2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
48 #include "al/auxeffectslot.h"
49 #include "al/buffer.h"
50 #include "al/effect.h"
52 #include "al/listener.h"
54 #include "alcontext.h"
56 #include "alnumeric.h"
61 #include "bformatdec.h"
64 #include "devformat.h"
65 #include "effects/base.h"
66 #include "filters/biquad.h"
67 #include "filters/nfc.h"
68 #include "filters/splitter.h"
69 #include "fpu_modes.h"
71 #include "inprogext.h"
72 #include "mastering.h"
73 #include "math_defs.h"
74 #include "mixer/defs.h"
75 #include "opthelpers.h"
76 #include "ringbuffer.h"
79 #include "uhjfilter.h"
82 #include "bsinc_inc.h"
87 using namespace std::placeholders
;
89 ALfloat
InitConeScale()
92 if(auto optval
= al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
94 if(al::strcasecmp(optval
->c_str(), "true") == 0
95 || strtol(optval
->c_str(), nullptr, 0) == 1)
104 if(auto optval
= al::getenv("__ALSOFT_REVERSE_Z"))
106 if(al::strcasecmp(optval
->c_str(), "true") == 0
107 || strtol(optval
->c_str(), nullptr, 0) == 1)
116 const ALfloat ConeScale
{InitConeScale()};
118 /* Localized Z scalar for mono sources */
119 const ALfloat ZScale
{InitZScale()};
124 void ClearArray(ALfloat (&f
)[MAX_OUTPUT_CHANNELS
])
126 std::fill(std::begin(f
), std::end(f
), 0.0f
);
135 HrtfDirectMixerFunc MixDirectHrtf
= MixDirectHrtf_
<CTag
>;
136 inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
139 if((CPUCapFlags
&CPU_CAP_NEON
))
140 return MixDirectHrtf_
<NEONTag
>;
143 if((CPUCapFlags
&CPU_CAP_SSE
))
144 return MixDirectHrtf_
<SSETag
>;
147 return MixDirectHrtf_
<CTag
>;
154 MixDirectHrtf
= SelectHrtfMixer();
158 void ALCdevice::ProcessHrtf(const size_t SamplesToDo
)
160 /* HRTF is stereo output only. */
161 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
162 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
164 MixDirectHrtf(RealOut
.Buffer
[lidx
], RealOut
.Buffer
[ridx
], Dry
.Buffer
, HrtfAccumData
,
165 mHrtfState
.get(), SamplesToDo
);
168 void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo
)
170 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
173 void ALCdevice::ProcessUhj(const size_t SamplesToDo
)
175 /* UHJ is stereo output only. */
176 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
177 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
179 /* Encode to stereo-compatible 2-channel UHJ output. */
180 Uhj_Encoder
->encode(RealOut
.Buffer
[lidx
], RealOut
.Buffer
[ridx
], Dry
.Buffer
.data(),
184 void ALCdevice::ProcessBs2b(const size_t SamplesToDo
)
186 /* First, decode the ambisonic mix to the "real" output. */
187 AmbiDecoder
->process(RealOut
.Buffer
, Dry
.Buffer
.data(), SamplesToDo
);
189 /* BS2B is stereo output only. */
190 const ALuint lidx
{RealOut
.ChannelIndex
[FrontLeft
]};
191 const ALuint ridx
{RealOut
.ChannelIndex
[FrontRight
]};
193 /* Now apply the BS2B binaural/crossfeed filter. */
194 bs2b_cross_feed(Bs2b
.get(), RealOut
.Buffer
[lidx
].data(), RealOut
.Buffer
[ridx
].data(),
199 /* Prepares the interpolator for a given rate (determined by increment).
201 * With a bit of work, and a trade of memory for CPU cost, this could be
202 * modified for use with an interpolated increment for buttery-smooth pitch
205 void BsincPrepare(const ALuint increment
, BsincState
*state
, const BSincTable
*table
)
207 size_t si
{BSINC_SCALE_COUNT
- 1};
210 if(increment
> FRACTIONONE
)
212 sf
= FRACTIONONE
/ static_cast<float>(increment
);
213 sf
= maxf(0.0f
, (BSINC_SCALE_COUNT
-1) * (sf
-table
->scaleBase
) * table
->scaleRange
);
215 /* The interpolation factor is fit to this diagonally-symmetric curve
216 * to reduce the transition ripple caused by interpolating different
217 * scales of the sinc function.
