rem, static_cast<ALuint>(-mSamplesPos));
798 if(rem == 0) break;
800 auto *splout{&mBufferData[woffset]};
801 if((mFrameSize&7) == 0)
802 sample_dup<uint64_t>(splout, mSamples, rem, mFrameSize);
803 else if((mFrameSize&3) == 0)
804 sample_dup<uint32_t>(splout, mSamples, rem, mFrameSize);
805 else if((mFrameSize&1) == 0)
806 sample_dup<uint16_t>(splout, mSamples, rem, mFrameSize);
807 else
808 sample_dup<uint8_t>(splout, mSamples, rem, mFrameSize);
809 woffset += rem * mFrameSize;
810 if(woffset == mBufferDataSize)
811 woffset = 0;
812 mWritePos.store(woffset, std::memory_order_release);
813 mSamplesPos += static_cast<int>(rem);
814 mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
815 continue;
818 const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
819 const size_t nbytes{static_cast<ALuint>(mSamplesLen)*size_t{mFrameSize} -
820 boffset};
821 if(roffset > woffset)
823 const size_t writable{roffset-woffset-1};
824 if(writable < nbytes) break;
826 memcpy(&mBufferData[woffset], mSamples+boffset, nbytes);
827 woffset += nbytes;
829 else
831 const size_t writable{mBufferDataSize+roffset-woffset-1};
832 if(writable < nbytes) break;
834 const size_t todo1{std::min<size_t>(nbytes, mBufferDataSize-woffset)};
835 const size_t todo2{nbytes - todo1};
837 memcpy(&mBufferData[woffset], mSamples+boffset, todo1);
838 woffset += todo1;
839 if(woffset == mBufferDataSize)
841 woffset = 0;
842 if(todo2 > 0)
844 memcpy(&mBufferData[woffset], mSamples+boffset+todo1, todo2);
845 woffset += todo2;
849 mWritePos.store(woffset, std::memory_order_release);
850 mCurrentPts += nanoseconds{seconds{mSamplesLen-mSamplesPos}} / mCodecCtx->sample_rate;
852 do {
853 mSamplesLen = decodeFrame();
854 if(mSamplesLen <= 0) break;
856 mSamplesPos = std::min(mSamplesLen, sample_skip);
857 sample_skip -= mSamplesPos;
859 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
860 mDeviceStartTime -= skip;
861 mCurrentPts += skip;
862 } while(mSamplesPos >= mSamplesLen);
867 #ifdef AL_SOFT_events
868 void AL_APIENTRY AudioState::EventCallback(ALenum eventType, ALuint object, ALuint param,
869 ALsizei length, const ALchar *message, void *userParam)
871 auto self = static_cast<AudioState*>(userParam);
873 if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
875 /* Temporarily lock the source mutex to ensure it's not between
876 * checking the processed count and going to sleep.
878 std::unique_lock<std::mutex>{self->mSrcMutex}.unlock();
879 self->mSrcCond.notify_one();
880 return;
883 std::cout<< "\n---- AL Event on AudioState "<<self<<" ----\nEvent: ";
884 switch(eventType)
886 case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: std::cout<< "Buffer completed"; break;
887 case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: std::cout<< "Source state changed"; break;
888 case AL_EVENT_TYPE_DISCONNECTED_SOFT: std::cout<< "Disconnected"; break;
889 default:
890 std::cout<< "0x"<<std::hex<<std::setw(4)<<std::setfill('0')<<eventType<<std::dec<<
891 std::setw(0)<<std::setfill(' '); break;
893 std::cout<< "\n"
894 "Object ID: "<<object<<"\n"
895 "Parameter: "<<param<<"\n"
896 "Message: "<<std::string{message, static_cast<ALuint>(length)}<<"\n----"<<
897 std::endl;
899 if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
902 std::lock_guard<std::mutex> lock{self->mSrcMutex};
903 self->mConnected.clear(std::memory_order_release);
905 self->mSrcCond.notify_one();
908 #endif
910 #ifdef AL_SOFT_callback_buffer
911 ALsizei AudioState::bufferCallback(void *data, ALsizei size)
913 ALsizei got{0};
915 size_t roffset{mReadPos.load(std::memory_order_acquire)};
916 while(got < size)
918 const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
919 if(woffset == roffset) break;
921 size_t todo{((woffset < roffset) ? mBufferDataSize : woffset) - roffset};
922 todo = std::min<size_t>(todo, static_cast<ALuint>(size-got));
924 memcpy(data, &mBufferData[roffset], todo);
925 data = static_cast<ALbyte*>(data) + todo;
926 got += static_cast<ALsizei>(todo);
928 roffset += todo;
929 if(roffset == mBufferDataSize)
930 roffset = 0;
932 mReadPos.store(roffset, std::memory_order_release);
934 return got;
936 #endif
938 int AudioState::handler()
940 std::unique_lock<std::mutex> srclock{mSrcMutex, std::defer_lock};
941 milliseconds sleep_time{AudioBufferTime / 3};
942 ALenum fmt;
944 #ifdef AL_SOFT_events
945 const std::array<ALenum,3> evt_types{{
946 AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
947 AL_EVENT_TYPE_DISCONNECTED_SOFT}};
948 if(alEventControlSOFT)
950 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_TRUE);
951 alEventCallbackSOFT(EventCallback, this);
952 sleep_time = AudioBufferTotalTime;
954 #endif
955 #ifdef AL_SOFT_bformat_ex
956 const bool has_bfmt_ex{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE};
957 ALenum ambi_layout{AL_FUMA_SOFT};
958 ALenum ambi_scale{AL_FUMA_SOFT};
959 #endif
961 /* Find a suitable format for OpenAL. */
962 mDstChanLayout = 0;
963 mFormat = AL_NONE;
964 if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) &&
965 alIsExtensionPresent("AL_EXT_FLOAT32"))
967 mDstSampleFmt = AV_SAMPLE_FMT_FLT;
968 mFrameSize = 4;
969 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
970 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
971 (fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1)
973 mDstChanLayout = mCodecCtx->channel_layout;
974 mFrameSize *= 8;
975 mFormat = fmt;
977 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
978 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
979 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
980 (fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1)
982 mDstChanLayout = mCodecCtx->channel_layout;
983 mFrameSize *= 6;
984 mFormat = fmt;
986 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
988 mDstChanLayout = mCodecCtx->channel_layout;
989 mFrameSize *= 1;
990 mFormat = AL_FORMAT_MONO_FLOAT32;
992 /* Assume 3D B-Format (ambisonics) if the channel layout is blank and
993 * there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
994 * have no way to specify if the source is actually B-Format (let alone
995 * if it's 2D or 3D).
