Minor code refactor for the frequency shifter effect
[openal-soft.git] / alc / effects / convolution.cpp
blobe88fb0d00df68e2eeb3efccae7fee5250ee2fabd
2 #include "config.h"
4 #include <algorithm>
5 #include <array>
6 #include <complex>
7 #include <cstddef>
8 #include <functional>
9 #include <iterator>
10 #include <memory>
11 #include <stdint.h>
12 #include <utility>
14 #ifdef HAVE_SSE_INTRINSICS
15 #include <xmmintrin.h>
16 #elif defined(HAVE_NEON)
17 #include <arm_neon.h>
18 #endif
20 #include "albyte.h"
21 #include "alcomplex.h"
22 #include "almalloc.h"
23 #include "alnumbers.h"
24 #include "alnumeric.h"
25 #include "alspan.h"
26 #include "base.h"
27 #include "core/ambidefs.h"
28 #include "core/bufferline.h"
29 #include "core/buffer_storage.h"
30 #include "core/context.h"
31 #include "core/devformat.h"
32 #include "core/device.h"
33 #include "core/effectslot.h"
34 #include "core/filters/splitter.h"
35 #include "core/fmt_traits.h"
36 #include "core/mixer.h"
37 #include "intrusive_ptr.h"
38 #include "polyphase_resampler.h"
39 #include "vector.h"
42 namespace {
44 /* Convolution reverb is implemented using a segmented overlap-add method. The
45 * impulse response is broken up into multiple segments of 128 samples, and
46 * each segment has an FFT applied with a 256-sample buffer (the latter half
47 * left silent) to get its frequency-domain response. The resulting response
48 * has its positive/non-mirrored frequencies saved (129 bins) in each segment.
50 * Input samples are similarly broken up into 128-sample segments, with an FFT
51 * applied to each new incoming segment to get its 129 bins. A history of FFT'd
52 * input segments is maintained, equal to the length of the impulse response.
54 * To apply the reverberation, each impulse response segment is convolved with
55 * its paired input segment (using complex multiplies, far cheaper than FIRs),
56 * accumulating into a 256-bin FFT buffer. The input history is then shifted to
57 * align with later impulse response segments for next time.
59 * An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
60 * sample time-domain response for output, which is split in two halves. The
61 * first half is the 128-sample output, and the second half is a 128-sample
62 * (really, 127) delayed extension, which gets added to the output next time.
63 * Convolving two time-domain responses of lengths N and M results in a time-
64 * domain signal of length N+M-1, and this holds true regardless of the
65 * convolution being applied in the frequency domain, so these "overflow"
66 * samples need to be accounted for.
68 * To avoid a delay with gathering enough input samples to apply an FFT with,
69 * the first segment is applied directly in the time-domain as the samples come
70 * in. Once enough have been retrieved, the FFT is applied on the input and
71 * it's paired with the remaining (FFT'd) filter segments for processing.
