Combine two function calls into one
[openal-soft.git] / alc / alu.cpp
blob4e9bf9e03db9244d5b924becf399d579f48def60
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include "alu.h"
25 #include <algorithm>
26 #include <array>
27 #include <atomic>
28 #include <cassert>
29 #include <chrono>
30 #include <climits>
31 #include <cmath>
32 #include <cstdarg>
33 #include <cstdio>
34 #include <cstdlib>
35 #include <cstring>
36 #include <functional>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <numeric>
42 #include <utility>
44 #include "AL/al.h"
45 #include "AL/alc.h"
46 #include "AL/efx.h"
48 #include "al/auxeffectslot.h"
49 #include "al/buffer.h"
50 #include "al/effect.h"
51 #include "al/event.h"
52 #include "al/listener.h"
53 #include "alcmain.h"
54 #include "alcontext.h"
55 #include "almalloc.h"
56 #include "alnumeric.h"
57 #include "alspan.h"
58 #include "alstring.h"
59 #include "ambidefs.h"
60 #include "atomic.h"
61 #include "bformatdec.h"
62 #include "bs2b.h"
63 #include "cpu_caps.h"
64 #include "devformat.h"
65 #include "effects/base.h"
66 #include "filters/biquad.h"
67 #include "filters/nfc.h"
68 #include "filters/splitter.h"
69 #include "fpu_modes.h"
70 #include "hrtf.h"
71 #include "inprogext.h"
72 #include "mastering.h"
73 #include "math_defs.h"
74 #include "mixer/defs.h"
75 #include "opthelpers.h"
76 #include "ringbuffer.h"
77 #include "strutils.h"
78 #include "threads.h"
79 #include "uhjfilter.h"
80 #include "vecmat.h"
82 #include "bsinc_inc.h"
85 namespace {
87 using namespace std::placeholders;
89 ALfloat InitConeScale()
91 ALfloat ret{1.0f};
92 if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
94 if(al::strcasecmp(optval->c_str(), "true") == 0
95 || strtol(optval->c_str(), nullptr, 0) == 1)
96 ret *= 0.5f;
98 return ret;
101 ALfloat InitZScale()
103 ALfloat ret{1.0f};
104 if(auto optval = al::getenv("__ALSOFT_REVERSE_Z"))
106 if(al::strcasecmp(optval->c_str(), "true") == 0
107 || strtol(optval->c_str(), nullptr, 0) == 1)
108 ret *= -1.0f;
110 return ret;
113 } // namespace
115 /* Cone scalar */
116 const ALfloat ConeScale{InitConeScale()};
118 /* Localized Z scalar for mono sources */
119 const ALfloat ZScale{InitZScale()};
122 namespace {
124 void ClearArray(ALfloat (&f)[MAX_OUTPUT_CHANNELS])
126 std::fill(std::begin(f), std::end(f), 0.0f);
129 struct ChanMap {
130 Channel channel;
131 ALfloat angle;
132 ALfloat elevation;
135 HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>;
136 inline HrtfDirectMixerFunc SelectHrtfMixer(void)
138 #ifdef HAVE_NEON
139 if((CPUCapFlags&CPU_CAP_NEON))
140 return MixDirectHrtf_<NEONTag>;
141 #endif
142 #ifdef HAVE_SSE
143 if((CPUCapFlags&CPU_CAP_SSE))
144 return MixDirectHrtf_<SSETag>;
145 #endif
147 return MixDirectHrtf_<CTag>;
151 inline void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
153 size_t si{BSINC_SCALE_COUNT - 1};
154 float sf{0.0f};
156 if(increment > FRACTIONONE)
158 sf = FRACTIONONE / static_cast<float>(increment);
159 sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
160 si = float2uint(sf);
161 /* The interpolation factor is fit to this diagonally-symmetric curve
162 * to reduce the transition ripple caused by interpolating different
163 * scales of the sinc function.
165 sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
168 state->sf = sf;
169 state->m = table->m[si];
170 state->l = (state->m/2) - 1;
171 state->filter = table->Tab + table->filterOffset[si];
174 inline ResamplerFunc SelectResampler(Resampler resampler, ALuint increment)
176 switch(resampler)
178 case Resampler::Point:
179 return Resample_<PointTag,CTag>;
180 case Resampler::Linear:
181 #ifdef HAVE_NEON
182 if((CPUCapFlags&CPU_CAP_NEON))
183 return Resample_<LerpTag,NEONTag>;
184 #endif
185 #ifdef HAVE_SSE4_1
186 if((CPUCapFlags&CPU_CAP_SSE4_1))
187 return Resample_<LerpTag,SSE4Tag>;
188 #endif
189 #ifdef HAVE_SSE2
190 if((CPUCapFlags&CPU_CAP_SSE2))
191 return Resample_<LerpTag,SSE2Tag>;
192 #endif
193 return Resample_<LerpTag,CTag>;
194 case Resampler::Cubic:
195 return Resample_<CubicTag,CTag>;
196 case Resampler::BSinc12:
197 case Resampler::BSinc24:
198 if(increment <= FRACTIONONE)
200 /* fall-through */
201 case Resampler::FastBSinc12:
202 case Resampler::FastBSinc24:
203 #ifdef HAVE_NEON
204 if((CPUCapFlags&CPU_CAP_NEON))
205 return Resample_<FastBSincTag,NEONTag>;
206 #endif
207 #ifdef HAVE_SSE
208 if((CPUCapFlags&CPU_CAP_SSE))
209 return Resample_<FastBSincTag,SSETag>;
210 #endif
211 return Resample_<FastBSincTag,CTag>;
213 #ifdef HAVE_NEON
214 if((CPUCapFlags&CPU_CAP_NEON))
215 return Resample_<BSincTag,NEONTag>;
216 #endif
217 #ifdef HAVE_SSE
218 if((CPUCapFlags&CPU_CAP_SSE))
219 return Resample_<BSincTag,SSETag>;
220 #endif
221 return Resample_<BSincTag,CTag>;
224 return Resample_<PointTag,CTag>;
227 } // namespace
229 void aluInit(void)
231 MixDirectHrtf = SelectHrtfMixer();
235 ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state)
237 switch(resampler)
239 case Resampler::Point:
240 case Resampler::Linear:
241 case Resampler::Cubic:
242 break;
243 case Resampler::FastBSinc12:
244 case Resampler::BSinc12:
245 BsincPrepare(increment, &state->bsinc, &bsinc12);
246 break;
247 case Resampler::FastBSinc24:
248 case Resampler::BSinc24:
249 BsincPrepare(increment, &state->bsinc, &bsinc24);
250 break;
252 return SelectResampler(resampler, increment);
256 void ALCdevice::ProcessHrtf(const size_t SamplesToDo)
258 /* HRTF is stereo output only. */
259 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
260 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
262 MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
263 mHrtfState.get(), SamplesToDo);
266 void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo)
268 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
271 void ALCdevice::ProcessUhj(const size_t SamplesToDo)
273 /* UHJ is stereo output only. */
274 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
275 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
277 /* Encode to stereo-compatible 2-channel UHJ output. */
278 Uhj_Encoder->encode(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer.data(),
279 SamplesToDo);
282 void ALCdevice::ProcessBs2b(const size_t SamplesToDo)
284 /* First, decode the ambisonic mix to the "real" output. */
285 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
287 /* BS2B is stereo output only. */
288 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
289 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
291 /* Now apply the BS2B binaural/crossfeed filter. */
292 bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
293 SamplesToDo);
297 namespace {
299 /* This RNG method was created based on the math found in opusdec. It's quick,
300 * and starting with a seed value of 22222, is suitable for generating
301 * whitenoise.