997 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
998 alIsExtensionPresent("AL_EXT_BFORMAT") &&
999 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32")) != AL_NONE && fmt != -1)
1001 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1002 if((order+1)*(order+1) == mCodecCtx->channels ||
1003 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1005 /* OpenAL only supports first-order with AL_EXT_BFORMAT, which
1006 * is 4 channels for 3D buffers.
1008 mFrameSize *= 4;
1009 mFormat = fmt;
1012 if(!mFormat)
1014 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1015 mFrameSize *= 2;
1016 mFormat = AL_FORMAT_STEREO_FLOAT32;
1019 if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
1021 mDstSampleFmt = AV_SAMPLE_FMT_U8;
1022 mFrameSize = 1;
1023 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1024 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1025 (fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1)
1027 mDstChanLayout = mCodecCtx->channel_layout;
1028 mFrameSize *= 8;
1029 mFormat = fmt;
1031 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1032 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1033 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1034 (fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1)
1036 mDstChanLayout = mCodecCtx->channel_layout;
1037 mFrameSize *= 6;
1038 mFormat = fmt;
1040 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1042 mDstChanLayout = mCodecCtx->channel_layout;
1043 mFrameSize *= 1;
1044 mFormat = AL_FORMAT_MONO8;
1046 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1047 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1048 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D8")) != AL_NONE && fmt != -1)
1050 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1051 if((order+1)*(order+1) == mCodecCtx->channels ||
1052 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1054 mFrameSize *= 4;
1055 mFormat = fmt;
1058 if(!mFormat)
1060 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1061 mFrameSize *= 2;
1062 mFormat = AL_FORMAT_STEREO8;
1065 if(!mFormat)
1067 mDstSampleFmt = AV_SAMPLE_FMT_S16;
1068 mFrameSize = 2;
1069 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
1070 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1071 (fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1)
1073 mDstChanLayout = mCodecCtx->channel_layout;
1074 mFrameSize *= 8;
1075 mFormat = fmt;
1077 if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
1078 mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
1079 alIsExtensionPresent("AL_EXT_MCFORMATS") &&
1080 (fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1)
1082 mDstChanLayout = mCodecCtx->channel_layout;
1083 mFrameSize *= 6;
1084 mFormat = fmt;
1086 if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
1088 mDstChanLayout = mCodecCtx->channel_layout;
1089 mFrameSize *= 1;
1090 mFormat = AL_FORMAT_MONO16;
1092 if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
1093 alIsExtensionPresent("AL_EXT_BFORMAT") &&
1094 (fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D16")) != AL_NONE && fmt != -1)
1096 int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
1097 if((order+1)*(order+1) == mCodecCtx->channels ||
1098 (order+1)*(order+1) + 2 == mCodecCtx->channels)
1100 mFrameSize *= 4;
1101 mFormat = fmt;
1104 if(!mFormat)
1106 mDstChanLayout = AV_CH_LAYOUT_STEREO;
1107 mFrameSize *= 2;
1108 mFormat = AL_FORMAT_STEREO16;
1111 void *samples{nullptr};
1112 ALsizei buffer_len{0};
1114 mSamples = nullptr;
1115 mSamplesMax = 0;
1116 mSamplesPos = 0;
1117 mSamplesLen = 0;
1119 mDecodedFrame.reset(av_frame_alloc());
1120 if(!mDecodedFrame)
1122 std::cerr<< "Failed to allocate audio frame" <<std::endl;
1123 goto finish;
1126 if(!mDstChanLayout)
1128 /* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
1129 * we have to drop any extra channels.