75 void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
76 const size_t samples) noexcept
78 #define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
79 switch(srctype)
81 HANDLE_FMT(FmtUByte);
82 HANDLE_FMT(FmtShort);
83 HANDLE_FMT(FmtFloat);
84 HANDLE_FMT(FmtDouble);
85 HANDLE_FMT(FmtMulaw);
86 HANDLE_FMT(FmtAlaw);
88 #undef HANDLE_FMT
92 inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
94 switch(scaletype)
96 case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
97 case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
98 case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
99 case AmbiScaling::N3D: break;
101 return AmbiScale::FromN3D();
104 inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
106 if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
107 return AmbiIndex::FromACN();
110 inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
112 if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
113 return AmbiIndex::FromACN2D();
117 struct ChanMap {
118 Channel channel;
119 float angle;
120 float elevation;
123 constexpr float Deg2Rad(float x) noexcept
124 { return static_cast<float>(al::numbers::pi / 180.0 * x); }
127 using complex_f = std::complex<float>;
129 constexpr size_t ConvolveUpdateSize{256};
130 constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
133 void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *RESTRICT filter)
135 #ifdef HAVE_SSE_INTRINSICS
136 for(float &output : dst)
138 __m128 r4{_mm_setzero_ps()};
139 for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
141 const __m128 coeffs{_mm_load_ps(&filter[j])};
142 const __m128 s{_mm_loadu_ps(&src[j])};
144 r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
146 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
147 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
148 output = _mm_cvtss_f32(r4);
150 ++src;
153 #elif defined(HAVE_NEON)
155 for(float &output : dst)
157 float32x4_t r4{vdupq_n_f32(0.0f)};
158 for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
159 r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j]));
160 r4 = vaddq_f32(r4, vrev64q_f32(r4));
161 output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
163 ++src;
166 #else
168 for(float &output : dst)
170 float ret{0.0f};
171 for(size_t j{0};j < ConvolveUpdateSamples;++j)
172 ret += src[j] * filter[j];
173 output = ret;
174 ++src;
176 #endif
179 struct ConvolutionState final : public EffectState {
180 FmtChannels mChannels{};
181 AmbiLayout mAmbiLayout{};
182 AmbiScaling mAmbiScaling{};
183 uint mAmbiOrder{};
185 size_t mFifoPos{0};
186 std::array<float,ConvolveUpdateSamples*2> mInput{};
187 al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
188 al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
190 alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{};
192 size_t mCurrentSegment{0};
193 size_t mNumConvolveSegs{0};
195 struct ChannelData {
196 alignas(16) FloatBufferLine mBuffer{};
197 float mHfScale{}, mLfScale{};
198 BandSplitter mFilter{};
199 float Current[MAX_OUTPUT_CHANNELS]{};
200 float Target[MAX_OUTPUT_CHANNELS]{};
202 using ChannelDataArray = al::FlexArray<ChannelData>;
203 std::unique_ptr<ChannelDataArray> mChans;
204 std::unique_ptr<complex_f[]> mComplexData;
207 ConvolutionState() = default;
208 ~ConvolutionState() override = default;
210 void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
211 void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
212 void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
213 {&ConvolutionState::NormalMix};
215 void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
216 void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
217 const EffectTarget target) override;
218 void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
219 const al::span<FloatBufferLine> samplesOut) override;
221 DEF_NEWDEL(ConvolutionState)
224 void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
225 const size_t samplesToDo)
227 for(auto &chan : *mChans)
228 MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
229 samplesToDo, 0);
232 void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
233 const size_t samplesToDo)
235 for(auto &chan : *mChans)
237 const al::span<float> src{chan.mBuffer.data(), samplesToDo};
238 chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
239 MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
244 void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buffer)
246 using UhjDecoderType = UhjDecoder<512>;
247 static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding;
249 constexpr uint MaxConvolveAmbiOrder{1u};
251 mFifoPos = 0;
252 mInput.fill(0.0f);
253 decltype(mFilter){}.swap(mFilter);
254 decltype(mOutput){}.swap(mOutput);
255 mFftBuffer.fill(complex_f{});
257 mCurrentSegment = 0;
258 mNumConvolveSegs = 0;
260 mChans = nullptr;
261 mComplexData = nullptr;
263 /* An empty buffer doesn't need a convolution filter. */
264 if(!buffer.storage || buffer.storage->mSampleLen < 1) return;
266 mChannels = buffer.storage->mChannels;
267 mAmbiLayout = IsUHJ(mChannels) ? AmbiLayout::FuMa : buffer.storage->mAmbiLayout;
268 mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer.storage->mAmbiScaling;
269 mAmbiOrder = minu(buffer.storage->mAmbiOrder, MaxConvolveAmbiOrder);
271 constexpr size_t m{ConvolveUpdateSize/2 + 1};
272 const auto bytesPerSample = BytesFromFmt(buffer.storage->mType);
273 const auto realChannels = buffer.storage->channelsFromFmt();
274 const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
276 mChans = ChannelDataArray::Create(numChannels);
278 /* The impulse response needs to have the same sample rate as the input and
279 * output. The bsinc24 resampler is decent, but there is high-frequency
280 * attenuation that some people may be able to pick up on. Since this is
281 * called very infrequently, go ahead and use the polyphase resampler.