303 inline ALuint dither_rng(ALuint *seed) noexcept
305 *seed = (*seed * 96314165) + 907633515;
306 return *seed;
310 inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2)
312 return alu::Vector{
313 in1[1]*in2[2] - in1[2]*in2[1],
314 in1[2]*in2[0] - in1[0]*in2[2],
315 in1[0]*in2[1] - in1[1]*in2[0],
316 0.0f
320 inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2)
322 return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
326 alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept
328 return alu::Vector{
329 vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
330 vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
331 vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
332 vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]
337 bool CalcContextParams(ALCcontext *Context)
339 ALcontextProps *props{Context->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
340 if(!props) return false;
342 ALlistener &Listener = Context->mListener;
343 Listener.Params.DopplerFactor = props->DopplerFactor;
344 Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
346 Listener.Params.SourceDistanceModel = props->SourceDistanceModel;
347 Listener.Params.mDistanceModel = props->mDistanceModel;
349 AtomicReplaceHead(Context->mFreeContextProps, props);
350 return true;
353 bool CalcListenerParams(ALCcontext *Context)
355 ALlistener &Listener = Context->mListener;
357 ALlistenerProps *props{Listener.Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
358 if(!props) return false;
360 /* AT then UP */
361 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
362 N.normalize();
363 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
364 V.normalize();
365 /* Build and normalize right-vector */
366 alu::Vector U{aluCrossproduct(N, V)};
367 U.normalize();
369 Listener.Params.Matrix = alu::Matrix{
370 U[0], V[0], -N[0], 0.0f,
371 U[1], V[1], -N[1], 0.0f,
372 U[2], V[2], -N[2], 0.0f,
373 0.0f, 0.0f, 0.0f, 1.0f
376 const alu::Vector P{Listener.Params.Matrix *
377 alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}};
378 Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f);
380 const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
381 Listener.Params.Velocity = Listener.Params.Matrix * vel;
383 Listener.Params.Gain = props->Gain * Context->mGainBoost;
384 Listener.Params.MetersPerUnit = props->MetersPerUnit;
386 AtomicReplaceHead(Context->mFreeListenerProps, props);
387 return true;
390 bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context)
392 ALeffectslotProps *props{slot->Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
393 if(!props) return false;
395 slot->Params.Gain = props->Gain;
396 slot->Params.AuxSendAuto = props->AuxSendAuto;
397 slot->Params.Target = props->Target;
398 slot->Params.EffectType = props->Type;
399 slot->Params.mEffectProps = props->Props;
400 if(IsReverbEffect(props->Type))
402 slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
403 slot->Params.DecayTime = props->Props.Reverb.DecayTime;
404 slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
405 slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
406 slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
407 slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
409 else
411 slot->Params.RoomRolloff = 0.0f;
412 slot->Params.DecayTime = 0.0f;
413 slot->Params.DecayLFRatio = 0.0f;
414 slot->Params.DecayHFRatio = 0.0f;
415 slot->Params.DecayHFLimit = AL_FALSE;
416 slot->Params.AirAbsorptionGainHF = 1.0f;
419 EffectState *state{props->State};
420 props->State = nullptr;
421 EffectState *oldstate{slot->Params.mEffectState};
422 slot->Params.mEffectState = state;
424 /* Only release the old state if it won't get deleted, since we can't be
425 * deleting/freeing anything in the mixer.
427 if(!oldstate->releaseIfNoDelete())
429 /* Otherwise, if it would be deleted send it off with a release event. */
430 RingBuffer *ring{context->mAsyncEvents.get()};
431 auto evt_vec = ring->getWriteVector();
432 if LIKELY(evt_vec.first.len > 0)
434 AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}};
435 evt->u.mEffectState = oldstate;
436 ring->writeAdvance(1);
437 context->mEventSem.post();
439 else
441 /* If writing the event failed, the queue was probably full. Store
442 * the old state in the property object where it can eventually be
443 * cleaned up sometime later (not ideal, but better than blocking
444 * or leaking).
446 props->State = oldstate;
450 AtomicReplaceHead(context->mFreeEffectslotProps, props);
452 EffectTarget output;
453 if(ALeffectslot *target{slot->Params.Target})
454 output = EffectTarget{&target->Wet, nullptr};
455 else
457 ALCdevice *device{context->mDevice.get()};
458 output = EffectTarget{&device->Dry, &device->RealOut};
460 state->update(context, slot, &slot->Params.mEffectProps, output);
461 return true;
465 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
466 * front.