1131 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1132 (1_i64<<4)-1, mDstSampleFmt, mCodecCtx->sample_rate,
1133 (1_i64<<mCodecCtx->channels)-1, mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1134 0, nullptr));
1136 /* Note that ffmpeg/libavcodec has no method to check the ambisonic
1137 * channel order and normalization, so we can only assume AmbiX as the
1138 * defacto-standard. This is not true for .amb files, which use FuMa.
1140 std::vector<double> mtx(64*64, 0.0);
1141 #ifdef AL_SOFT_bformat_ex
1142 ambi_layout = AL_ACN_SOFT;
1143 ambi_scale = AL_SN3D_SOFT;
1144 if(has_bfmt_ex)
1146 /* An identity matrix that doesn't remix any channels. */
1147 std::cout<< "Found AL_SOFT_bformat_ex" <<std::endl;
1148 mtx[0 + 0*64] = 1.0;
1149 mtx[1 + 1*64] = 1.0;
1150 mtx[2 + 2*64] = 1.0;
1151 mtx[3 + 3*64] = 1.0;
1153 else
1154 #endif
1156 std::cout<< "Found AL_EXT_BFORMAT" <<std::endl;
1157 /* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
1158 * ordering and normalization, so a custom matrix is needed to
1159 * scale and reorder the source from AmbiX.
1161 mtx[0 + 0*64] = std::sqrt(0.5);
1162 mtx[3 + 1*64] = 1.0;
1163 mtx[1 + 2*64] = 1.0;
1164 mtx[2 + 3*64] = 1.0;
1166 swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
1168 else
1169 mSwresCtx.reset(swr_alloc_set_opts(nullptr,
1170 static_cast<int64_t>(mDstChanLayout), mDstSampleFmt, mCodecCtx->sample_rate,
1171 mCodecCtx->channel_layout ? static_cast<int64_t>(mCodecCtx->channel_layout)
1172 : av_get_default_channel_layout(mCodecCtx->channels),
1173 mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
1174 0, nullptr));
1175 if(!mSwresCtx || swr_init(mSwresCtx.get()) != 0)
1177 std::cerr<< "Failed to initialize audio converter" <<std::endl;
1178 goto finish;
1181 alGenBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
1182 alGenSources(1, &mSource);
1184 if(DirectOutMode)
1185 alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, DirectOutMode);
1186 if(EnableWideStereo)
1188 const float angles[2]{static_cast<float>(M_PI / 3.0), static_cast<float>(-M_PI / 3.0)};
1189 alSourcefv(mSource, AL_STEREO_ANGLES, angles);
1191 #ifdef AL_SOFT_bformat_ex
1192 if(has_bfmt_ex)
1194 for(ALuint bufid : mBuffers)
1196 alBufferi(bufid, AL_AMBISONIC_LAYOUT_SOFT, ambi_layout);
1197 alBufferi(bufid, AL_AMBISONIC_SCALING_SOFT, ambi_scale);
1200 #endif
1202 if(alGetError() != AL_NO_ERROR)
1203 goto finish;
1205 #ifdef AL_SOFT_callback_buffer
1206 if(alBufferCallbackSOFT)
1208 alBufferCallbackSOFT(mBuffers[0], mFormat, mCodecCtx->sample_rate, bufferCallbackC, this,
1210 alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffers[0]));
1211 if(alGetError() != AL_NO_ERROR)
1213 fprintf(stderr, "Failed to set buffer callback\n");
1214 alSourcei(mSource, AL_BUFFER, 0);
1215 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1216 AudioBufferTime).count() * mFrameSize);
1218 else
1220 mBufferDataSize = static_cast<size_t>(duration_cast<seconds>(mCodecCtx->sample_rate *
1221 AudioBufferTotalTime).count()) * mFrameSize;
1222 mBufferData.reset(new uint8_t[mBufferDataSize]);
1223 mReadPos.store(0, std::memory_order_relaxed);
1224 mWritePos.store(0, std::memory_order_relaxed);
1226 ALCint refresh{};
1227 alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
1228 sleep_time = milliseconds{seconds{1}} / refresh;
1231 else
1232 #endif
1233 buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
1234 AudioBufferTime).count() * mFrameSize);
1235 if(buffer_len > 0)
1236 samples = av_malloc(static_cast<ALuint>(buffer_len));
1238 /* Prefill the codec buffer. */
1239 do {
1240 const int ret{mPackets.sendTo(mCodecCtx.get())};
1241 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1242 break;
1243 } while(1);
1245 srclock.lock();
1246 if(alcGetInteger64vSOFT)
1248 int64_t devtime{};
1249 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT,
1250 1, &devtime);
1251 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1254 mSamplesLen = decodeFrame();
1255 if(mSamplesLen > 0)
1257 mSamplesPos = std::min(mSamplesLen, getSync());
1259 auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
1260 mDeviceStartTime -= skip;
1261 mCurrentPts += skip;
1264 while(!mMovie.mQuit.load(std::memory_order_relaxed)
1265 && mConnected.test_and_set(std::memory_order_relaxed))
1267 ALenum state;
1268 if(mBufferDataSize > 0)
1270 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1271 readAudio(getSync());
1273 else
1275 ALint processed, queued;
1277 /* First remove any processed buffers. */
1278 alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
1279 while(processed > 0)
1281 ALuint bid;
1282 alSourceUnqueueBuffers(mSource, 1, &bid);
1283 --processed;
1286 /* Refill the buffer queue. */
1287 int sync_skip{getSync()};
1288 alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
1289 while(static_cast<ALuint>(queued) < mBuffers.size())
1291 /* Read the next chunk of data, filling the buffer, and queue
1292 * it on the source.