283 PPhaseResampler resampler;
284 if(device->Frequency != buffer.storage->mSampleRate)
285 resampler.init(buffer.storage->mSampleRate, device->Frequency);
286 const auto resampledCount = static_cast<uint>(
287 (uint64_t{buffer.storage->mSampleLen}*device->Frequency+(buffer.storage->mSampleRate-1)) /
288 buffer.storage->mSampleRate);
290 const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
291 for(auto &e : *mChans)
292 e.mFilter = splitter;
294 mFilter.resize(numChannels, {});
295 mOutput.resize(numChannels, {});
297 /* Calculate the number of segments needed to hold the impulse response and
298 * the input history (rounded up), and allocate them. Exclude one segment
299 * which gets applied as a time-domain FIR filter. Make sure at least one
300 * segment is allocated to simplify handling.
302 mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
303 mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
305 const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
306 mComplexData = std::make_unique<complex_f[]>(complex_length);
307 std::fill_n(mComplexData.get(), complex_length, complex_f{});
309 /* Load the samples from the buffer. */
310 const size_t srclinelength{RoundUp(buffer.storage->mSampleLen+DecoderPadding, 16)};
311 auto srcsamples = std::make_unique<float[]>(srclinelength * numChannels);
312 std::fill_n(srcsamples.get(), srclinelength * numChannels, 0.0f);
313 for(size_t c{0};c < numChannels && c < realChannels;++c)
314 LoadSamples(srcsamples.get() + srclinelength*c, buffer.samples.data() + bytesPerSample*c,
315 realChannels, buffer.storage->mType, buffer.storage->mSampleLen);
317 if(IsUHJ(mChannels))
319 auto decoder = std::make_unique<UhjDecoderType>();
320 std::array<float*,4> samples{};
321 for(size_t c{0};c < numChannels;++c)
322 samples[c] = srcsamples.get() + srclinelength*c;
323 decoder->decode({samples.data(), numChannels}, buffer.storage->mSampleLen,
324 buffer.storage->mSampleLen);
327 auto ressamples = std::make_unique<double[]>(buffer.storage->mSampleLen +
328 (resampler ? resampledCount : 0));
329 complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m;
330 for(size_t c{0};c < numChannels;++c)
332 /* Resample to match the device. */
333 if(resampler)
335 std::copy_n(srcsamples.get() + srclinelength*c, buffer.storage->mSampleLen,
336 ressamples.get() + resampledCount);
337 resampler.process(buffer.storage->mSampleLen, ressamples.get()+resampledCount,
338 resampledCount, ressamples.get());
340 else
341 std::copy_n(srcsamples.get() + srclinelength*c, buffer.storage->mSampleLen,
342 ressamples.get());
344 /* Store the first segment's samples in reverse in the time-domain, to
345 * apply as a FIR filter.
347 const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)};
348 std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(),
349 [](const double d) noexcept -> float { return static_cast<float>(d); });
351 auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
352 size_t done{first_size};
353 for(size_t s{0};s < mNumConvolveSegs;++s)
355 const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
357 auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin());
358 done += todo;
359 std::fill(iter, fftbuffer.end(), std::complex<double>{});
361 forward_fft(al::as_span(fftbuffer));
362 filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter);
368 void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
369 const EffectProps* /*props*/, const EffectTarget target)
371 /* NOTE: Stereo and Rear are slightly different from normal mixing (as
372 * defined in alu.cpp). These are 45 degrees from center, rather than the
373 * 30 degrees used there.
375 * TODO: LFE is not mixed to output. This will require each buffer channel
376 * to have its own output target since the main mixing buffer won't have an
377 * LFE channel (due to being B-Format).