219 sf
= 1.0f
- std::cos(std::asin(sf
- static_cast<float>(si
)));
223 state
->m
= table
->m
[si
];
224 state
->l
= (state
->m
/2) - 1;
225 state
->filter
= table
->Tab
+ table
->filterOffset
[si
];
231 /* This RNG method was created based on the math found in opusdec. It's quick,
232 * and starting with a seed value of 22222, is suitable for generating
235 inline ALuint
dither_rng(ALuint
*seed
) noexcept
237 *seed
= (*seed
* 96314165) + 907633515;
242 inline alu::Vector
aluCrossproduct(const alu::Vector
&in1
, const alu::Vector
&in2
)
245 in1
[1]*in2
[2] - in1
[2]*in2
[1],
246 in1
[2]*in2
[0] - in1
[0]*in2
[2],
247 in1
[0]*in2
[1] - in1
[1]*in2
[0],
252 inline ALfloat
aluDotproduct(const alu::Vector
&vec1
, const alu::Vector
&vec2
)
254 return vec1
[0]*vec2
[0] + vec1
[1]*vec2
[1] + vec1
[2]*vec2
[2];
258 alu::Vector
operator*(const alu::Matrix
&mtx
, const alu::Vector
&vec
) noexcept
261 vec
[0]*mtx
[0][0] + vec
[1]*mtx
[1][0] + vec
[2]*mtx
[2][0] + vec
[3]*mtx
[3][0],
262 vec
[0]*mtx
[0][1] + vec
[1]*mtx
[1][1] + vec
[2]*mtx
[2][1] + vec
[3]*mtx
[3][1],
263 vec
[0]*mtx
[0][2] + vec
[1]*mtx
[1][2] + vec
[2]*mtx
[2][2] + vec
[3]*mtx
[3][2],
264 vec
[0]*mtx
[0][3] + vec
[1]*mtx
[1][3] + vec
[2]*mtx
[2][3] + vec
[3]*mtx
[3][3]
269 bool CalcContextParams(ALCcontext
*Context
)
271 ALcontextProps
*props
{Context
->mUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
272 if(!props
) return false;
274 ALlistener
&Listener
= Context
->mListener
;
275 Listener
.Params
.DopplerFactor
= props
->DopplerFactor
;
276 Listener
.Params
.SpeedOfSound
= props
->SpeedOfSound
* props
->DopplerVelocity
;
278 Listener
.Params
.SourceDistanceModel
= props
->SourceDistanceModel
;
279 Listener
.Params
.mDistanceModel
= props
->mDistanceModel
;
281 AtomicReplaceHead(Context
->mFreeContextProps
, props
);
285 bool CalcListenerParams(ALCcontext
*Context
)
287 ALlistener
&Listener
= Context
->mListener
;
289 ALlistenerProps
*props
{Listener
.Params
.Update
.exchange(nullptr, std::memory_order_acq_rel
)};
290 if(!props
) return false;
293 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
295 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
297 /* Build and normalize right-vector */
298 alu::Vector U
{aluCrossproduct(N
, V
)};
301 Listener
.Params
.Matrix
= alu::Matrix
{
302 U
[0], V
[0], -N
[0], 0.0f
,
303 U
[1], V
[1], -N
[1], 0.0f
,
304 U
[2], V
[2], -N
[2], 0.0f
,
305 0.0f
, 0.0f
, 0.0f
, 1.0f
308 const alu::Vector P
{Listener
.Params
.Matrix
*
309 alu::Vector
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
}};
310 Listener
.Params
.Matrix
.setRow(3, -P
[0], -P
[1], -P
[2], 1.0f
);
312 const alu::Vector vel
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
};
313 Listener
.Params
.Velocity
= Listener
.Params
.Matrix
* vel
;
315 Listener
.Params
.Gain
= props
->Gain
* Context
->mGainBoost
;
316 Listener
.Params
.MetersPerUnit
= props
->MetersPerUnit
;
318 AtomicReplaceHead(Context
->mFreeListenerProps
, props
);
322 bool CalcEffectSlotParams(ALeffectslot
*slot
, ALCcontext
*context
)
324 ALeffectslotProps
*props
{slot
->Params
.Update
.exchange(nullptr, std::memory_order_acq_rel
)};
325 if(!props
) return false;
327 slot
->Params
.Gain
= props
->Gain
;
328 slot
->Params
.AuxSendAuto
= props
->AuxSendAuto
;
329 slot
->Params
.Target
= props
->Target
;
330 slot
->Params
.EffectType
= props
->Type
;
331 slot
->Params
.mEffectProps
= props
->Props
;
332 if(IsReverbEffect(props
->Type
))
334 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
335 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
336 slot
->Params
.DecayLFRatio
= props
->Props
.Reverb
.DecayLFRatio
;
337 slot
->Params
.DecayHFRatio
= props
->Props
.Reverb
.DecayHFRatio
;
338 slot
->Params
.DecayHFLimit
= props
->Props
.Reverb
.DecayHFLimit
;
339 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
343 slot
->Params
.RoomRolloff
= 0.0f
;
344 slot
->Params
.DecayTime
= 0.0f
;
345 slot
->Params
.DecayLFRatio
= 0.0f
;
346 slot
->Params
.DecayHFRatio
= 0.0f
;
347 slot
->Params
.DecayHFLimit
= AL_FALSE
;
348 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
351 EffectState
*state
{props
->State
};
352 props
->State
= nullptr;
353 EffectState
*oldstate
{slot
->Params
.mEffectState
};
354 slot
->Params
.mEffectState
= state
;
356 /* Only release the old state if it won't get deleted, since we can't be
357 * deleting/freeing anything in the mixer.
359 if(!oldstate
->releaseIfNoDelete())
361 /* Otherwise, if it would be deleted send it off with a release event. */
362 RingBuffer
*ring
{context
->mAsyncEvents
.get()};
363 auto evt_vec
= ring
->getWriteVector();
364 if LIKELY(evt_vec
.first
.len
> 0)
366 AsyncEvent
*evt
{new (evt_vec
.first
.buf
) AsyncEvent
{EventType_ReleaseEffectState
}};
367 evt
->u
.mEffectState
= oldstate
;
368 ring
->writeAdvance(1);
369 context
->mEventSem
.post();
373 /* If writing the event failed, the queue was probably full. Store
374 * the old state in the property object where it can eventually be
375 * cleaned up sometime later (not ideal, but better than blocking
378 props
->State
= oldstate
;
382 AtomicReplaceHead(context
->mFreeEffectslotProps
, props
);
385 if(ALeffectslot
*target
{slot
->Params
.Target
})
386 output
= EffectTarget
{&target
->Wet
, nullptr};
389 ALCdevice
*device
{context
->mDevice
.get()};
390 output
= EffectTarget
{&device
->Dry
, &device
->RealOut
};
392 state
->update(context
, slot
, &slot
->Params
.mEffectProps
, output
);
397 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
400 inline float ScaleAzimuthFront(float azimuth
, float scale
)
402 const ALfloat abs_azi
{std::fabs(azimuth
)};
403 if(!(abs_azi
>= al::MathDefs
<float>::Pi()*0.5f
))
404 return std::copysign(minf(abs_azi
*scale
, al::MathDefs
<float>::Pi()*0.5f
), azimuth
);
408 void CalcPanningAndFilters(ALvoice
*voice
, const ALfloat xpos
, const ALfloat ypos
,
409 const ALfloat zpos
, const ALfloat Distance
, const ALfloat Spread
, const ALfloat DryGain
,
410 const ALfloat DryGainHF