1294 const bool got_audio{readAudio(static_cast<uint8_t*>(samples),
1295 static_cast<ALuint>(buffer_len), sync_skip)};
1296 if(!got_audio) break;
1298 const ALuint bufid{mBuffers[mBufferIdx]};
1299 mBufferIdx = static_cast<ALuint>((mBufferIdx+1) % mBuffers.size());
1301 alBufferData(bufid, mFormat, samples, buffer_len, mCodecCtx->sample_rate);
1302 alSourceQueueBuffers(mSource, 1, &bufid);
1303 ++queued;
1306 /* Check that the source is playing. */
1307 alGetSourcei(mSource, AL_SOURCE_STATE, &state);
1308 if(state == AL_STOPPED)
1310 /* AL_STOPPED means there was an underrun. Clear the buffer
1311 * queue since this likely means we're late, and rewind the
1312 * source to get it back into an AL_INITIAL state.
1314 alSourceRewind(mSource);
1315 alSourcei(mSource, AL_BUFFER, 0);
1316 if(alcGetInteger64vSOFT)
1318 /* Also update the device start time with the current
1319 * device clock, so the decoder knows we're running behind.
1321 int64_t devtime{};
1322 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
1323 ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
1324 mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
1326 continue;
1330 /* (re)start the source if needed, and wait for a buffer to finish */
1331 if(state != AL_PLAYING && state != AL_PAUSED)
1333 if(!startPlayback())
1334 break;
1336 if(alGetError() != AL_NO_ERROR)
1337 return false;
1339 mSrcCond.wait_for(srclock, sleep_time);
1342 alSourceRewind(mSource);
1343 alSourcei(mSource, AL_BUFFER, 0);
1344 srclock.unlock();
1346 finish:
1347 av_freep(&samples);
1349 #ifdef AL_SOFT_events
1350 if(alEventControlSOFT)
1352 alEventControlSOFT(evt_types.size(), evt_types.data(), AL_FALSE);
1353 alEventCallbackSOFT(nullptr, nullptr);
1355 #endif
1357 return 0;
1361 nanoseconds VideoState::getClock()
1363 /* NOTE: This returns incorrect times while not playing. */
1364 std::lock_guard<std::mutex> _{mDispPtsMutex};
1365 if(mDisplayPtsTime == microseconds::min())
1366 return nanoseconds::zero();
1367 auto delta = get_avtime() - mDisplayPtsTime;
1368 return mDisplayPts + delta;
1371 /* Called by VideoState::updateVideo to display the next video frame. */
1372 void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer)
1374 if(!mImage)
1375 return;
1377 double aspect_ratio;
1378 int win_w, win_h;
1379 int w, h, x, y;
1381 if(mCodecCtx->sample_aspect_ratio.num == 0)
1382 aspect_ratio = 0.0;
1383 else
1385 aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width /
1386 mCodecCtx->height;
1388 if(aspect_ratio <= 0.0)
1389 aspect_ratio = static_cast<double>(mCodecCtx->width) / mCodecCtx->height;
1391 SDL_GetWindowSize(screen, &win_w, &win_h);
1392 h = win_h;
1393 w = (static_cast<int>(std::rint(h * aspect_ratio)) + 3) & ~3;
1394 if(w > win_w)
1396 w = win_w;
1397 h = (static_cast<int>(std::rint(w / aspect_ratio)) + 3) & ~3;
1399 x = (win_w - w) / 2;
1400 y = (win_h - h) / 2;
1402 SDL_Rect src_rect{ 0, 0, mWidth, mHeight };
1403 SDL_Rect dst_rect{ x, y, w, h };
1404 SDL_RenderCopy(renderer, mImage, &src_rect, &dst_rect);
1405 SDL_RenderPresent(renderer);
1408 /* Called regularly on the main thread where the SDL_Renderer was created. It
1409 * handles updating the textures of decoded frames and displaying the latest
1410 * frame.