468 inline float ScaleAzimuthFront(float azimuth, float scale)
470 const ALfloat abs_azi{std::fabs(azimuth)};
471 if(!(abs_azi >= al::MathDefs<float>::Pi()*0.5f))
472 return std::copysign(minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f), azimuth);
473 return azimuth;
476 void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos,
477 const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain,
478 const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS],
479 const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS],
480 ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props,
481 const ALlistener &Listener, const ALCdevice *Device)
483 static constexpr ChanMap MonoMap[1]{
484 { FrontCenter, 0.0f, 0.0f }
485 }, RearMap[2]{
486 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
487 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
488 }, QuadMap[4]{
489 { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
490 { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
491 { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
492 { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
493 }, X51Map[6]{
494 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
495 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
496 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
497 { LFE, 0.0f, 0.0f },
498 { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
499 { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
500 }, X61Map[7]{
501 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
502 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
503 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
504 { LFE, 0.0f, 0.0f },
505 { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
506 { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
507 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
508 }, X71Map[8]{
509 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
510 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
511 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
512 { LFE, 0.0f, 0.0f },
513 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
514 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
515 { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
516 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
519 ChanMap StereoMap[2]{
520 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
521 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
524 const auto Frequency = static_cast<ALfloat>(Device->Frequency);
525 const ALuint NumSends{Device->NumAuxSends};
527 bool DirectChannels{props->DirectChannels != AL_FALSE};
528 const ChanMap *chans{nullptr};
529 ALuint num_channels{0};
530 bool isbformat{false};
531 ALfloat downmix_gain{1.0f};
532 switch(voice->mFmtChannels)
534 case FmtMono:
535 chans = MonoMap;
536 num_channels = 1;
537 /* Mono buffers are never played direct. */
538 DirectChannels = false;
539 break;
541 case FmtStereo:
542 /* Convert counter-clockwise to clockwise. */
543 StereoMap[0].angle = -props->StereoPan[0];
544 StereoMap[1].angle = -props->StereoPan[1];
546 chans = StereoMap;
547 num_channels = 2;
548 downmix_gain = 1.0f / 2.0f;
549 break;
551 case FmtRear:
552 chans = RearMap;
553 num_channels = 2;
554 downmix_gain = 1.0f / 2.0f;
555 break;
557 case FmtQuad:
558 chans = QuadMap;
559 num_channels = 4;
560 downmix_gain = 1.0f / 4.0f;
561 break;
563 case FmtX51:
564 chans = X51Map;
565 num_channels = 6;
566 /* NOTE: Excludes LFE. */
567 downmix_gain = 1.0f / 5.0f;
568 break;
570 case FmtX61:
571 chans = X61Map;
572 num_channels = 7;
573 /* NOTE: Excludes LFE. */
574 downmix_gain = 1.0f / 6.0f;
575 break;
577 case FmtX71:
578 chans = X71Map;
579 num_channels = 8;
580 /* NOTE: Excludes LFE. */
581 downmix_gain = 1.0f / 7.0f;
582 break;
584 case FmtBFormat2D:
585 num_channels = 3;
586 isbformat = true;
587 DirectChannels = false;
588 break;
590 case FmtBFormat3D:
591 num_channels = 4;
592 isbformat = true;
593 DirectChannels = false;
594 break;
596 ASSUME(num_channels > 0);
598 std::for_each(voice->mChans.begin(), voice->mChans.begin()+num_channels,
599 [NumSends](ALvoice::ChannelData &chandata) -> void
601 chandata.mDryParams.Hrtf.Target = HrtfFilter{};
602 ClearArray(chandata.mDryParams.Gains.Target);
603 std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
604 [](SendParams &params) -> void { ClearArray(params.Gains.Target); });
607 voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
608 if(isbformat)
610 /* Special handling for B-Format sources. */
612 if(Distance > std::numeric_limits<float>::epsilon())
614 /* Panning a B-Format sound toward some direction is easy. Just pan
615 * the first (W) channel as a normal mono sound and silence the
616 * others.
619 if(Device->AvgSpeakerDist > 0.0f)
621 /* Clamp the distance for really close sources, to prevent
622 * excessive bass.
624 const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
625 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
627 /* Only need to adjust the first channel of a B-Format source. */
628 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
630 voice->mFlags |= VOICE_HAS_NFC;
633 ALfloat coeffs[MAX_AMBI_CHANNELS];
634 if(Device->mRenderMode != StereoPair)
635 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
636 else
638 /* Clamp Y, in case rounding errors caused it to end up outside
639 * of -1...+1.
641 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
642 /* Negate Z for right-handed coords with -Z in front. */
643 const ALfloat az{std::atan2(xpos, -zpos)};
645 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
646 * being moved to +/-90 degrees for direct right and left
647 * speaker responses.
649 CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
652 /* NOTE: W needs to be scaled due to FuMa normalization. */
653 const ALfloat &scale0 = AmbiScale::FromFuMa[0];
654 ComputePanGains(&Device->Dry, coeffs, DryGain*scale0,
655 voice->mChans[0].mDryParams.Gains.Target);
656 for(ALuint i{0};i < NumSends;i++)
658 if(const ALeffectslot *Slot{SendSlots[i]})
659 ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0,
660 voice->mChans[0].mWetParams[i].Gains.Target);
663 else
665 if(Device->AvgSpeakerDist > 0.0f)
667 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
668 * is what we want for FOA input. The first channel may have
669 * been previously re-adjusted if panned, so reset it.
671 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
673 voice->mFlags |= VOICE_HAS_NFC;
676 /* Local B-Format sources have their XYZ channels rotated according
677 * to the orientation.
679 /* AT then UP */
680 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
681 N.normalize();
682 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
683 V.normalize();
684 if(!props->HeadRelative)
686 N = Listener.Params.Matrix * N;
687 V = Listener.Params.Matrix * V;
689 /* Build and normalize right-vector */
690 alu::Vector U{aluCrossproduct(N, V)};
691 U.normalize();
693 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
694 * matrix is transposed, for the inputs to align on the rows and
695 * outputs on the columns.
697 const ALfloat &wscale = AmbiScale::FromFuMa[0];
698 const ALfloat &yscale = AmbiScale::FromFuMa[1];
699 const ALfloat &zscale = AmbiScale::FromFuMa[2];
700 const ALfloat &xscale = AmbiScale::FromFuMa[3];
701 const ALfloat matrix[4][MAX_AMBI_CHANNELS]{
702 // ACN0 ACN1 ACN2 ACN3
703 { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W
704 { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X
705 { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y
706 { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z
709 for(ALuint c{0};c < num_channels;c++)
711 ComputePanGains(&Device->Dry, matrix[c], DryGain,
712 voice->mChans[c].mDryParams.Gains.Target);
714 for(ALuint i{0};i < NumSends;i++)
716 if(const ALeffectslot *Slot{SendSlots[i]})
717 ComputePanGains(&Slot->Wet, matrix[c], WetGain[i],
718 voice->mChans[c].mWetParams[i].Gains.Target);
723 else if(DirectChannels)
725 /* Direct source channels always play local. Skip the virtual channels
726 * and write inputs to the matching real outputs.
728 voice->mDirect.Buffer = Device->RealOut.Buffer;
730 for(ALuint c{0};c < num_channels;c++)
732 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
733 if(idx != INVALID_CHANNEL_INDEX)
734 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
737 /* Auxiliary sends still use normal channel panning since they mix to
738 * B-Format, which can't channel-match.
