Move a couple types to the source they're used in
[openal-soft.git] / common / alnumeric.h
blobb409ce9cbad03e1d77273e277c205523bb9de64d
1 #ifndef AL_NUMERIC_H
2 #define AL_NUMERIC_H
4 #include <cstddef>
5 #include <cstdint>
6 #ifdef HAVE_INTRIN_H
7 #include <intrin.h>
8 #endif
9 #ifdef HAVE_SSE_INTRINSICS
10 #include <xmmintrin.h>
11 #endif
13 #include "opthelpers.h"
16 inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
17 inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
20 constexpr inline float minf(float a, float b) noexcept
21 { return ((a > b) ? b : a); }
22 constexpr inline float maxf(float a, float b) noexcept
23 { return ((a > b) ? a : b); }
24 constexpr inline float clampf(float val, float min, float max) noexcept
25 { return minf(max, maxf(min, val)); }
27 constexpr inline double mind(double a, double b) noexcept
28 { return ((a > b) ? b : a); }
29 constexpr inline double maxd(double a, double b) noexcept
30 { return ((a > b) ? a : b); }
31 constexpr inline double clampd(double val, double min, double max) noexcept
32 { return mind(max, maxd(min, val)); }
34 constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
35 { return ((a > b) ? b : a); }
36 constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
37 { return ((a > b) ? a : b); }
38 constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
39 { return minu(max, maxu(min, val)); }
41 constexpr inline int mini(int a, int b) noexcept
42 { return ((a > b) ? b : a); }
43 constexpr inline int maxi(int a, int b) noexcept
44 { return ((a > b) ? a : b); }
45 constexpr inline int clampi(int val, int min, int max) noexcept
46 { return mini(max, maxi(min, val)); }
48 constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
49 { return ((a > b) ? b : a); }
50 constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
51 { return ((a > b) ? a : b); }
52 constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
53 { return mini64(max, maxi64(min, val)); }
55 constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
56 { return ((a > b) ? b : a); }
57 constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
58 { return ((a > b) ? a : b); }
59 constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
60 { return minu64(max, maxu64(min, val)); }
62 constexpr inline size_t minz(size_t a, size_t b) noexcept
63 { return ((a > b) ? b : a); }
64 constexpr inline size_t maxz(size_t a, size_t b) noexcept
65 { return ((a > b) ? a : b); }
66 constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
67 { return minz(max, maxz(min, val)); }
70 /** Find the next power-of-2 for non-power-of-2 numbers. */
71 inline uint32_t NextPowerOf2(uint32_t value) noexcept
73 if(value > 0)
75 value--;
76 value |= value>>1;
77 value |= value>>2;
78 value |= value>>4;
79 value |= value>>8;
80 value |= value>>16;
82 return value+1;
85 /** Round up a value to the next multiple. */
86 inline size_t RoundUp(size_t value, size_t r) noexcept
88 value += r-1;
89 return value - (value%r);
93 /* Define CTZ macros (count trailing zeros), and POPCNT macros (population
94 * count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
95 * are *UNDEFINED* if the value is 0.
97 #ifdef __GNUC__
99 #define POPCNT32 __builtin_popcount
100 #define CTZ32 __builtin_ctz
101 #if SIZEOF_LONG == 8
102 #define POPCNT64 __builtin_popcountl
103 #define CTZ64 __builtin_ctzl
104 #else
105 #define POPCNT64 __builtin_popcountll
106 #define CTZ64 __builtin_ctzll
107 #endif
109 #else
111 /* There be black magics here. The popcnt method is derived from
112 * https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
113 * while the ctz-utilizing-popcnt algorithm is shown here
114 * http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
115 * as the ntz2 variant. These likely aren't the most efficient methods, but
116 * they're good enough if the GCC built-ins aren't available.
118 inline int fallback_popcnt32(uint32_t v)
120 v = v - ((v >> 1) & 0x55555555u);
121 v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
122 v = (v + (v >> 4)) & 0x0f0f0f0fu;
123 return (int)((v * 0x01010101u) >> 24);
125 #define POPCNT32 fallback_popcnt32
126 inline int fallback_popcnt64(uint64_t v)
128 v = v - ((v >> 1) & 0x5555555555555555_u64);
129 v = (v & 0x3333333333333333_u64) + ((v >> 2) & 0x3333333333333333_u64);
130 v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f_u64;
131 return (int)((v * 0x0101010101010101_u64) >> 56);
133 #define POPCNT64 fallback_popcnt64
135 #if defined(HAVE_BITSCANFORWARD64_INTRINSIC)
137 inline int msvc64_ctz32(uint32_t v)
139 unsigned long idx = 32;
140 _BitScanForward(&idx, v);
141 return (int)idx;
143 #define CTZ32 msvc64_ctz32
144 inline int msvc64_ctz64(uint64_t v)
146 unsigned long idx = 64;
147 _BitScanForward64(&idx, v);
148 return (int)idx;
150 #define CTZ64 msvc64_ctz64
152 #elif defined(HAVE_BITSCANFORWARD_INTRINSIC)
154 inline int msvc_ctz32(uint32_t v)
156 unsigned long idx = 32;
157 _BitScanForward(&idx, v);
158 return (int)idx;
160 #define CTZ32 msvc_ctz32
161 inline int msvc_ctz64(uint64_t v)
163 unsigned long idx = 64;
164 if(!_BitScanForward(&idx, (uint32_t)(v&0xffffffff)))
166 if(_BitScanForward(&idx, (uint32_t)(v>>32)))
167 idx += 32;
169 return (int)idx;
171 #define CTZ64 msvc_ctz64
173 #else
175 inline int fallback_ctz32(uint32_t value)
176 { return POPCNT32(~value & (value - 1)); }
177 #define CTZ32 fallback_ctz32
178 inline int fallback_ctz64(uint64_t value)
179 { return POPCNT64(~value & (value - 1)); }
180 #define CTZ64 fallback_ctz64
182 #endif
183 #endif
187 * Fast float-to-int conversion. No particular rounding mode is assumed; the
188 * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
189 * change it on its own threads. On some systems, a truncating conversion may
190 * always be the fastest method.