1412 void VideoState::updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw)
1414 size_t read_idx{mPictQRead.load(std::memory_order_relaxed)};
1415 Picture *vp{&mPictQ[read_idx]};
1417 auto clocktime = mMovie.getMasterClock();
1418 bool updated{false};
1419 while(1)
1421 size_t next_idx{(read_idx+1)%mPictQ.size()};
1422 if(next_idx == mPictQWrite.load(std::memory_order_acquire))
1423 break;
1424 Picture *nextvp{&mPictQ[next_idx]};
1425 if(clocktime < nextvp->mPts)
1426 break;
1428 vp = nextvp;
1429 updated = true;
1430 read_idx = next_idx;
1432 if(mMovie.mQuit.load(std::memory_order_relaxed))
1434 if(mEOS)
1435 mFinalUpdate = true;
1436 mPictQRead.store(read_idx, std::memory_order_release);
1437 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1438 mPictQCond.notify_one();
1439 return;
1442 if(updated)
1444 mPictQRead.store(read_idx, std::memory_order_release);
1445 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1446 mPictQCond.notify_one();
1448 /* allocate or resize the buffer! */
1449 bool fmt_updated{false};
1450 if(!mImage || mWidth != mCodecCtx->width || mHeight != mCodecCtx->height)
1452 fmt_updated = true;
1453 if(mImage)
1454 SDL_DestroyTexture(mImage);
1455 mImage = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
1456 mCodecCtx->coded_width, mCodecCtx->coded_height);
1457 if(!mImage)
1458 std::cerr<< "Failed to create YV12 texture!" <<std::endl;
1459 mWidth = mCodecCtx->width;
1460 mHeight = mCodecCtx->height;
1462 if(mFirstUpdate && mWidth > 0 && mHeight > 0)
1464 /* For the first update, set the window size to the video size. */
1465 mFirstUpdate = false;
1467 int w{mWidth};
1468 int h{mHeight};
1469 if(mCodecCtx->sample_aspect_ratio.den != 0)
1471 double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio);
1472 if(aspect_ratio >= 1.0)
1473 w = static_cast<int>(w*aspect_ratio + 0.5);
1474 else if(aspect_ratio > 0.0)
1475 h = static_cast<int>(h/aspect_ratio + 0.5);
1477 SDL_SetWindowSize(screen, w, h);
1481 if(mImage)
1483 AVFrame *frame{vp->mFrame.get()};
1484 void *pixels{nullptr};
1485 int pitch{0};
1487 if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
1488 SDL_UpdateYUVTexture(mImage, nullptr,
1489 frame->data[0], frame->linesize[0],
1490 frame->data[1], frame->linesize[1],
1491 frame->data[2], frame->linesize[2]
1493 else if(SDL_LockTexture(mImage, nullptr, &pixels, &pitch) != 0)
1494 std::cerr<< "Failed to lock texture" <<std::endl;
1495 else
1497 // Convert the image into YUV format that SDL uses
1498 int coded_w{mCodecCtx->coded_width};
1499 int coded_h{mCodecCtx->coded_height};
1500 int w{mCodecCtx->width};
1501 int h{mCodecCtx->height};
1502 if(!mSwscaleCtx || fmt_updated)
1504 mSwscaleCtx.reset(sws_getContext(
1505 w, h, mCodecCtx->pix_fmt,
1506 w, h, AV_PIX_FMT_YUV420P, 0,
1507 nullptr, nullptr, nullptr
1511 /* point pict at the queue */
1512 uint8_t *pict_data[3];
1513 pict_data[0] = static_cast<uint8_t*>(pixels);
1514 pict_data[1] = pict_data[0] + coded_w*coded_h;
1515 pict_data[2] = pict_data[1] + coded_w*coded_h/4;
1517 int pict_linesize[3];
1518 pict_linesize[0] = pitch;
1519 pict_linesize[1] = pitch / 2;
1520 pict_linesize[2] = pitch / 2;
1522 sws_scale(mSwscaleCtx.get(), reinterpret_cast<uint8_t**>(frame->data), frame->linesize,
1523 0, h, pict_data, pict_linesize);
1524 SDL_UnlockTexture(mImage);
1528 redraw = true;
1531 if(redraw)
1533 /* Show the picture! */
1534 display(screen, renderer);
1537 if(updated)
1539 auto disp_time = get_avtime();
1541 std::lock_guard<std::mutex> _{mDispPtsMutex};
1542 mDisplayPts = vp->mPts;
1543 mDisplayPtsTime = disp_time;
1545 if(mEOS.load(std::memory_order_acquire))
1547 if((read_idx+1)%mPictQ.size() == mPictQWrite.load(std::memory_order_acquire))
1549 mFinalUpdate = true;
1550 std::unique_lock<std::mutex>{mPictQMutex}.unlock();
1551 mPictQCond.notify_one();
1556 int VideoState::handler()
1558 std::for_each(mPictQ.begin(), mPictQ.end(),
1559 [](Picture &pict) -> void
1560 { pict.mFrame = AVFramePtr{av_frame_alloc()}; });
1562 /* Prefill the codec buffer. */
1563 do {
1564 const int ret{mPackets.sendTo(mCodecCtx.get())};
1565 if(ret == AVERROR(EAGAIN) || ret == AVErrorEOF)
1566 break;
1567 } while(1);
1570 std::lock_guard<std::mutex> _{mDispPtsMutex};
1571 mDisplayPtsTime = get_avtime();
1574 auto current_pts = nanoseconds::zero();
1575 while(!mMovie.mQuit.load(std::memory_order_relaxed))
1577 size_t write_idx{mPictQWrite.load(std::memory_order_relaxed)};
1578 Picture *vp{&mPictQ[write_idx]};
1580 /* Retrieve video frame. */
1581 AVFrame *decoded_frame{vp->mFrame.get()};
1582 int ret;
1583 while((ret=avcodec_receive_frame(mCodecCtx.get(), decoded_frame)) == AVERROR(EAGAIN))
1584 mPackets.sendTo(mCodecCtx.get());
1585 if(ret != 0)
1587 if(ret == AVErrorEOF) break;
1588 std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
1589 continue;
1592 /* Get the PTS for this frame. */
1593 if(decoded_frame->best_effort_timestamp != AVNoPtsValue)
1594 current_pts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
1595 static_cast<double>(decoded_frame->best_effort_timestamp)});
1596 vp->mPts = current_pts;
1598 /* Update the video clock to the next expected PTS. */
1599 auto frame_delay = av_q2d(mCodecCtx->time_base);
1600 frame_delay += decoded_frame->repeat_pict * (frame_delay * 0.5);
1601 current_pts += duration_cast<nanoseconds>(seconds_d64{frame_delay});
1603 /* Put the frame in the queue to be loaded into a texture and displayed
1604 * by the rendering thread.