, const ALfloat DryGainLF
, const ALfloat (&WetGain
)[MAX_SENDS
],
411 const ALfloat (&WetGainLF
)[MAX_SENDS
], const ALfloat (&WetGainHF
)[MAX_SENDS
],
412 ALeffectslot
*(&SendSlots
)[MAX_SENDS
], const ALvoicePropsBase
*props
,
413 const ALlistener
&Listener
, const ALCdevice
*Device
)
415 static constexpr ChanMap MonoMap
[1]{
416 { FrontCenter
, 0.0f
, 0.0f
}
418 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
419 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) }
421 { FrontLeft
, Deg2Rad( -45.0f
), Deg2Rad(0.0f
) },
422 { FrontRight
, Deg2Rad( 45.0f
), Deg2Rad(0.0f
) },
423 { BackLeft
, Deg2Rad(-135.0f
), Deg2Rad(0.0f
) },
424 { BackRight
, Deg2Rad( 135.0f
), Deg2Rad(0.0f
) }
426 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
427 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
428 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
430 { SideLeft
, Deg2Rad(-110.0f
), Deg2Rad(0.0f
) },
431 { SideRight
, Deg2Rad( 110.0f
), Deg2Rad(0.0f
) }
433 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
434 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
435 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
437 { BackCenter
, Deg2Rad(180.0f
), Deg2Rad(0.0f
) },
438 { SideLeft
, Deg2Rad(-90.0f
), Deg2Rad(0.0f
) },
439 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
441 { FrontLeft
, Deg2Rad( -30.0f
), Deg2Rad(0.0f
) },
442 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) },
443 { FrontCenter
, Deg2Rad( 0.0f
), Deg2Rad(0.0f
) },
445 { BackLeft
, Deg2Rad(-150.0f
), Deg2Rad(0.0f
) },
446 { BackRight
, Deg2Rad( 150.0f
), Deg2Rad(0.0f
) },
447 { SideLeft
, Deg2Rad( -90.0f
), Deg2Rad(0.0f
) },
448 { SideRight
, Deg2Rad( 90.0f
), Deg2Rad(0.0f
) }
451 ChanMap StereoMap
[2]{
452 { FrontLeft
, Deg2Rad(-30.0f
), Deg2Rad(0.0f
) },
453 { FrontRight
, Deg2Rad( 30.0f
), Deg2Rad(0.0f
) }
456 const auto Frequency
= static_cast<ALfloat
>(Device
->Frequency
);
457 const ALuint NumSends
{Device
->NumAuxSends
};
459 bool DirectChannels
{props
->DirectChannels
!= AL_FALSE
};
460 const ChanMap
*chans
{nullptr};
461 ALuint num_channels
{0};
462 bool isbformat
{false};
463 ALfloat downmix_gain
{1.0f
};
464 switch(voice
->mFmtChannels
)
469 /* Mono buffers are never played direct. */
470 DirectChannels
= false;
474 /* Convert counter-clockwise to clockwise. */
475 StereoMap
[0].angle
= -props
->StereoPan
[0];
476 StereoMap
[1].angle
= -props
->StereoPan
[1];
480 downmix_gain
= 1.0f
/ 2.0f
;
486 downmix_gain
= 1.0f
/ 2.0f
;
492 downmix_gain
= 1.0f
/ 4.0f
;
498 /* NOTE: Excludes LFE. */
499 downmix_gain
= 1.0f
/ 5.0f
;
505 /* NOTE: Excludes LFE. */
506 downmix_gain
= 1.0f
/ 6.0f
;
512 /* NOTE: Excludes LFE. */
513 downmix_gain
= 1.0f
/ 7.0f
;
519 DirectChannels
= false;
525 DirectChannels
= false;
528 ASSUME(num_channels
> 0);
530 std::for_each(voice
->mChans
.begin(), voice
->mChans
.begin()+num_channels
,
531 [NumSends
](ALvoice::ChannelData
&chandata
) -> void
533 chandata
.mDryParams
.Hrtf
.Target
= HrtfFilter
{};
534 ClearArray(chandata
.mDryParams
.Gains
.Target
);
535 std::for_each(chandata
.mWetParams
.begin(), chandata
.mWetParams
.begin()+NumSends
,
536 [](SendParams
¶ms
) -> void { ClearArray(params
.Gains
.Target
); });
539 voice
->mFlags
&= ~(VOICE_HAS_HRTF
| VOICE_HAS_NFC
);
542 /* Special handling for B-Format sources. */
544 if(Distance
> std::numeric_limits
<float>::epsilon())
546 /* Panning a B-Format sound toward some direction is easy. Just pan
547 * the first (W) channel as a normal mono sound and silence the
551 if(Device
->AvgSpeakerDist
> 0.0f
)
553 /* Clamp the distance for really close sources, to prevent
556 const ALfloat mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
557 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (mdist
* Frequency
)};
559 /* Only need to adjust the first channel of a B-Format source. */
560 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(w0
);
562 voice
->mFlags
|= VOICE_HAS_NFC
;
565 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
566 if(Device
->mRenderMode
!= StereoPair
)
567 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
570 /* Clamp Y, in case rounding errors caused it to end up outside
573 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
574 /* Negate Z for right-handed coords with -Z in front. */
575 const ALfloat az
{std::atan2(xpos
, -zpos
)};
577 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
578 * being moved to +/-90 degrees for direct right and left
581 CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, Spread
, coeffs
);
584 /* NOTE: W needs to be scaled due to FuMa normalization. */
585 const ALfloat
&scale0
= AmbiScale::FromFuMa
[0];
586 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
*scale0
,
587 voice
->mChans
[0].mDryParams
.Gains
.Target
);
588 for(ALuint i
{0};i
< NumSends
;i
++)
590 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
591 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
]*scale0
,
592 voice
->mChans
[0].mWetParams
[i
].Gains
.Target
);
597 if(Device
->AvgSpeakerDist
> 0.0f
)
599 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
600 * is what we want for FOA input. The first channel may have
601 * been previously re-adjusted if panned, so reset it.
603 voice
->mChans
[0].mDryParams
.NFCtrlFilter
.adjust(0.0f
);
605 voice
->mFlags
|= VOICE_HAS_NFC
;
608 /* Local B-Format sources have their XYZ channels rotated according
609 * to the orientation.
612 alu::Vector N
{props
->OrientAt
[0], props
->OrientAt
[1], props
->OrientAt
[2], 0.0f
};
614 alu::Vector V
{props
->OrientUp
[0], props
->OrientUp
[1], props
->OrientUp
[2], 0.0f
};
616 if(!props
->HeadRelative
)
618 N
= Listener
.Params
.Matrix
* N
;
619 V
= Listener
.Params
.Matrix
* V
;
621 /* Build and normalize right-vector */
622 alu::Vector U
{aluCrossproduct(N
, V
)};
625 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
626 * matrix is transposed, for the inputs to align on the rows and
627 * outputs on the columns.