740 for(ALuint c{0};c < num_channels;c++)
742 ALfloat coeffs[MAX_AMBI_CHANNELS];
743 CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
745 for(ALuint i{0};i < NumSends;i++)
747 if(const ALeffectslot *Slot{SendSlots[i]})
748 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
749 voice->mChans[c].mWetParams[i].Gains.Target);
753 else if(Device->mRenderMode == HrtfRender)
755 /* Full HRTF rendering. Skip the virtual channels and render to the
756 * real outputs.
758 voice->mDirect.Buffer = Device->RealOut.Buffer;
760 if(Distance > std::numeric_limits<float>::epsilon())
762 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
763 const ALfloat az{std::atan2(xpos, -zpos)};
765 /* Get the HRIR coefficients and delays just once, for the given
766 * source direction.
768 GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread,
769 voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
770 voice->mChans[0].mDryParams.Hrtf.Target.Delay);
771 voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain * downmix_gain;
773 /* Remaining channels use the same results as the first. */
774 for(ALuint c{1};c < num_channels;c++)
776 /* Skip LFE */
777 if(chans[c].channel == LFE) continue;
778 voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target;
781 /* Calculate the directional coefficients once, which apply to all
782 * input channels of the source sends.
784 ALfloat coeffs[MAX_AMBI_CHANNELS];
785 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
787 for(ALuint c{0};c < num_channels;c++)
789 /* Skip LFE */
790 if(chans[c].channel == LFE)
791 continue;
792 for(ALuint i{0};i < NumSends;i++)
794 if(const ALeffectslot *Slot{SendSlots[i]})
795 ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
796 voice->mChans[c].mWetParams[i].Gains.Target);
800 else
802 /* Local sources on HRTF play with each channel panned to its
803 * relative location around the listener, providing "virtual
804 * speaker" responses.
806 for(ALuint c{0};c < num_channels;c++)
808 /* Skip LFE */
809 if(chans[c].channel == LFE)
810 continue;
812 /* Get the HRIR coefficients and delays for this channel
813 * position.
815 GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle,
816 std::numeric_limits<float>::infinity(), Spread,
817 voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
818 voice->mChans[c].mDryParams.Hrtf.Target.Delay);
819 voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain;
821 /* Normal panning for auxiliary sends. */
822 ALfloat coeffs[MAX_AMBI_CHANNELS];
823 CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
825 for(ALuint i{0};i < NumSends;i++)
827 if(const ALeffectslot *Slot{SendSlots[i]})
828 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
829 voice->mChans[c].mWetParams[i].Gains.Target);
834 voice->mFlags |= VOICE_HAS_HRTF;
836 else
838 /* Non-HRTF rendering. Use normal panning to the output. */
840 if(Distance > std::numeric_limits<float>::epsilon())
842 /* Calculate NFC filter coefficient if needed. */
843 if(Device->AvgSpeakerDist > 0.0f)
845 /* Clamp the distance for really close sources, to prevent
846 * excessive bass.
848 const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
849 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
851 /* Adjust NFC filters. */
852 for(ALuint c{0};c < num_channels;c++)
853 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
855 voice->mFlags |= VOICE_HAS_NFC;
858 /* Calculate the directional coefficients once, which apply to all
859 * input channels.
861 ALfloat coeffs[MAX_AMBI_CHANNELS];
862 if(Device->mRenderMode != StereoPair)
863 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
864 else
866 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
867 const ALfloat az{std::atan2(xpos, -zpos)};
868 CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
871 for(ALuint c{0};c < num_channels;c++)
873 /* Special-case LFE */
874 if(chans[c].channel == LFE)
876 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
878 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
879 if(idx != INVALID_CHANNEL_INDEX)
880 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
882 continue;
885 ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
886 voice->mChans[c].mDryParams.Gains.Target);
887 for(ALuint i{0};i < NumSends;i++)
889 if(const ALeffectslot *Slot{SendSlots[i]})
890 ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
891 voice->mChans[c].mWetParams[i].Gains.Target);
895 else
897 if(Device->AvgSpeakerDist > 0.0f)
899 /* If the source distance is 0, set w0 to w1 to act as a pass-
900 * through. We still want to pass the signal through the
901 * filters so they keep an appropriate history, in case the
902 * source moves away from the listener.
904 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)};
906 for(ALuint c{0};c < num_channels;c++)
907 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
909 voice->mFlags |= VOICE_HAS_NFC;
912 for(ALuint c{0};c < num_channels;c++)
914 /* Special-case LFE */
915 if(chans[c].channel == LFE)
917 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
919 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
920 if(idx != INVALID_CHANNEL_INDEX)
921 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
923 continue;
926 ALfloat coeffs[MAX_AMBI_CHANNELS];
927 CalcAngleCoeffs(
928 (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
929 : chans[c].angle,
930 chans[c].elevation, Spread, coeffs
933 ComputePanGains(&Device->Dry, coeffs, DryGain,
934 voice->mChans[c].mDryParams.Gains.Target);
935 for(ALuint i{0};i < NumSends;i++)
937 if(const ALeffectslot *Slot{SendSlots[i]})
938 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
939 voice->mChans[c].mWetParams[i].Gains.Target);
946 const ALfloat hfScale{props->Direct.HFReference / Frequency};
947 const ALfloat lfScale{props->Direct.LFReference / Frequency};
948 const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */
949 const ALfloat gainLF{maxf(DryGainLF, 0.001f)};
951 voice->mDirect.FilterType = AF_None;
952 if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
953 if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
954 auto &lowpass = voice->mChans[0].mDryParams.LowPass;
955 auto &highpass = voice->mChans[0].mDryParams.HighPass;
956 lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
957 lowpass.rcpQFromSlope(gainHF, 1.0f));
958 highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