1606 write_idx = (write_idx+1)%mPictQ.size();
1607 mPictQWrite.store(write_idx, std::memory_order_release);
1609 /* Send a packet now so it's hopefully ready by the time it's needed. */
1610 mPackets.sendTo(mCodecCtx.get());
1612 if(write_idx == mPictQRead.load(std::memory_order_acquire))
1614 /* Wait until we have space for a new pic */
1615 std::unique_lock<std::mutex> lock{mPictQMutex};
1616 while(write_idx == mPictQRead.load(std::memory_order_acquire) &&
1617 !mMovie.mQuit.load(std::memory_order_relaxed))
1618 mPictQCond.wait(lock);
1621 mEOS = true;
1623 std::unique_lock<std::mutex> lock{mPictQMutex};
1624 while(!mFinalUpdate) mPictQCond.wait(lock);
1626 return 0;
1630 int MovieState::decode_interrupt_cb(void *ctx)
1632 return static_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
1635 bool MovieState::prepare()
1637 AVIOContext *avioctx{nullptr};
1638 AVIOInterruptCB intcb{decode_interrupt_cb, this};
1639 if(avio_open2(&avioctx, mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr))
1641 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1642 return false;
1644 mIOContext.reset(avioctx);
1646 /* Open movie file. If avformat_open_input fails it will automatically free
1647 * this context, so don't set it onto a smart pointer yet.
1649 AVFormatContext *fmtctx{avformat_alloc_context()};
1650 fmtctx->pb = mIOContext.get();
1651 fmtctx->interrupt_callback = intcb;
1652 if(avformat_open_input(&fmtctx, mFilename.c_str(), nullptr, nullptr) != 0)
1654 std::cerr<< "Failed to open "<<mFilename <<std::endl;
1655 return false;
1657 mFormatCtx.reset(fmtctx);
1659 /* Retrieve stream information */
1660 if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
1662 std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
1663 return false;
1666 /* Dump information about file onto standard error */
1667 av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
1669 mParseThread = std::thread{std::mem_fn(&MovieState::parse_handler), this};
1670 return true;
1673 void MovieState::setTitle(SDL_Window *window)
1675 auto pos1 = mFilename.rfind('/');
1676 auto pos2 = mFilename.rfind('\\');
1677 auto fpos = ((pos1 == std::string::npos) ? pos2 :
1678 (pos2 == std::string::npos) ? pos1 :
1679 std::max(pos1, pos2)) + 1;
1680 SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
1683 nanoseconds MovieState::getClock()
1685 if(mClockBase == microseconds::min())
1686 return nanoseconds::zero();
1687 return get_avtime() - mClockBase;
1690 nanoseconds MovieState::getMasterClock()
1692 if(mAVSyncType == SyncMaster::Video)
1693 return mVideo.getClock();
1694 if(mAVSyncType == SyncMaster::Audio)
1695 return mAudio.getClock();
1696 return getClock();
1699 nanoseconds MovieState::getDuration()
1700 { return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
1702 int MovieState::streamComponentOpen(unsigned int stream_index)
1704 if(stream_index >= mFormatCtx->nb_streams)
1705 return -1;
1707 /* Get a pointer to the codec context for the stream, and open the
1708 * associated codec.