629 const ALfloat
&wscale
= AmbiScale::FromFuMa
[0];
630 const ALfloat
&yscale
= AmbiScale::FromFuMa
[1];
631 const ALfloat
&zscale
= AmbiScale::FromFuMa
[2];
632 const ALfloat
&xscale
= AmbiScale::FromFuMa
[3];
633 const ALfloat matrix
[4][MAX_AMBI_CHANNELS
]{
634 // ACN0 ACN1 ACN2 ACN3
635 { wscale
, 0.0f
, 0.0f
, 0.0f
}, // FuMa W
636 { 0.0f
, -N
[0]*xscale
, N
[1]*xscale
, -N
[2]*xscale
}, // FuMa X
637 { 0.0f
, U
[0]*yscale
, -U
[1]*yscale
, U
[2]*yscale
}, // FuMa Y
638 { 0.0f
, -V
[0]*zscale
, V
[1]*zscale
, -V
[2]*zscale
} // FuMa Z
641 for(ALuint c
{0};c
< num_channels
;c
++)
643 ComputePanGains(&Device
->Dry
, matrix
[c
], DryGain
,
644 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
646 for(ALuint i
{0};i
< NumSends
;i
++)
648 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
649 ComputePanGains(&Slot
->Wet
, matrix
[c
], WetGain
[i
],
650 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
655 else if(DirectChannels
)
657 /* Direct source channels always play local. Skip the virtual channels
658 * and write inputs to the matching real outputs.
660 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
662 for(ALuint c
{0};c
< num_channels
;c
++)
664 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
665 if(idx
!= INVALID_CHANNEL_INDEX
)
666 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
669 /* Auxiliary sends still use normal channel panning since they mix to
670 * B-Format, which can't channel-match.
672 for(ALuint c
{0};c
< num_channels
;c
++)
674 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
675 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
677 for(ALuint i
{0};i
< NumSends
;i
++)
679 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
680 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
681 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
685 else if(Device
->mRenderMode
== HrtfRender
)
687 /* Full HRTF rendering. Skip the virtual channels and render to the
690 voice
->mDirect
.Buffer
= Device
->RealOut
.Buffer
;
692 if(Distance
> std::numeric_limits
<float>::epsilon())
694 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
695 const ALfloat az
{std::atan2(xpos
, -zpos
)};
697 /* Get the HRIR coefficients and delays just once, for the given
700 GetHrtfCoeffs(Device
->mHrtf
, ev
, az
, Distance
, Spread
,
701 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Coeffs
,
702 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Delay
);
703 voice
->mChans
[0].mDryParams
.Hrtf
.Target
.Gain
= DryGain
* downmix_gain
;
705 /* Remaining channels use the same results as the first. */
706 for(ALuint c
{1};c
< num_channels
;c
++)
709 if(chans
[c
].channel
== LFE
) continue;
710 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
= voice
->mChans
[0].mDryParams
.Hrtf
.Target
;
713 /* Calculate the directional coefficients once, which apply to all
714 * input channels of the source sends.
716 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
717 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
719 for(ALuint c
{0};c
< num_channels
;c
++)
722 if(chans
[c
].channel
== LFE
)
724 for(ALuint i
{0};i
< NumSends
;i
++)
726 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
727 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
] * downmix_gain
,
728 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
734 /* Local sources on HRTF play with each channel panned to its
735 * relative location around the listener, providing "virtual
736 * speaker" responses.
738 for(ALuint c
{0};c
< num_channels
;c
++)
741 if(chans
[c
].channel
== LFE
)
744 /* Get the HRIR coefficients and delays for this channel
747 GetHrtfCoeffs(Device
->mHrtf
, chans
[c
].elevation
, chans
[c
].angle
,
748 std::numeric_limits
<float>::infinity(), Spread
,
749 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Coeffs
,
750 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Delay
);
751 voice
->mChans
[c
].mDryParams
.Hrtf
.Target
.Gain
= DryGain
;
753 /* Normal panning for auxiliary sends. */
754 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
755 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, Spread
, coeffs
);
757 for(ALuint i
{0};i
< NumSends
;i
++)
759 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
760 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
761 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
766 voice
->mFlags
|= VOICE_HAS_HRTF
;
770 /* Non-HRTF rendering. Use normal panning to the output. */
772 if(Distance
> std::numeric_limits
<float>::epsilon())
774 /* Calculate NFC filter coefficient if needed. */
775 if(Device
->AvgSpeakerDist
> 0.0f
)
777 /* Clamp the distance for really close sources, to prevent
780 const ALfloat mdist
{maxf(Distance
, Device
->AvgSpeakerDist
/4.0f
)};
781 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (mdist
* Frequency
)};
783 /* Adjust NFC filters. */
784 for(ALuint c
{0};c
< num_channels
;c
++)
785 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
787 voice
->mFlags
|= VOICE_HAS_NFC
;
790 /* Calculate the directional coefficients once, which apply to all
793 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
794 if(Device
->mRenderMode
!= StereoPair
)
795 CalcDirectionCoeffs({xpos
, ypos
, zpos
}, Spread
, coeffs
);
798 const ALfloat ev
{std::asin(clampf(ypos
, -1.0f
, 1.0f
))};
799 const ALfloat az
{std::atan2(xpos
, -zpos
)};
800 CalcAngleCoeffs(ScaleAzimuthFront(az
, 1.5f
), ev
, Spread
, coeffs
);
803 for(ALuint c
{0};c
< num_channels
;c
++)
805 /* Special-case LFE */
806 if(chans
[c
].channel
== LFE
)
808 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
810 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
811 if(idx
!= INVALID_CHANNEL_INDEX
)
812 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
817 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
* downmix_gain
,
818 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
819 for(ALuint i
{0};i
< NumSends
;i
++)
821 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
822 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
] * downmix_gain
,
823 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
829 if(Device
->AvgSpeakerDist
> 0.0f
)
831 /* If the source distance is 0, set w0 to w1 to act as a pass-
832 * through. We still want to pass the signal through the
833 * filters so they keep an appropriate history, in case the
834 * source moves away from the listener.