959 highpass.rcpQFromSlope(gainLF, 1.0f));
960 for(ALuint c{1};c < num_channels;c++)
962 voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
963 voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
966 for(ALuint i{0};i < NumSends;i++)
968 const ALfloat hfScale{props->Send[i].HFReference / Frequency};
969 const ALfloat lfScale{props->Send[i].LFReference / Frequency};
970 const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)};
971 const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)};
973 voice->mSend[i].FilterType = AF_None;
974 if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
975 if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
977 auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
978 auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
979 lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
980 lowpass.rcpQFromSlope(gainHF, 1.0f));
981 highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
982 highpass.rcpQFromSlope(gainLF, 1.0f));
983 for(ALuint c{1};c < num_channels;c++)
985 voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
986 voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
991 void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
993 const ALCdevice *Device{ALContext->mDevice.get()};
994 ALeffectslot *SendSlots[MAX_SENDS];
996 voice->mDirect.Buffer = Device->Dry.Buffer;
997 for(ALuint i{0};i < Device->NumAuxSends;i++)
999 SendSlots[i] = props->Send[i].Slot;
1000 if(!SendSlots[i] && i == 0)
1001 SendSlots[i] = ALContext->mDefaultSlot.get();
1002 if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
1004 SendSlots[i] = nullptr;
1005 voice->mSend[i].Buffer = {};
1007 else
1008 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1011 /* Calculate the stepping value */
1012 const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
1013 static_cast<ALfloat>(Device->Frequency) * props->Pitch;
1014 if(Pitch > float{MAX_PITCH})
1015 voice->mStep = MAX_PITCH<<FRACTIONBITS;
1016 else
1017 voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
1018 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1020 /* Calculate gains */
1021 const ALlistener &Listener = ALContext->mListener;
1022 ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)};
1023 DryGain *= props->Direct.Gain * Listener.Params.Gain;
1024 DryGain = minf(DryGain, GAIN_MIX_MAX);
1025 ALfloat DryGainHF{props->Direct.GainHF};
1026 ALfloat DryGainLF{props->Direct.GainLF};
1027 ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
1028 for(ALuint i{0};i < Device->NumAuxSends;i++)
1030 WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
1031 WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain;
1032 WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
1033 WetGainHF[i] = props->Send[i].GainHF;
1034 WetGainLF[i] = props->Send[i].GainLF;
1037 CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF,
1038 WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
1041 void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
1043 const ALCdevice *Device{ALContext->mDevice.get()};
1044 const ALuint NumSends{Device->NumAuxSends};
1045 const ALlistener &Listener = ALContext->mListener;
1047 /* Set mixing buffers and get send parameters. */
1048 voice->mDirect.Buffer = Device->Dry.Buffer;
1049 ALeffectslot *SendSlots[MAX_SENDS];
1050 ALfloat RoomRolloff[MAX_SENDS];
1051 ALfloat DecayDistance[MAX_SENDS];
1052 ALfloat DecayLFDistance[MAX_SENDS];
1053 ALfloat DecayHFDistance[MAX_SENDS];
1054 for(ALuint i{0};i < NumSends;i++)
1056 SendSlots[i] = props->Send[i].Slot;
1057 if(!SendSlots[i] && i == 0)
1058 SendSlots[i] = ALContext->mDefaultSlot.get();
1059 if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
1061 SendSlots[i] = nullptr;
1062 RoomRolloff[i] = 0.0f;
1063 DecayDistance[i] = 0.0f;
1064 DecayLFDistance[i] = 0.0f;
1065 DecayHFDistance[i] = 0.0f;
1067 else if(SendSlots[i]->Params.AuxSendAuto)
1069 RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
1070 /* Calculate the distances to where this effect's decay reaches
1071 * -60dB.
1073 DecayDistance[i] = SendSlots[i]->Params.DecayTime * SPEEDOFSOUNDMETRESPERSEC;
1074 DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
1075 DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
1076 if(SendSlots[i]->Params.DecayHFLimit)
1078 ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF};
1079 if(airAbsorption < 1.0f)
1081 /* Calculate the distance to where this effect's air
1082 * absorption reaches -60dB, and limit the effect's HF
1083 * decay distance (so it doesn't take any longer to decay
1084 * than the air would allow).
1086 ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)};
1087 DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
1091 else
1093 /* If the slot's auxiliary send auto is off, the data sent to the
1094 * effect slot is the same as the dry path, sans filter effects */
1095 RoomRolloff[i] = props->RolloffFactor;
1096 DecayDistance[i] = 0.0f;
1097 DecayLFDistance[i] = 0.0f;
1098 DecayHFDistance[i] = 0.0f;
1101 if(!SendSlots[i])
1102 voice->mSend[i].Buffer = {};
1103 else
1104 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1107 /* Transform source to listener space (convert to head relative) */
1108 alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
1109 alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
1110 alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
1111 if(props->HeadRelative == AL_FALSE)
1113 /* Transform source vectors */
1114 Position = Listener.Params.Matrix * Position;
1115 Velocity = Listener.Params.Matrix * Velocity;
1116 Direction = Listener.Params.Matrix * Direction;
1118 else
1120 /* Offset the source velocity to be relative of the listener velocity */
1121 Velocity += Listener.Params.Velocity;
1124 const bool directional{Direction.normalize() > 0.0f};
1125 alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
1126 const ALfloat Distance{ToSource.normalize()};
1128 /* Initial source gain */
1129 ALfloat DryGain{props->Gain};
1130 ALfloat DryGainHF{1.0f};
1131 ALfloat DryGainLF{1.0f};
1132 ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
1133 for(ALuint i{0};i < NumSends;i++)
1135 WetGain[i] = props->Gain;
1136 WetGainHF[i] = 1.0f;
1137 WetGainLF[i] = 1.0f;
1140 /* Calculate distance attenuation */
1141 ALfloat ClampedDist{Distance};
1143 switch(Listener.Params.SourceDistanceModel ?