1710 AVCodecCtxPtr avctx{avcodec_alloc_context3(nullptr)};
1711 if(!avctx) return -1;
1713 if(avcodec_parameters_to_context(avctx.get(), mFormatCtx->streams[stream_index]->codecpar))
1714 return -1;
1716 AVCodec *codec{avcodec_find_decoder(avctx->codec_id)};
1717 if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
1719 std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
1720 << " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
1721 return -1;
1724 /* Initialize and start the media type handler */
1725 switch(avctx->codec_type)
1727 case AVMEDIA_TYPE_AUDIO:
1728 mAudio.mStream = mFormatCtx->streams[stream_index];
1729 mAudio.mCodecCtx = std::move(avctx);
1730 break;
1732 case AVMEDIA_TYPE_VIDEO:
1733 mVideo.mStream = mFormatCtx->streams[stream_index];
1734 mVideo.mCodecCtx = std::move(avctx);
1735 break;
1737 default:
1738 return -1;
1741 return static_cast<int>(stream_index);
1744 int MovieState::parse_handler()
1746 auto &audio_queue = mAudio.mPackets;
1747 auto &video_queue = mVideo.mPackets;
1749 int video_index{-1};
1750 int audio_index{-1};
1752 /* Find the first video and audio streams */
1753 for(unsigned int i{0u};i < mFormatCtx->nb_streams;i++)
1755 auto codecpar = mFormatCtx->streams[i]->codecpar;
1756 if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && !DisableVideo && video_index < 0)
1757 video_index = streamComponentOpen(i);
1758 else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
1759 audio_index = streamComponentOpen(i);
1762 if(video_index < 0 && audio_index < 0)
1764 std::cerr<< mFilename<<": could not open codecs" <<std::endl;
1765 mQuit = true;
1768 /* Set the base time 750ms ahead of the current av time. */
1769 mClockBase = get_avtime() + milliseconds{750};
1771 if(audio_index >= 0)
1772 mAudioThread = std::thread{std::mem_fn(&AudioState::handler), &mAudio};
1773 if(video_index >= 0)
1774 mVideoThread = std::thread{std::mem_fn(&VideoState::handler), &mVideo};
1776 /* Main packet reading/dispatching loop */
1777 while(!mQuit.load(std::memory_order_relaxed))
1779 AVPacket packet;
1780 if(av_read_frame(mFormatCtx.get(), &packet) < 0)
1781 break;
1783 /* Copy the packet into the queue it's meant for. */
1784 if(packet.stream_index == video_index)
1786 while(!mQuit.load(std::memory_order_acquire) && !video_queue.put(&packet))
1787 std::this_thread::sleep_for(milliseconds{100});
1789 else if(packet.stream_index == audio_index)
1791 while(!mQuit.load(std::memory_order_acquire) && !audio_queue.put(&packet))
1792 std::this_thread::sleep_for(milliseconds{100});
1795 av_packet_unref(&packet);
1797 /* Finish the queues so the receivers know nothing more is coming. */
1798 if(mVideo.mCodecCtx) video_queue.setFinished();
1799 if(mAudio.mCodecCtx) audio_queue.setFinished();
1801 /* all done - wait for it */
1802 if(mVideoThread.joinable())
1803 mVideoThread.join();
1804 if(mAudioThread.joinable())
1805 mAudioThread.join();
1807 mVideo.mEOS = true;
1808 std::unique_lock<std::mutex> lock{mVideo.mPictQMutex};
1809 while(!mVideo.mFinalUpdate)
1810 mVideo.mPictQCond.wait(lock);
1811 lock.unlock();
1813 SDL_Event evt{};
1814 evt.user.type = FF_MOVIE_DONE_EVENT;
1815 SDL_PushEvent(&evt);
1817 return 0;
1821 // Helper class+method to print the time with human-readable formatting.
1822 struct PrettyTime {
1823 seconds mTime;
1825 std::ostream &operator<<(std::ostream &os, const PrettyTime &rhs)
1827 using hours = std::chrono::hours;
1828 using minutes = std::chrono::minutes;
1830 seconds t{rhs.mTime};
1831 if(t.count() < 0)
1833 os << '-';
1834 t *= -1;
1837 // Only handle up to hour formatting
1838 if(t >= hours{1})
1839 os << duration_cast<hours>(t).count() << 'h' << std::setfill('0') << std::setw(2)
1840 << (duration_cast<minutes>(t).count() % 60) << 'm';
1841 else
1842 os << duration_cast<minutes>(t).count() << 'm' << std::setfill('0');
1843 os << std::setw(2) << (duration_cast<seconds>(t).count() % 60) << 's' << std::setw(0)
1844 << std::setfill(' ');
1845 return os;
1848 } // namespace
1851 int main(int argc, char *argv[])
1853 std::unique_ptr<MovieState> movState;
1855 if(argc < 2)
1857 std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
1858 return 1;
1860 /* Register all formats and codecs */
1861 #if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
1862 av_register_all();
1863 #endif
1864 /* Initialize networking protocols */
1865 avformat_network_init();
1867 if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS))
1869 std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
1870 return 1;
1873 /* Make a window to put our video */
1874 SDL_Window *screen{SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE)};
1875 if(!screen)
1877 std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
1878 return 1;
1880 /* Make a renderer to handle the texture image surface and rendering. */
1881 Uint32 render_flags{SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC};
1882 SDL_Renderer *renderer{SDL_CreateRenderer(screen, -1, render_flags)};
1883 if(renderer)
1885 SDL_RendererInfo rinf{};
1886 bool ok{false};
1888 /* Make sure the renderer supports IYUV textures. If not, fallback to a
1889 * software renderer. */
1890 if(SDL_GetRendererInfo(renderer, &rinf) == 0)
1892 for(Uint32 i{0u};!ok && i < rinf.num_texture_formats;i++)