836 const ALfloat w0
{SPEEDOFSOUNDMETRESPERSEC
/ (Device
->AvgSpeakerDist
* Frequency
)};
838 for(ALuint c
{0};c
< num_channels
;c
++)
839 voice
->mChans
[c
].mDryParams
.NFCtrlFilter
.adjust(w0
);
841 voice
->mFlags
|= VOICE_HAS_NFC
;
844 for(ALuint c
{0};c
< num_channels
;c
++)
846 /* Special-case LFE */
847 if(chans
[c
].channel
== LFE
)
849 if(Device
->Dry
.Buffer
.data() == Device
->RealOut
.Buffer
.data())
851 const ALuint idx
{GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)};
852 if(idx
!= INVALID_CHANNEL_INDEX
)
853 voice
->mChans
[c
].mDryParams
.Gains
.Target
[idx
] = DryGain
;
858 ALfloat coeffs
[MAX_AMBI_CHANNELS
];
860 (Device
->mRenderMode
==StereoPair
) ? ScaleAzimuthFront(chans
[c
].angle
, 3.0f
)
862 chans
[c
].elevation
, Spread
, coeffs
865 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
,
866 voice
->mChans
[c
].mDryParams
.Gains
.Target
);
867 for(ALuint i
{0};i
< NumSends
;i
++)
869 if(const ALeffectslot
*Slot
{SendSlots
[i
]})
870 ComputePanGains(&Slot
->Wet
, coeffs
, WetGain
[i
],
871 voice
->mChans
[c
].mWetParams
[i
].Gains
.Target
);
878 const ALfloat hfScale
{props
->Direct
.HFReference
/ Frequency
};
879 const ALfloat lfScale
{props
->Direct
.LFReference
/ Frequency
};
880 const ALfloat gainHF
{maxf(DryGainHF
, 0.001f
)}; /* Limit -60dB */
881 const ALfloat gainLF
{maxf(DryGainLF
, 0.001f
)};
883 voice
->mDirect
.FilterType
= AF_None
;
884 if(gainHF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_LowPass
;
885 if(gainLF
!= 1.0f
) voice
->mDirect
.FilterType
|= AF_HighPass
;
886 auto &lowpass
= voice
->mChans
[0].mDryParams
.LowPass
;
887 auto &highpass
= voice
->mChans
[0].mDryParams
.HighPass
;
888 lowpass
.setParams(BiquadType::HighShelf
, gainHF
, hfScale
,
889 lowpass
.rcpQFromSlope(gainHF
, 1.0f
));
890 highpass
.setParams(BiquadType::LowShelf
, gainLF
, lfScale
,
891 highpass
.rcpQFromSlope(gainLF
, 1.0f
));
892 for(ALuint c
{1};c
< num_channels
;c
++)
894 voice
->mChans
[c
].mDryParams
.LowPass
.copyParamsFrom(lowpass
);
895 voice
->mChans
[c
].mDryParams
.HighPass
.copyParamsFrom(highpass
);
898 for(ALuint i
{0};i
< NumSends
;i
++)
900 const ALfloat hfScale
{props
->Send
[i
].HFReference
/ Frequency
};
901 const ALfloat lfScale
{props
->Send
[i
].LFReference
/ Frequency
};
902 const ALfloat gainHF
{maxf(WetGainHF
[i
], 0.001f
)};
903 const ALfloat gainLF
{maxf(WetGainLF
[i
], 0.001f
)};
905 voice
->mSend
[i
].FilterType
= AF_None
;
906 if(gainHF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_LowPass
;
907 if(gainLF
!= 1.0f
) voice
->mSend
[i
].FilterType
|= AF_HighPass
;
909 auto &lowpass
= voice
->mChans
[0].mWetParams
[i
].LowPass
;
910 auto &highpass
= voice
->mChans
[0].mWetParams
[i
].HighPass
;
911 lowpass
.setParams(BiquadType::HighShelf
, gainHF
, hfScale
,
912 lowpass
.rcpQFromSlope(gainHF
, 1.0f
));
913 highpass
.setParams(BiquadType::LowShelf
, gainLF
, lfScale
,
914 highpass
.rcpQFromSlope(gainLF
, 1.0f
));
915 for(ALuint c
{1};c
< num_channels
;c
++)
917 voice
->mChans
[c
].mWetParams
[i
].LowPass
.copyParamsFrom(lowpass
);
918 voice
->mChans
[c
].mWetParams
[i
].HighPass
.copyParamsFrom(highpass
);
923 void CalcNonAttnSourceParams(ALvoice
*voice
, const ALvoicePropsBase
*props
, const ALCcontext
*ALContext
)
925 const ALCdevice
*Device
{ALContext
->mDevice
.get()};
926 ALeffectslot
*SendSlots
[MAX_SENDS
];
928 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
929 for(ALuint i
{0};i
< Device
->NumAuxSends
;i
++)
931 SendSlots
[i
] = props
->Send
[i
].Slot
;
932 if(!SendSlots
[i
] && i
== 0)
933 SendSlots
[i
] = ALContext
->mDefaultSlot
.get();
934 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
936 SendSlots
[i
] = nullptr;
937 voice
->mSend
[i
].Buffer
= {};
940 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
943 /* Calculate the stepping value */
944 const auto Pitch
= static_cast<ALfloat
>(voice
->mFrequency
) /
945 static_cast<ALfloat
>(Device
->Frequency
) * props
->Pitch
;
946 if(Pitch
> static_cast<ALfloat
>(MAX_PITCH
))
947 voice
->mStep
= MAX_PITCH
<<FRACTIONBITS
;
949 voice
->mStep
= maxu(fastf2u(Pitch
* FRACTIONONE
), 1);
950 if(props
->mResampler
== Resampler::BSinc24
)
951 BsincPrepare(voice
->mStep
, &voice
->mResampleState
.bsinc
, &bsinc24
);
952 else if(props
->mResampler
== Resampler::BSinc12
)
953 BsincPrepare(voice
->mStep
, &voice
->mResampleState
.bsinc
, &bsinc12
);
954 voice
->mResampler
= SelectResampler(props
->mResampler
);
956 /* Calculate gains */
957 const ALlistener
&Listener
= ALContext
->mListener
;
958 ALfloat DryGain
{clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
)};
