11 ALfloat z
[2]{0.0f
, 0.0f
};
14 /* Encoding 2-channel UHJ from B-Format is done as:
16 * S = 0.9396926*W + 0.1855740*X
17 * D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y
22 * where j is a wide-band +90 degree phase shift.
24 * The phase shift is done using a Hilbert transform, described here:
25 * https://web.archive.org/web/20060708031958/http://www.biochem.oulu.fi/~oniemita/dsp/hilbert/
26 * It works using 2 sets of 4 chained filters. The first filter chain produces
27 * a phase shift of varying magnitude over a wide range of frequencies, while
28 * the second filter chain produces a phase shift 90 degrees ahead of the
29 * first over the same range.
31 * Combining these two stages requires the use of three filter chains. S-
32 * channel output uses a Filter1 chain on the W and X channel mix, while the D-
33 * channel output uses a Filter1 chain on the Y channel plus a Filter2 chain on
34 * the W and X channel mix. This results in the W and X input mix on the D-
35 * channel output having the required +90 degree phase shift relative to the
40 AllPassState mFilter1_Y
[4];
41 AllPassState mFilter2_WX
[4];
42 AllPassState mFilter1_WX
[4];
43 ALfloat mLastY
{0.0f
}, mLastWX
{0.0f
};
45 /* Encodes a 2-channel UHJ (stereo-compatible) signal from a B-Format input
46 * signal. The input must use FuMa channel ordering and scaling.
48 void encode(FloatBufferLine
&LeftOut
, FloatBufferLine
&RightOut
, FloatBufferLine
*InSamples
,
49 const size_t SamplesToDo
);
51 DEF_NEWDEL(Uhj2Encoder
)
54 #endif /* UHJFILTER_H */