1893 ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
1895 if(!ok)
1897 std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
1898 SDL_DestroyRenderer(renderer);
1899 renderer = nullptr;
1902 if(!renderer)
1904 render_flags = SDL_RENDERER_SOFTWARE | SDL_RENDERER_PRESENTVSYNC;
1905 renderer = SDL_CreateRenderer(screen, -1, render_flags);
1907 if(!renderer)
1909 std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
1910 return 1;
1912 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
1913 SDL_RenderFillRect(renderer, nullptr);
1914 SDL_RenderPresent(renderer);
1916 /* Open an audio device */
1917 ++argv; --argc;
1918 if(InitAL(&argv, &argc))
1920 std::cerr<< "Failed to set up audio device" <<std::endl;
1921 return 1;
1925 auto device = alcGetContextsDevice(alcGetCurrentContext());
1926 if(alcIsExtensionPresent(device, "ALC_SOFT_device_clock"))
1928 std::cout<< "Found ALC_SOFT_device_clock" <<std::endl;
1929 alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
1930 alcGetProcAddress(device, "alcGetInteger64vSOFT")
1935 if(alIsExtensionPresent("AL_SOFT_source_latency"))
1937 std::cout<< "Found AL_SOFT_source_latency" <<std::endl;
1938 alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
1939 alGetProcAddress("alGetSourcei64vSOFT")
1942 #ifdef AL_SOFT_events
1943 if(alIsExtensionPresent("AL_SOFT_events"))
1945 std::cout<< "Found AL_SOFT_events" <<std::endl;
1946 alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
1947 alGetProcAddress("alEventControlSOFT"));
1948 alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
1949 alGetProcAddress("alEventCallbackSOFT"));
1951 #endif
1952 #ifdef AL_SOFT_callback_buffer
1953 if(alIsExtensionPresent("AL_SOFTX_callback_buffer"))
1955 std::cout<< "Found AL_SOFT_callback_buffer" <<std::endl;
1956 alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
1957 alGetProcAddress("alBufferCallbackSOFT"));
1959 #endif
1961 int fileidx{0};
1962 for(;fileidx < argc;++fileidx)
1964 if(strcmp(argv[fileidx], "-direct") == 0)
1966 if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
1968 std::cout<< "Found AL_SOFT_direct_channels_remix" <<std::endl;
1969 DirectOutMode = AL_REMIX_UNMATCHED_SOFT;
1971 else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
1973 std::cout<< "Found AL_SOFT_direct_channels" <<std::endl;
1974 DirectOutMode = AL_DROP_UNMATCHED_SOFT;
1976 else
1977 std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
1979 else if(strcmp(argv[fileidx], "-wide") == 0)
1981 if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
1982 std::cerr<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl;
1983 else
1985 std::cout<< "Found AL_EXT_STEREO_ANGLES" <<std::endl;
1986 EnableWideStereo = true;
1989 else if(strcmp(argv[fileidx], "-novideo") == 0)
1990 DisableVideo = true;
1991 else
1992 break;
1995 while(fileidx < argc && !movState)
1997 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
1998 if(!movState->prepare()) movState = nullptr;
2000 if(!movState)
2002 std::cerr<< "Could not start a video" <<std::endl;
2003 return 1;
2005 movState->setTitle(screen);
2007 /* Default to going to the next movie at the end of one. */
2008 enum class EomAction {
2009 Next, Quit
2010 } eom_action{EomAction::Next};
2011 seconds last_time{seconds::min()};
2012 while(1)
2014 SDL_Event event{};
2015 int have_evt{SDL_WaitEventTimeout(&event, 10)};
2017 auto cur_time = std::chrono::duration_cast<seconds>(movState->getMasterClock());
2018 if(cur_time != last_time)
2020 auto end_time = std::chrono::duration_cast<seconds>(movState->getDuration());
2021 std::cout<< " \r "<<PrettyTime{cur_time}<<" / "<<PrettyTime{end_time} <<std::flush;
2022 last_time = cur_time;
2025 bool force_redraw{false};
2026 if(have_evt) do {
2027 switch(event.type)
2029 case SDL_KEYDOWN:
2030 switch(event.key.keysym.sym)
2032 case SDLK_ESCAPE:
2033 movState->mQuit = true;
2034 eom_action = EomAction::Quit;
2035 break;
2037 case SDLK_n:
2038 movState->mQuit = true;
2039 eom_action = EomAction::Next;
2040 break;
2042 default:
2043 break;
2045 break;
2047 case SDL_WINDOWEVENT:
2048 switch(event.window.event)
2050 case SDL_WINDOWEVENT_RESIZED:
2051 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
2052 SDL_RenderFillRect(renderer, nullptr);
2053 force_redraw = true;
2054 break;
2056 case SDL_WINDOWEVENT_EXPOSED:
2057 force_redraw = true;
2058 break;
2060 default:
2061 break;
2063 break;
2065 case SDL_QUIT:
2066 movState->mQuit = true;
2067 eom_action = EomAction::Quit;
2068 break;
2070 case FF_MOVIE_DONE_EVENT:
2071 std::cout<<'\n';
2072 last_time = seconds::min();
2073 if(eom_action != EomAction::Quit)
2075 movState = nullptr;
2076 while(fileidx < argc && !movState)
2078 movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
2079 if(!movState->prepare()) movState = nullptr;
2081 if(movState)
2083 movState->setTitle(screen);
2084 break;
2088 /* Nothing more to play. Shut everything down and quit. */
2089 movState = nullptr;
2091 CloseAL();
2093 SDL_DestroyRenderer(renderer);
2094 renderer = nullptr;
2095 SDL_DestroyWindow(screen);
2096 screen = nullptr;
2098 SDL_Quit();
2099 exit(0);
2101 default:
2102 break;
2104 } while(SDL_PollEvent(&event));
2106 movState->mVideo.updateVideo(screen, renderer, force_redraw);
2109 std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
2110 return 1;