959 DryGain
*= props
->Direct
.Gain
* Listener
.Params
.Gain
;
960 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
961 ALfloat DryGainHF
{props
->Direct
.GainHF
};
962 ALfloat DryGainLF
{props
->Direct
.GainLF
};
963 ALfloat WetGain
[MAX_SENDS
], WetGainHF
[MAX_SENDS
], WetGainLF
[MAX_SENDS
];
964 for(ALuint i
{0};i
< Device
->NumAuxSends
;i
++)
966 WetGain
[i
] = clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
967 WetGain
[i
] *= props
->Send
[i
].Gain
* Listener
.Params
.Gain
;
968 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
969 WetGainHF
[i
] = props
->Send
[i
].GainHF
;
970 WetGainLF
[i
] = props
->Send
[i
].GainLF
;
973 CalcPanningAndFilters(voice
, 0.0f
, 0.0f
, -1.0f
, 0.0f
, 0.0f
, DryGain
, DryGainHF
, DryGainLF
,
974 WetGain
, WetGainLF
, WetGainHF
, SendSlots
, props
, Listener
, Device
);
977 void CalcAttnSourceParams(ALvoice
*voice
, const ALvoicePropsBase
*props
, const ALCcontext
*ALContext
)
979 const ALCdevice
*Device
{ALContext
->mDevice
.get()};
980 const ALuint NumSends
{Device
->NumAuxSends
};
981 const ALlistener
&Listener
= ALContext
->mListener
;
983 /* Set mixing buffers and get send parameters. */
984 voice
->mDirect
.Buffer
= Device
->Dry
.Buffer
;
985 ALeffectslot
*SendSlots
[MAX_SENDS
];
986 ALfloat RoomRolloff
[MAX_SENDS
];
987 ALfloat DecayDistance
[MAX_SENDS
];
988 ALfloat DecayLFDistance
[MAX_SENDS
];
989 ALfloat DecayHFDistance
[MAX_SENDS
];
990 for(ALuint i
{0};i
< NumSends
;i
++)
992 SendSlots
[i
] = props
->Send
[i
].Slot
;
993 if(!SendSlots
[i
] && i
== 0)
994 SendSlots
[i
] = ALContext
->mDefaultSlot
.get();
995 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
997 SendSlots
[i
] = nullptr;
998 RoomRolloff
[i
] = 0.0f
;
999 DecayDistance
[i
] = 0.0f
;
1000 DecayLFDistance
[i
] = 0.0f
;
1001 DecayHFDistance
[i
] = 0.0f
;
1003 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
1005 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ props
->RoomRolloffFactor
;
1006 /* Calculate the distances to where this effect's decay reaches
1009 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
* SPEEDOFSOUNDMETRESPERSEC
;
1010 DecayLFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayLFRatio
;
1011 DecayHFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayHFRatio
;
1012 if(SendSlots
[i
]->Params
.DecayHFLimit
)
1014 ALfloat airAbsorption
{SendSlots
[i
]->Params
.AirAbsorptionGainHF
};
1015 if(airAbsorption
< 1.0f
)
1017 /* Calculate the distance to where this effect's air
1018 * absorption reaches -60dB, and limit the effect's HF
1019 * decay distance (so it doesn't take any longer to decay
1020 * than the air would allow).
1022 ALfloat absorb_dist
{std::log10(REVERB_DECAY_GAIN
) / std::log10(airAbsorption
)};
1023 DecayHFDistance
[i
] = minf(absorb_dist
, DecayHFDistance
[i
]);
1029 /* If the slot's auxiliary send auto is off, the data sent to the
1030 * effect slot is the same as the dry path, sans filter effects */
1031 RoomRolloff
[i
] = props
->RolloffFactor
;
1032 DecayDistance
[i
] = 0.0f
;
1033 DecayLFDistance
[i
] = 0.0f
;
1034 DecayHFDistance
[i
] = 0.0f
;
1038 voice
->mSend
[i
].Buffer
= {};
1040 voice
->mSend
[i
].Buffer
= SendSlots
[i
]->Wet
.Buffer
;
1043 /* Transform source to listener space (convert to head relative) */
1044 alu::Vector Position
{props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
};
1045 alu::Vector Velocity
{props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
};
1046 alu::Vector Direction
{props
->Direction
[0], props
->Direction
[1], props
->Direction
[2], 0.0f
};
1047 if(props
->HeadRelative
== AL_FALSE
)
1049 /* Transform source vectors */
1050 Position
= Listener
.Params
.Matrix
* Position
;
1051 Velocity
= Listener
.Params
.Matrix
* Velocity
;
1052 Direction
= Listener
.Params
.Matrix
* Direction
;
1056 /* Offset the source velocity to be relative of the listener velocity */
1057 Velocity
+= Listener
.Params
.Velocity
;
1060 const bool directional
{Direction
.normalize() > 0.0f
};
1061 alu::Vector ToSource
{Position
[0], Position
[1], Position
[2], 0.0f
};
1062 const ALfloat Distance
{ToSource
.normalize()};
1064 /* Initial source gain */
1065 ALfloat DryGain
{props
->Gain
};
1066 ALfloat DryGainHF
{1.0f
};
1067 ALfloat DryGainLF
{1.0f
};
1068 ALfloat WetGain
[MAX_SENDS
], WetGainHF
[MAX_SENDS
], WetGainLF
[MAX_SENDS
];
1069 for(ALuint i
{0};i
< NumSends
;i
++)
1071 WetGain
[i
] = props
->Gain
;
1072 WetGainHF
[i
] = 1.0f
;
1073 WetGainLF
[i
] = 1.0f
;
1076 /* Calculate distance attenuation */
1077 ALfloat ClampedDist
{Distance
};
1079 switch(Listener
.Params
.SourceDistanceModel
?