1144 props->mDistanceModel : Listener.Params.mDistanceModel)
1146 case DistanceModel::InverseClamped:
1147 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1148 if(props->MaxDistance < props->RefDistance) break;
1149 /*fall-through*/
1150 case DistanceModel::Inverse:
1151 if(!(props->RefDistance > 0.0f))
1152 ClampedDist = props->RefDistance;
1153 else
1155 ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
1156 if(dist > 0.0f) DryGain *= props->RefDistance / dist;
1157 for(ALuint i{0};i < NumSends;i++)
1159 dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
1160 if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
1163 break;
1165 case DistanceModel::LinearClamped:
1166 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1167 if(props->MaxDistance < props->RefDistance) break;
1168 /*fall-through*/
1169 case DistanceModel::Linear:
1170 if(!(props->MaxDistance != props->RefDistance))
1171 ClampedDist = props->RefDistance;
1172 else
1174 ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
1175 (props->MaxDistance-props->RefDistance);
1176 DryGain *= maxf(1.0f - attn, 0.0f);
1177 for(ALuint i{0};i < NumSends;i++)
1179 attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
1180 (props->MaxDistance-props->RefDistance);
1181 WetGain[i] *= maxf(1.0f - attn, 0.0f);
1184 break;
1186 case DistanceModel::ExponentClamped:
1187 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1188 if(props->MaxDistance < props->RefDistance) break;
1189 /*fall-through*/
1190 case DistanceModel::Exponent:
1191 if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
1192 ClampedDist = props->RefDistance;
1193 else
1195 DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor);
1196 for(ALuint i{0};i < NumSends;i++)
1197 WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]);
1199 break;
1201 case DistanceModel::Disable:
1202 ClampedDist = props->RefDistance;
1203 break;
1206 /* Calculate directional soundcones */
1207 if(directional && props->InnerAngle < 360.0f)
1209 const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) *
1210 ConeScale * 2.0f)};
1212 ALfloat ConeVolume, ConeHF;
1213 if(!(Angle > props->InnerAngle))
1215 ConeVolume = 1.0f;
1216 ConeHF = 1.0f;
1218 else if(Angle < props->OuterAngle)
1220 ALfloat scale = ( Angle-props->InnerAngle) /
1221 (props->OuterAngle-props->InnerAngle);
1222 ConeVolume = lerp(1.0f, props->OuterGain, scale);
1223 ConeHF = lerp(1.0f, props->OuterGainHF, scale);
1225 else
1227 ConeVolume = props->OuterGain;
1228 ConeHF = props->OuterGainHF;
1231 DryGain *= ConeVolume;
1232 if(props->DryGainHFAuto)
1233 DryGainHF *= ConeHF;
1234 if(props->WetGainAuto)
1235 std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain),
1236 [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; }
1238 if(props->WetGainHFAuto)
1239 std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
1240 std::begin(WetGainHF),
1241 [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; }
1245 /* Apply gain and frequency filters */
1246 DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
1247 DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX);
1248 DryGainHF *= props->Direct.GainHF;
1249 DryGainLF *= props->Direct.GainLF;
1250 for(ALuint i{0};i < NumSends;i++)
1252 WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
1253 WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX);
1254 WetGainHF[i] *= props->Send[i].GainHF;
1255 WetGainLF[i] *= props->Send[i].GainLF;
1258 /* Distance-based air absorption and initial send decay. */
1259 if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
1261 ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor *
1262 Listener.Params.MetersPerUnit};
1263 if(props->AirAbsorptionFactor > 0.0f)
1265 ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)};
1266 DryGainHF *= hfattn;
1267 std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
1268 std::begin(WetGainHF),
1269 [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; }
1273 if(props->WetGainAuto)
1275 /* Apply a decay-time transformation to the wet path, based on the
1276 * source distance in meters. The initial decay of the reverb
1277 * effect is calculated and applied to the wet path.
1279 for(ALuint i{0};i < NumSends;i++)
1281 if(!(DecayDistance[i] > 0.0f))
1282 continue;
1284 const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])};
1285 WetGain[i] *= gain;
1286 /* Yes, the wet path's air absorption is applied with
1287 * WetGainAuto on, rather than WetGainHFAuto.
1289 if(gain > 0.0f)
1291 ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])};
1292 WetGainHF[i] *= minf(gainhf / gain, 1.0f);
1293 ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])};
1294 WetGainLF[i] *= minf(gainlf / gain, 1.0f);
1301 /* Initial source pitch */
1302 ALfloat Pitch{props->Pitch};
1304 /* Calculate velocity-based doppler effect */
1305 ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor};
1306 if(DopplerFactor > 0.0f)
1308 const alu::Vector &lvelocity = Listener.Params.Velocity;
1309 ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor};
1310 ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor};
1312 const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound};
1313 if(!(vls < SpeedOfSound))
1315 /* Listener moving away from the source at the speed of sound.
1316 * Sound waves can't catch it.
1318 Pitch = 0.0f;
1320 else if(!(vss < SpeedOfSound))
1322 /* Source moving toward the listener at the speed of sound. Sound
1323 * waves bunch up to extreme frequencies.
1325 Pitch = std::numeric_limits<float>::infinity();
1327 else
1329 /* Source and listener movement is nominal. Calculate the proper
1330 * doppler shift.
1332 Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
1336 /* Adjust pitch based on the buffer and output frequencies, and calculate
1337 * fixed-point stepping value.
1339 Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
1340 if(Pitch > float{MAX_PITCH})
1341 voice->mStep = MAX_PITCH<<FRACTIONBITS;
1342 else
1343 voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
1344 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1346 ALfloat spread{0.0f};
1347 if(props->Radius > Distance)
1348 spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi();
1349 else if(Distance > 0.0f)
1350 spread = std::asin(props->Radius/Distance) * 2.0f;
1352 CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale,
1353 Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain,
1354 WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
1357 void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
1359 ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
1360 if(!props && !force) return;
1362 if(props)
1364 voice->mProps = *props;
1366 AtomicReplaceHead(context->mFreeVoiceProps, props);
1369 if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) ||
1370 voice->mProps.mSpatializeMode == SpatializeOn)
1371 CalcAttnSourceParams(voice, &voice->mProps, context);
1372 else
1373 CalcNonAttnSourceParams(voice, &voice->mProps, context);
1377 void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray &slots,
1378 const al::span<ALvoice> voices)
1380 IncrementRef(ctx->mUpdateCount);
1381 if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire))
1383 bool force{CalcContextParams(ctx)};
1384 force |= CalcListenerParams(ctx);
1385 force = std::accumulate(slots.begin(), slots.end(), force,
1386 [ctx](const bool f, ALeffectslot *slot) -> bool
1387 { return CalcEffectSlotParams(slot, ctx) | f; }
1390 auto calc_params = [ctx,force](ALvoice &voice) -> void
1392 if(voice.mSourceID.load(std::memory_order_acquire) != 0)
1393 CalcSourceParams(&voice, ctx, force);
1395 std::for_each(voices.begin(), voices.end(), calc_params);
1397 IncrementRef(ctx->mUpdateCount);
1400 void ProcessContext(ALCcontext *ctx, const ALuint SamplesToDo)
1402 ASSUME(SamplesToDo > 0);
1404 const ALeffectslotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
1405 const al::span<ALvoice> voices{ctx->mVoices.data(), ctx->mVoices.size()};
1407 /* Process pending propery updates for objects on the context. */
1408 ProcessParamUpdates(ctx, auxslots, voices);
1410 /* Clear auxiliary effect slot mixing buffers. */
1411 std::for_each(auxslots.begin(), auxslots.end(),
1412 [SamplesToDo](ALeffectslot *slot) -> void
1414 for(auto &buffer : slot->MixBuffer)
1415 std::fill_n(buffer.begin(), SamplesToDo, 0.0f);
1419 /* Process voices that have a playing source. */
1420 std::for_each(voices.begin(), voices.end(),
1421 [SamplesToDo,ctx](ALvoice &voice) -> void
1423 const ALvoice::State vstate{voice.mPlayState.load(std::memory_order_acquire)};
1424 if(vstate != ALvoice::Stopped) voice.mix(vstate, ctx, SamplesToDo);
1428 /* Process effects. */
1429 if(auxslots.empty()) return;
1430 auto slots = auxslots.data();
1431 auto slots_end = slots + auxslots.size();
1433 /* First sort the slots into scratch storage, so that effects come before
1434 * their effect target (or their targets' target).