379 static constexpr ChanMap MonoMap[1]{
380 { FrontCenter, 0.0f, 0.0f }
381 }, StereoMap[2]{
382 { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) },
383 { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }
384 }, RearMap[2]{
385 { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
386 { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
387 }, QuadMap[4]{
388 { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
389 { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
390 { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
391 { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
392 }, X51Map[6]{
393 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
394 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
395 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
396 { LFE, 0.0f, 0.0f },
397 { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
398 { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
399 }, X61Map[7]{
400 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
401 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
402 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
403 { LFE, 0.0f, 0.0f },
404 { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
405 { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
406 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
407 }, X71Map[8]{
408 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
409 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
410 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
411 { LFE, 0.0f, 0.0f },
412 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
413 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
414 { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
415 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
418 if(mNumConvolveSegs < 1) [[unlikely]]
419 return;
421 mMix = &ConvolutionState::NormalMix;
423 for(auto &chan : *mChans)
424 std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
425 const float gain{slot->Gain};
426 if(IsAmbisonic(mChannels))
428 DeviceBase *device{context->mDevice};
429 if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
431 mMix = &ConvolutionState::UpsampleMix;
432 (*mChans)[0].mHfScale = 1.0f;
433 (*mChans)[0].mLfScale = DecoderBase::sWLFScale;
434 (*mChans)[1].mHfScale = 1.0f;
435 (*mChans)[1].mLfScale = DecoderBase::sXYLFScale;
436 (*mChans)[2].mHfScale = 1.0f;
437 (*mChans)[2].mLfScale = DecoderBase::sXYLFScale;
439 else if(device->mAmbiOrder > mAmbiOrder)
441 mMix = &ConvolutionState::UpsampleMix;
442 const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
443 device->m2DMixing);
444 (*mChans)[0].mHfScale = scales[0];
445 (*mChans)[0].mLfScale = 1.0f;
446 for(size_t i{1};i < mChans->size();++i)
448 (*mChans)[i].mHfScale = scales[1];
449 (*mChans)[i].mLfScale = 1.0f;
452 mOutTarget = target.Main->Buffer;
454 auto&& scales = GetAmbiScales(mAmbiScaling);
455 const uint8_t *index_map{Is2DAmbisonic(mChannels) ?
456 GetAmbi2DLayout(mAmbiLayout).data() :
457 GetAmbiLayout(mAmbiLayout).data()};
459 std::array<float,MaxAmbiChannels> coeffs{};
460 for(size_t c{0u};c < mChans->size();++c)
462 const size_t acn{index_map[c]};
463 coeffs[acn] = scales[acn];
464 ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target);
465 coeffs[acn] = 0.0f;
468 else
470 DeviceBase *device{context->mDevice};
471 al::span<const ChanMap> chanmap{};
472 switch(mChannels)
474 case FmtMono: chanmap = MonoMap; break;
475 case FmtSuperStereo:
476 case FmtStereo: chanmap = StereoMap; break;
477 case FmtRear: chanmap = RearMap; break;
478 case FmtQuad: chanmap = QuadMap; break;
479 case FmtX51: chanmap = X51Map; break;
480 case FmtX61: chanmap = X61Map; break;
481 case FmtX71: chanmap = X71Map; break;
482 case FmtBFormat2D:
483 case FmtBFormat3D:
484 case FmtUHJ2:
485 case FmtUHJ3:
486 case FmtUHJ4:
487 break;
490 mOutTarget = target.Main->Buffer;
491 if(device->mRenderMode == RenderMode::Pairwise)
493 auto ScaleAzimuthFront = [](float azimuth, float scale) -> float
495 constexpr float half_pi{al::numbers::pi_v<float>*0.5f};
496 const float abs_azi{std::fabs(azimuth)};
497 if(!(abs_azi >= half_pi))
498 return std::copysign(minf(abs_azi*scale, half_pi), azimuth);
499 return azimuth;
502 for(size_t i{0};i < chanmap.size();++i)
504 if(chanmap[i].channel == LFE) continue;
505 const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f),
506 chanmap[i].elevation, 0.0f);
507 ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
510 else for(size_t i{0};i < chanmap.size();++i)
512 if(chanmap[i].channel == LFE) continue;
513 const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f);
514 ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
519 void ConvolutionState::process(const size_t samplesToDo,
520 const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
522 if(mNumConvolveSegs < 1) [[unlikely]]
523 return;
525 constexpr size_t m{ConvolveUpdateSize/2 + 1};
526 size_t curseg{mCurrentSegment};
527 auto &chans = *mChans;
529 for(size_t base{0u};base < samplesToDo;)
531 const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
533 std::copy_n(samplesIn[0].begin() + base, todo,
534 mInput.begin()+ConvolveUpdateSamples+mFifoPos);
536 /* Apply the FIR for the newly retrieved input samples, and combine it
537 * with the inverse FFT'd output samples.