1080 props
->mDistanceModel
: Listener
.Params
.mDistanceModel
)
1082 case DistanceModel::InverseClamped
:
1083 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1084 if(props
->MaxDistance
< props
->RefDistance
) break;
1086 case DistanceModel::Inverse
:
1087 if(!(props
->RefDistance
> 0.0f
))
1088 ClampedDist
= props
->RefDistance
;
1091 ALfloat dist
= lerp(props
->RefDistance
, ClampedDist
, props
->RolloffFactor
);
1092 if(dist
> 0.0f
) DryGain
*= props
->RefDistance
/ dist
;
1093 for(ALuint i
{0};i
< NumSends
;i
++)
1095 dist
= lerp(props
->RefDistance
, ClampedDist
, RoomRolloff
[i
]);
1096 if(dist
> 0.0f
) WetGain
[i
] *= props
->RefDistance
/ dist
;
1101 case DistanceModel::LinearClamped
:
1102 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1103 if(props
->MaxDistance
< props
->RefDistance
) break;
1105 case DistanceModel::Linear
:
1106 if(!(props
->MaxDistance
!= props
->RefDistance
))
1107 ClampedDist
= props
->RefDistance
;
1110 ALfloat attn
= props
->RolloffFactor
* (ClampedDist
-props
->RefDistance
) /
1111 (props
->MaxDistance
-props
->RefDistance
);
1112 DryGain
*= maxf(1.0f
- attn
, 0.0f
);
1113 for(ALuint i
{0};i
< NumSends
;i
++)
1115 attn
= RoomRolloff
[i
] * (ClampedDist
-props
->RefDistance
) /
1116 (props
->MaxDistance
-props
->RefDistance
);
1117 WetGain
[i
] *= maxf(1.0f
- attn
, 0.0f
);
1122 case DistanceModel::ExponentClamped
:
1123 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1124 if(props
->MaxDistance
< props
->RefDistance
) break;
1126 case DistanceModel::Exponent
:
1127 if(!(ClampedDist
> 0.0f
&& props
->RefDistance
> 0.0f
))
1128 ClampedDist
= props
->RefDistance
;
1131 DryGain
*= std::pow(ClampedDist
/props
->RefDistance
, -props
->RolloffFactor
);
1132 for(ALuint i
{0};i
< NumSends
;i
++)
1133 WetGain
[i
] *= std::pow(ClampedDist
/props
->RefDistance
, -RoomRolloff
[i
]);
1137 case DistanceModel::Disable
:
1138 ClampedDist
= props
->RefDistance
;
1142 /* Calculate directional soundcones */
1143 if(directional
&& props
->InnerAngle
< 360.0f
)
1145 const ALfloat Angle
{Rad2Deg(std::acos(-aluDotproduct(Direction
, ToSource
)) *
1148 ALfloat ConeVolume
, ConeHF
;
1149 if(!(Angle
> props
->InnerAngle
))
1154 else if(Angle
< props
->OuterAngle
)
1156 ALfloat scale
= ( Angle
-props
->InnerAngle
) /
1157 (props
->OuterAngle
-props
->InnerAngle
);
1158 ConeVolume
= lerp(1.0f
, props
->OuterGain
, scale
);
1159 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, scale
);
1163 ConeVolume
= props
->OuterGain
;
1164 ConeHF
= props
->OuterGainHF
;
1167 DryGain
*= ConeVolume
;
1168 if(props
->DryGainHFAuto
)
1169 DryGainHF
*= ConeHF
;
1170 if(props
->WetGainAuto
)
1171 std::transform(std::begin(WetGain
), std::begin(WetGain
)+NumSends
, std::begin(WetGain
),
1172 [ConeVolume
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* ConeVolume
; }
1174 if(props
->WetGainHFAuto
)
1175 std::transform(std::begin(WetGainHF
), std::begin(WetGainHF
)+NumSends
,
1176 std::begin(WetGainHF
),
1177 [ConeHF
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* ConeHF
; }
1181 /* Apply gain and frequency filters */
1182 DryGain
= clampf(DryGain
, props
->MinGain
, props
->MaxGain
);
1183 DryGain
= minf(DryGain
*props
->Direct
.Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1184 DryGainHF
*= props
->Direct
.GainHF
;
1185 DryGainLF
*= props
->Direct
.GainLF
;
1186 for(ALuint i
{0};i
< NumSends
;i
++)
1188 WetGain
[i
] = clampf(WetGain
[i
], props
->MinGain
, props
->MaxGain
);
1189 WetGain
[i
] = minf(WetGain
[i
]*props
->Send
[i
].Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1190 WetGainHF
[i
] *= props
->Send
[i
].GainHF
;
1191 WetGainLF
[i
] *= props
->Send
[i
].GainLF
;
1194 /* Distance-based air absorption and initial send decay. */
1195 if(ClampedDist
> props
->RefDistance
&& props
->RolloffFactor
> 0.0f
)
1197 ALfloat meters_base
{(ClampedDist
-props
->RefDistance
) * props
->RolloffFactor
*
1198 Listener
.Params
.MetersPerUnit
};
1199 if(props
->AirAbsorptionFactor
> 0.0f
)
1201 ALfloat hfattn
{std::pow(AIRABSORBGAINHF
, meters_base
* props
->AirAbsorptionFactor
)};
1202 DryGainHF
*= hfattn
;
1203 std::transform(std::begin(WetGainHF
), std::begin(WetGainHF
)+NumSends
,
1204 std::begin(WetGainHF
),
1205 [hfattn
](ALfloat gain
) noexcept
-> ALfloat
{ return gain
* hfattn
; }
1209 if(props
->WetGainAuto
)
1211 /* Apply a decay-time transformation to the wet path, based on the
1212 * source distance in meters. The initial decay of the reverb
1213 * effect is calculated and applied to the wet path.
1215 for(ALuint i
{0};i
< NumSends
;i
++)
1217 if(!(DecayDistance
[i
] > 0.0f
))
1220 const ALfloat gain
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayDistance
[i
])};
1222 /* Yes, the wet path's air absorption is applied with
1223 * WetGainAuto on, rather than WetGainHFAuto.