192 inline int fastf2i(float f) noexcept
194 #if defined(HAVE_SSE_INTRINSICS)
195 return _mm_cvt_ss2si(_mm_set_ss(f));
197 #elif defined(_MSC_VER) && defined(_M_IX86_FP)
199 int i;
200 __asm fld f
201 __asm fistp i
202 return i;
204 #elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
206 int i;
207 #ifdef __SSE_MATH__
208 __asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
209 #else
210 __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
211 #endif
212 return i;
214 #else
216 return static_cast<int>(f);
217 #endif
219 inline unsigned int fastf2u(float f) noexcept
220 { return static_cast<unsigned int>(fastf2i(f)); }
222 /** Converts float-to-int using standard behavior (truncation). */
223 inline int float2int(float f) noexcept
225 #if defined(HAVE_SSE_INTRINSICS)
226 return _mm_cvtt_ss2si(_mm_set_ss(f));
228 #elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
229 !defined(__SSE_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0)
230 int sign, shift, mant;
231 union {
232 float f;
233 int i;
234 } conv;
236 conv.f = f;
237 sign = (conv.i>>31) | 1;
238 shift = ((conv.i>>23)&0xff) - (127+23);
240 /* Over/underflow */
241 if UNLIKELY(shift >= 31 || shift < -23)
242 return 0;
244 mant = (conv.i&0x7fffff) | 0x800000;
245 if LIKELY(shift < 0)
246 return (mant >> -shift) * sign;
247 return (mant << shift) * sign;
249 #else
251 return static_cast<int>(f);
252 #endif
254 inline unsigned int float2uint(float f) noexcept
255 { return static_cast<unsigned int>(float2int(f)); }
257 /** Converts double-to-int using standard behavior (truncation). */
258 inline int double2int(double d) noexcept
260 #if defined(HAVE_SSE_INTRINSICS)
261 return _mm_cvttsd_si32(_mm_set_sd(d));
263 #elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
264 !defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
266 int sign, shift;
267 int64_t mant;
268 union {
269 double d;
270 int64_t i64;
271 } conv;
273 conv.d = d;
274 sign = (conv.i64 >> 63) | 1;
275 shift = ((conv.i64 >> 52) & 0x7ff) - (1023 + 52);
277 /* Over/underflow */
278 if UNLIKELY(shift >= 63 || shift < -52)
279 return 0;
281 mant = (conv.i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64;
282 if LIKELY(shift < 0)
283 return (int)(mant >> -shift) * sign;
284 return (int)(mant << shift) * sign;
286 #else
288 return static_cast<int>(d);
289 #endif
293 * Rounds a float to the nearest integral value, according to the current
294 * rounding mode. This is essentially an inlined version of rintf, although
295 * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
297 inline float fast_roundf(float f) noexcept
299 #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
300 !defined(__SSE_MATH__)
302 float out;
303 __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
304 return out;
306 #else
308 /* Integral limit, where sub-integral precision is not available for
309 * floats.
311 static constexpr float ilim[2] = {
312 8388608.0f /* 0x1.0p+23 */,
313 -8388608.0f /* -0x1.0p+23 */
315 unsigned int sign, expo;
316 union {
317 float f;
318 unsigned int i;
319 } conv;
321 conv.f = f;
322 sign = (conv.i>>31)&0x01;
323 expo = (conv.i>>23)&0xff;
325 if UNLIKELY(expo >= 150/*+23*/)
327 /* An exponent (base-2) of 23 or higher is incapable of sub-integral
328 * precision, so it's already an integral value. We don't need to worry
329 * about infinity or NaN here.
331 return f;
333 /* Adding the integral limit to the value (with a matching sign) forces a
334 * result that has no sub-integral precision, and is consequently forced to
335 * round to an integral value. Removing the integral limit then restores
336 * the initial value rounded to the integral. The compiler should not
337 * optimize this out because of non-associative rules on floating-point
338 * math (as long as you don't use -fassociative-math,
339 * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
340 * may break).
342 f += ilim[sign];
343 return f - ilim[sign];
344 #endif
347 #endif /* AL_NUMERIC_H */