539 for(size_t c{0};c < chans.size();++c)
541 auto buf_iter = chans[c].mBuffer.begin() + base;
542 apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
544 auto fifo_iter = mOutput[c].begin() + mFifoPos;
545 std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{});
548 mFifoPos += todo;
549 base += todo;
551 /* Check whether the input buffer is filled with new samples. */
552 if(mFifoPos < ConvolveUpdateSamples) break;
553 mFifoPos = 0;
555 /* Move the newest input to the front for the next iteration's history. */
556 std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
558 /* Calculate the frequency domain response and add the relevant
559 * frequency bins to the FFT history.
561 auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
562 std::fill(fftiter, mFftBuffer.end(), complex_f{});
563 forward_fft(al::as_span(mFftBuffer));
565 std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
567 const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
568 for(size_t c{0};c < chans.size();++c)
570 std::fill_n(mFftBuffer.begin(), m, complex_f{});
572 /* Convolve each input segment with its IR filter counterpart
573 * (aligned in time).
575 const complex_f *RESTRICT input{&mComplexData[curseg*m]};
576 for(size_t s{curseg};s < mNumConvolveSegs;++s)
578 for(size_t i{0};i < m;++i,++input,++filter)
579 mFftBuffer[i] += *input * *filter;
581 input = mComplexData.get();
582 for(size_t s{0};s < curseg;++s)
584 for(size_t i{0};i < m;++i,++input,++filter)
585 mFftBuffer[i] += *input * *filter;
588 /* Reconstruct the mirrored/negative frequencies to do a proper
589 * inverse FFT.
591 for(size_t i{m};i < ConvolveUpdateSize;++i)
592 mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
594 /* Apply iFFT to get the 256 (really 255) samples for output. The
595 * 128 output samples are combined with the last output's 127
596 * second-half samples (and this output's second half is
597 * subsequently saved for next time).
599 inverse_fft(al::as_span(mFftBuffer));
601 /* The iFFT'd response is scaled up by the number of bins, so apply
602 * the inverse to normalize the output.
604 for(size_t i{0};i < ConvolveUpdateSamples;++i)
605 mOutput[c][i] =
606 (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) *
607 (1.0f/float{ConvolveUpdateSize});
608 for(size_t i{0};i < ConvolveUpdateSamples;++i)
609 mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
612 /* Shift the input history. */
613 curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
615 mCurrentSegment = curseg;
617 /* Finally, mix to the output. */
618 (this->*mMix)(samplesOut, samplesToDo);
622 struct ConvolutionStateFactory final : public EffectStateFactory {
623 al::intrusive_ptr<EffectState> create() override
624 { return al::intrusive_ptr<EffectState>{new ConvolutionState{}}; }
627 } // namespace
629 EffectStateFactory *ConvolutionStateFactory_getFactory()
631 static ConvolutionStateFactory ConvolutionFactory{};
632 return &ConvolutionFactory;