1436 auto sorted_slots = const_cast<ALeffectslot**>(slots_end);
1437 auto sorted_slots_end = sorted_slots;
1438 auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool
1440 while((slot1=slot1->Params.Target) != nullptr) {
1441 if(slot1 == slot2) return true;
1443 return false;
1446 *sorted_slots_end = *slots;
1447 ++sorted_slots_end;
1448 while(++slots != slots_end)
1450 /* If this effect slot targets an effect slot already in the list (i.e.
1451 * slots outputs to something in sorted_slots), directly or indirectly,
1452 * insert it prior to that element.
1454 auto checker = sorted_slots;
1455 do {
1456 if(in_chain(*slots, *checker)) break;
1457 } while(++checker != sorted_slots_end);
1459 checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1);
1460 *--checker = *slots;
1461 ++sorted_slots_end;
1464 std::for_each(sorted_slots, sorted_slots_end,
1465 [SamplesToDo](const ALeffectslot *slot) -> void
1467 EffectState *state{slot->Params.mEffectState};
1468 state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
1474 void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> Buffer,
1475 const ALuint lidx, const ALuint ridx, const ALuint cidx, const ALuint SamplesToDo)
1477 ASSUME(SamplesToDo > 0);
1479 /* Apply a delay to all channels, except the front-left and front-right, so
1480 * they maintain correct timing.
1482 const size_t NumChannels{Buffer.size()};
1483 for(size_t i{0u};i < NumChannels;i++)
1485 if(i == lidx || i == ridx)
1486 continue;
1488 auto &DelayBuf = Stablizer->DelayBuf[i];
1489 auto buffer_end = Buffer[i].begin() + SamplesToDo;
1490 if LIKELY(SamplesToDo >= ALuint{FrontStablizer::DelayLength})
1492 auto delay_end = std::rotate(Buffer[i].begin(),
1493 buffer_end - FrontStablizer::DelayLength, buffer_end);
1494 std::swap_ranges(Buffer[i].begin(), delay_end, std::begin(DelayBuf));
1496 else
1498 auto delay_start = std::swap_ranges(Buffer[i].begin(), buffer_end,
1499 std::begin(DelayBuf));
1500 std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf));
1504 ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
1505 ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
1506 auto &tmpbuf = Stablizer->TempBuf;
1508 /* This applies the band-splitter, preserving phase at the cost of some
1509 * delay. The shorter the delay, the more error seeps into the result.
1511 auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &InBuf,
1512 ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
1513 ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
1515 /* Combine the delayed samples and the input samples into the temp
1516 * buffer, in reverse. Then copy the final samples back into the delay
1517 * buffer for next time. Note that the delay buffer's samples are
1518 * stored backwards here.
1520 auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
1521 std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
1522 std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, std::begin(tmpbuf));
1523 std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
1525 /* Apply an all-pass on the reversed signal, then reverse the samples
1526 * to get the forward signal with a reversed phase shift.
1528 Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
1529 std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
1531 /* Now apply the band-splitter, combining its phase shift with the
1532 * reversed phase shift, restoring the original phase on the split
1533 * signal.
1535 Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
1537 apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
1538 apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
1540 for(ALuint i{0};i < SamplesToDo;i++)
1542 ALfloat lfsum{lsplit[0][i] + rsplit[0][i]};
1543 ALfloat hfsum{lsplit[1][i] + rsplit[1][i]};
1544 ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]};
1546 /* This pans the separate low- and high-frequency sums between being on
1547 * the center channel and the left/right channels. The low-frequency
1548 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1549 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1550 * values can be tweaked.
1552 ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
1553 hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
1554 ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
1555 hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
1557 /* The generated center channel signal adds to the existing signal,
1558 * while the modified left and right channels replace.
1560 Buffer[lidx][i] = (m + s) * 0.5f;
1561 Buffer[ridx][i] = (m - s) * 0.5f;
1562 Buffer[cidx][i] += c * 0.5f;
1566 void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const ALuint SamplesToDo,
1567 const DistanceComp::DistData *distcomp)
1569 ASSUME(SamplesToDo > 0);
1571 for(auto &chanbuffer : Samples)
1573 const ALfloat gain{distcomp->Gain};
1574 const ALuint base{distcomp->Length};
1575 ALfloat *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
1576 ++distcomp;
1578 if(base < 1)
1579 continue;
1581 ALfloat *inout{al::assume_aligned<16>(chanbuffer.data())};
1582 auto inout_end = inout + SamplesToDo;
1583 if LIKELY(SamplesToDo >= base)
1585 auto delay_end = std::rotate(inout, inout_end - base, inout_end);
1586 std::swap_ranges(inout, delay_end, distbuf);
1588 else
1590 auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
1591 std::rotate(distbuf, delay_start, distbuf + base);
1593 std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
1597 void ApplyDither(const al::span<FloatBufferLine> Samples, ALuint *dither_seed,
1598 const ALfloat quant_scale, const ALuint SamplesToDo)
1600 /* Dithering. Generate whitenoise (uniform distribution of random values
1601 * between -1 and +1) and add it to the sample values, after scaling up to
1602 * the desired quantization depth amd before rounding.
1604 const ALfloat invscale{1.0f / quant_scale};
1605 ALuint seed{*dither_seed};
1606 auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](FloatBufferLine &input) -> void
1608 ASSUME(SamplesToDo > 0);
1609 auto dither_sample = [&seed,invscale,quant_scale](const ALfloat sample) noexcept -> ALfloat
1611 ALfloat val{sample * quant_scale};
1612 ALuint rng0{dither_rng(&seed)};
1613 ALuint rng1{dither_rng(&seed)};
1614 val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
1615 return fast_roundf(val) * invscale;
1617 std::transform(input.begin(), input.begin()+SamplesToDo, input.begin(), dither_sample);
1619 std::for_each(Samples.begin(), Samples.end(), dither_channel);
1620 *dither_seed = seed;
1624 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1625 * chokes on that given the inline specializations.
1627 template<typename T>
1628 inline T SampleConv(ALfloat) noexcept;
1630 template<> inline ALfloat SampleConv(ALfloat val) noexcept
1631 { return val; }
1632 template<> inline ALint SampleConv(ALfloat val) noexcept
1634 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1635 * This means a normalized float has at most 25 bits of signed precision.
