Use one PulseAudio mainloop per device
[openal-soft.git] / alc / uhjfilter.cpp
blob7d01a91f1c4096d8345397fa901277a0407c2a88
2 #include "config.h"
4 #include "uhjfilter.h"
6 #include <algorithm>
7 #include <iterator>
9 #include "AL/al.h"
11 #include "alnumeric.h"
12 #include "opthelpers.h"
15 namespace {
17 /* This is the maximum number of samples processed for each inner loop
18 * iteration. */
19 #define MAX_UPDATE_SAMPLES 128
22 constexpr ALfloat Filter1CoeffSqr[4] = {
23 0.479400865589f, 0.876218493539f, 0.976597589508f, 0.997499255936f
25 constexpr ALfloat Filter2CoeffSqr[4] = {
26 0.161758498368f, 0.733028932341f, 0.945349700329f, 0.990599156685f
29 void allpass_process(AllPassState *state, ALfloat *dst, const ALfloat *src, const ALfloat aa,
30 const size_t todo)
32 ALfloat z1{state->z[0]};
33 ALfloat z2{state->z[1]};
34 auto proc_sample = [aa,&z1,&z2](const ALfloat input) noexcept -> ALfloat
36 const ALfloat output{input*aa + z1};
37 z1 = z2; z2 = output*aa - input;
38 return output;
40 std::transform(src, src+todo, dst, proc_sample);
41 state->z[0] = z1;
42 state->z[1] = z2;
45 } // namespace
48 /* NOTE: There seems to be a bit of an inconsistency in how this encoding is
49 * supposed to work. Some references, such as
51 * http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html
53 * specify a pre-scaling of sqrt(2) on the W channel input, while other
54 * references, such as
56 * https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D
57 * and
58 * https://wiki.xiph.org/Ambisonics#UHJ_format
60 * do not. The sqrt(2) scaling is in line with B-Format decoder coefficients
61 * which include such a scaling for the W channel input, however the original
62 * source for this equation is a 1985 paper by Michael Gerzon, which does not
63 * apparently include the scaling. Applying the extra scaling creates a louder
64 * result with a narrower stereo image compared to not scaling, and I don't
65 * know which is the intended result.
68 void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
69 FloatBufferLine *InSamples, const size_t SamplesToDo)
71 alignas(16) ALfloat D[MAX_UPDATE_SAMPLES], S[MAX_UPDATE_SAMPLES];
72 alignas(16) ALfloat temp[MAX_UPDATE_SAMPLES];
74 ASSUME(SamplesToDo > 0);
76 auto winput = InSamples[0].cbegin();
77 auto xinput = InSamples[1].cbegin();
78 auto yinput = InSamples[2].cbegin();
79 for(size_t base{0};base < SamplesToDo;)
81 const size_t todo{minz(SamplesToDo - base, MAX_UPDATE_SAMPLES)};
82 ASSUME(todo > 0);
84 /* D = 0.6554516*Y */
85 std::transform(yinput, yinput+todo, std::begin(temp),
86 [](const float y) noexcept -> float { return 0.6554516f*y; });
87 allpass_process(&mFilter1_Y[0], temp, temp, Filter1CoeffSqr[0], todo);
88 allpass_process(&mFilter1_Y[1], temp, temp, Filter1CoeffSqr[1], todo);
89 allpass_process(&mFilter1_Y[2], temp, temp, Filter1CoeffSqr[2], todo);
90 allpass_process(&mFilter1_Y[3], temp, temp, Filter1CoeffSqr[3], todo);
91 /* NOTE: Filter1 requires a 1 sample delay for the final output, so
92 * take the last processed sample from the previous run as the first
93 * output sample.
95 D[0] = mLastY;
96 for(size_t i{1};i < todo;i++)
97 D[i] = temp[i-1];
98 mLastY = temp[todo-1];
100 /* D += j(-0.3420201*W + 0.5098604*X) */
101 std::transform(winput, winput+todo, xinput, std::begin(temp),
102 [](const float w, const float x) noexcept -> float
103 { return -0.3420201f*w + 0.5098604f*x; });
104 allpass_process(&mFilter2_WX[0], temp, temp, Filter2CoeffSqr[0], todo);
105 allpass_process(&mFilter2_WX[1], temp, temp, Filter2CoeffSqr[1], todo);
106 allpass_process(&mFilter2_WX[2], temp, temp, Filter2CoeffSqr[2], todo);
107 allpass_process(&mFilter2_WX[3], temp, temp, Filter2CoeffSqr[3], todo);
108 for(size_t i{0};i < todo;i++)
109 D[i] += temp[i];
111 /* S = 0.9396926*W + 0.1855740*X */
112 std::transform(winput, winput+todo, xinput, std::begin(temp),
113 [](const float w, const float x) noexcept -> float
114 { return 0.9396926f*w + 0.1855740f*x; });
115 allpass_process(&mFilter1_WX[0], temp, temp, Filter1CoeffSqr[0], todo);
116 allpass_process(&mFilter1_WX[1], temp, temp, Filter1CoeffSqr[1], todo);
117 allpass_process(&mFilter1_WX[2], temp, temp, Filter1CoeffSqr[2], todo);
118 allpass_process(&mFilter1_WX[3], temp, temp, Filter1CoeffSqr[3], todo);
119 S[0] = mLastWX;
120 for(size_t i{1};i < todo;i++)
121 S[i] = temp[i-1];
122 mLastWX = temp[todo-1];
124 /* Left = (S + D)/2.0 */
125 ALfloat *RESTRICT left = al::assume_aligned<16>(LeftOut.data()+base);
126 for(size_t i{0};i < todo;i++)
127 left[i] += (S[i] + D[i]) * 0.5f;
128 /* Right = (S - D)/2.0 */
129 ALfloat *RESTRICT right = al::assume_aligned<16>(RightOut.data()+base);
130 for(size_t i{0};i < todo;i++)
131 right[i] += (S[i] - D[i]) * 0.5f;
133 winput += todo;
134 xinput += todo;
135 yinput += todo;
136 base += todo;