1636 * When scaling and clamping for a signed 32-bit integer, these following
1637 * values are the best a float can give.
1639 return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
1641 template<> inline ALshort SampleConv(ALfloat val) noexcept
1642 { return static_cast<ALshort>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
1643 template<> inline ALbyte SampleConv(ALfloat val) noexcept
1644 { return static_cast<ALbyte>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
1646 /* Define unsigned output variations. */
1647 template<> inline ALuint SampleConv(ALfloat val) noexcept
1648 { return static_cast<ALuint>(SampleConv<ALint>(val)) + 2147483648u; }
1649 template<> inline ALushort SampleConv(ALfloat val) noexcept
1650 { return static_cast<ALushort>(SampleConv<ALshort>(val) + 32768); }
1651 template<> inline ALubyte SampleConv(ALfloat val) noexcept
1652 { return static_cast<ALubyte>(SampleConv<ALbyte>(val) + 128); }
1654 template<DevFmtType T>
1655 void Write(const al::span<const FloatBufferLine> InBuffer, ALvoid *OutBuffer, const size_t Offset,
1656 const ALuint SamplesToDo)
1658 using SampleType = typename DevFmtTypeTraits<T>::Type;
1660 const size_t numchans{InBuffer.size()};
1661 ASSUME(numchans > 0);
1663 SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans;
1664 auto conv_channel = [&outbase,SamplesToDo,numchans](const FloatBufferLine &inbuf) -> void
1666 ASSUME(SamplesToDo > 0);
1667 SampleType *out{outbase++};
1668 auto conv_sample = [numchans,&out](const ALfloat s) noexcept -> void
1670 *out = SampleConv<SampleType>(s);
1671 out += numchans;
1673 std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
1675 std::for_each(InBuffer.cbegin(), InBuffer.cend(), conv_channel);
1678 } // namespace
1680 void aluMixData(ALCdevice *device, ALvoid *OutBuffer, const ALuint NumSamples)
1682 FPUCtl mixer_mode{};
1683 for(ALuint SamplesDone{0u};SamplesDone < NumSamples;)
1685 const ALuint SamplesToDo{minu(NumSamples-SamplesDone, BUFFERSIZE)};
1687 /* Clear main mixing buffers. */
1688 std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(),
1689 [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void
1690 { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); }
1693 /* Increment the mix count at the start (lsb should now be 1). */
1694 IncrementRef(device->MixCount);
1696 /* For each context on this device, process and mix its sources and
1697 * effects.
1699 for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire))
1700 ProcessContext(ctx, SamplesToDo);
1702 /* Increment the clock time. Every second's worth of samples is
1703 * converted and added to clock base so that large sample counts don't
1704 * overflow during conversion. This also guarantees a stable
1705 * conversion.
1707 device->SamplesDone += SamplesToDo;
1708 device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency};
1709 device->SamplesDone %= device->Frequency;
1711 /* Increment the mix count at the end (lsb should now be 0). */
1712 IncrementRef(device->MixCount);
1714 /* Apply any needed post-process for finalizing the Dry mix to the
1715 * RealOut (Ambisonic decode, UHJ encode, etc).
1717 device->postProcess(SamplesToDo);
1719 const al::span<FloatBufferLine> RealOut{device->RealOut.Buffer};
1721 /* Apply front image stablization for surround sound, if applicable. */
1722 if(device->Stablizer)
1724 const ALuint lidx{GetChannelIdxByName(device->RealOut, FrontLeft)};
1725 const ALuint ridx{GetChannelIdxByName(device->RealOut, FrontRight)};
1726 const ALuint cidx{GetChannelIdxByName(device->RealOut, FrontCenter)};
1728 ApplyStablizer(device->Stablizer.get(), RealOut, lidx, ridx, cidx, SamplesToDo);
1731 /* Apply compression, limiting sample amplitude if needed or desired. */
1732 if(Compressor *comp{device->Limiter.get()})
1733 comp->process(SamplesToDo, RealOut.data());
1735 /* Apply delays and attenuation for mismatched speaker distances. */
1736 ApplyDistanceComp(RealOut, SamplesToDo, device->ChannelDelay.as_span().cbegin());
1738 /* Apply dithering. The compressor should have left enough headroom for
1739 * the dither noise to not saturate.
1741 if(device->DitherDepth > 0.0f)
1742 ApplyDither(RealOut, &device->DitherSeed, device->DitherDepth, SamplesToDo);
1744 if LIKELY(OutBuffer)
1746 /* Finally, interleave and convert samples, writing to the device's
1747 * output buffer.
1749 switch(device->FmtType)
1751 #define HANDLE_WRITE(T) case T: \
1752 Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break;
1753 HANDLE_WRITE(DevFmtByte)
1754 HANDLE_WRITE(DevFmtUByte)
1755 HANDLE_WRITE(DevFmtShort)
1756 HANDLE_WRITE(DevFmtUShort)
1757 HANDLE_WRITE(DevFmtInt)
1758 HANDLE_WRITE(DevFmtUInt)
1759 HANDLE_WRITE(DevFmtFloat)
1760 #undef HANDLE_WRITE
1764 SamplesDone += SamplesToDo;
1769 void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
1771 if(!device->Connected.exchange(false, std::memory_order_acq_rel))
1772 return;
1774 AsyncEvent evt{EventType_Disconnected};
1775 evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
1776 evt.u.user.id = 0;
1777 evt.u.user.param = 0;
1779 va_list args;
1780 va_start(args, msg);
1781 int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)};
1782 va_end(args);
1784 if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg))
1785 evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
1787 IncrementRef(device->MixCount);
1788 for(ALCcontext *ctx : *device->mContexts.load())
1790 const ALbitfieldSOFT enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
1791 if((enabledevt&EventType_Disconnected))
1793 RingBuffer *ring{ctx->mAsyncEvents.get()};
1794 auto evt_data = ring->getWriteVector().first;
1795 if(evt_data.len > 0)
1797 ::new (evt_data.buf) AsyncEvent{evt};
1798 ring->writeAdvance(1);
1799 ctx->mEventSem.post();
1803 auto stop_voice = [](ALvoice &voice) -> void
1805 voice.mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
1806 voice.mLoopBuffer.store(nullptr, std::memory_order_relaxed);
1807 voice.mSourceID.store(0u, std::memory_order_relaxed);
1808 voice.mPlayState.store(ALvoice::Stopped, std::memory_order_release);
1810 std::for_each(ctx->mVoices.begin(), ctx->mVoices.end(), stop_voice);
1812 IncrementRef(device->MixCount);