1227 ALfloat gainhf
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayHFDistance
[i
])};
1228 WetGainHF
[i
] *= minf(gainhf
/ gain
, 1.0f
);
1229 ALfloat gainlf
{std::pow(REVERB_DECAY_GAIN
, meters_base
/DecayLFDistance
[i
])};
1230 WetGainLF
[i
] *= minf(gainlf
/ gain
, 1.0f
);
1237 /* Initial source pitch */
1238 ALfloat Pitch
{props
->Pitch
};
1240 /* Calculate velocity-based doppler effect */
1241 ALfloat DopplerFactor
{props
->DopplerFactor
* Listener
.Params
.DopplerFactor
};
1242 if(DopplerFactor
> 0.0f
)
1244 const alu::Vector
&lvelocity
= Listener
.Params
.Velocity
;
1245 ALfloat vss
{aluDotproduct(Velocity
, ToSource
) * -DopplerFactor
};
1246 ALfloat vls
{aluDotproduct(lvelocity
, ToSource
) * -DopplerFactor
};
1248 const ALfloat SpeedOfSound
{Listener
.Params
.SpeedOfSound
};
1249 if(!(vls
< SpeedOfSound
))
1251 /* Listener moving away from the source at the speed of sound.
1252 * Sound waves can't catch it.
1256 else if(!(vss
< SpeedOfSound
))
1258 /* Source moving toward the listener at the speed of sound. Sound
1259 * waves bunch up to extreme frequencies.
1261 Pitch
= std::numeric_limits
<float>::infinity();
1265 /* Source and listener movement is nominal. Calculate the proper
1268 Pitch
*= (SpeedOfSound
-vls
) / (SpeedOfSound
-vss
);
1272 /* Adjust pitch based on the buffer and output frequencies, and calculate
1273 * fixed-point stepping value.
1275 Pitch
*= static_cast<ALfloat
>(voice
->mFrequency
)/static_cast<ALfloat
>(Device
->Frequency
);
1276 if(Pitch
> static_cast<ALfloat
>(MAX_PITCH
))
1277 voice
->mStep
= MAX_PITCH
<<FRACTIONBITS
;
1279 voice
->mStep
= maxu(fastf2u(Pitch
* FRACTIONONE
), 1);
1280 if(props
->mResampler
== Resampler::BSinc24
)
1281 BsincPrepare(voice
->mStep
, &voice
->mResampleState
.bsinc
, &bsinc24
);
1282 else if(props
->mResampler
== Resampler::BSinc12
)
1283 BsincPrepare(voice
->mStep
, &voice
->mResampleState
.bsinc
, &bsinc12
);
1284 voice
->mResampler
= SelectResampler(props
->mResampler
);
1286 ALfloat spread
{0.0f
};
1287 if(props
->Radius
> Distance
)
1288 spread
= al::MathDefs
<float>::Tau() - Distance
/props
->Radius
*al::MathDefs
<float>::Pi();
1289 else if(Distance
> 0.0f
)
1290 spread
= std::asin(props
->Radius
/Distance
) * 2.0f
;
1292 CalcPanningAndFilters(voice
, ToSource
[0], ToSource
[1], ToSource
[2]*ZScale
,
1293 Distance
*Listener
.Params
.MetersPerUnit
, spread
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1294 WetGainLF
, WetGainHF
, SendSlots
, props
, Listener
, Device
);
1297 void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, bool force
)
1299 ALvoiceProps
*props
{voice
->mUpdate
.exchange(nullptr, std::memory_order_acq_rel
)};
1300 if(!props
&& !force
) return;
1304 voice
->mProps
= *props
;
1306 AtomicReplaceHead(context
->mFreeVoiceProps
, props
);
1309 if((voice
->mProps
.mSpatializeMode
== SpatializeAuto
&& voice
->mFmtChannels
== FmtMono
) ||
1310 voice
->mProps
.mSpatializeMode
== SpatializeOn
)
1311 CalcAttnSourceParams(voice
, &voice
->mProps
, context
);
1313 CalcNonAttnSourceParams(voice
, &voice
->mProps
, context
);
1317 void ProcessParamUpdates(ALCcontext
*ctx
, const ALeffectslotArray
&slots
,
1318 const al::span
<ALvoice
> voices
)
1320 IncrementRef(ctx
->mUpdateCount
);
1321 if LIKELY(!ctx
->mHoldUpdates
.load(std::memory_order_acquire
))
1323 bool force
{CalcContextParams(ctx
)};
1324 force
|= CalcListenerParams(ctx
);
1325 force
= std::accumulate(slots
.begin(), slots
.end(), force
,
1326 [ctx
](const bool f
, ALeffectslot
*slot
) -> bool
1327 { return CalcEffectSlotParams(slot
, ctx
) | f
; }
1330 auto calc_params
= [ctx
,force
](ALvoice
&voice
) -> void
1332 if(voice
.mSourceID
.load(std::memory_order_acquire
) != 0)
1333 CalcSourceParams(&voice
, ctx
, force
);
1335 std::for_each(voices
.begin(), voices
.end(), calc_params
);
1337 IncrementRef(ctx
->mUpdateCount
);
1340 void ProcessContext(ALCcontext
*ctx
, const ALuint SamplesToDo
)
1342 ASSUME(SamplesToDo
> 0);
1344 const ALeffectslotArray
&auxslots
= *ctx
->mActiveAuxSlots
.load(std::memory_order_acquire
);
1345 const al::span
<ALvoice
> voices
{ctx
->mVoices
.data(), ctx
->mVoices
.size()};
1347 /* Process pending propery updates for objects on the context. */
1348 ProcessParamUpdates(ctx
, auxslots
, voices
);
1350 /* Clear auxiliary effect slot mixing buffers. */
1351 std::for_each(auxslots
.begin(), auxslots
.end(),
1352 [SamplesToDo
](ALeffectslot
*slot
) -> void
1354 for(auto &buffer
: slot
->MixBuffer
)
1355 std::fill_n(buffer
.begin(), SamplesToDo
, 0.0f
);
1359 /* Process voices that have a playing source. */
1360 std::for_each(voices
.begin(), voices
.end(),
1361 [SamplesToDo
,ctx
](ALvoice
&voice
) -> void
1363 const ALvoice::State vstate
{voice
.mPlayState
.load(std::memory_order_acquire
)};
1364 if(vstate
!= ALvoice::Stopped
) voice
.mix(vstate
, ctx
, SamplesToDo
);
1368 /* Process effects. */
1369 if(auxslots
.empty()) return;
1370 auto slots
= auxslots
.data();
1371 auto slots_end
= slots
+ auxslots
.size();
1373 /* First sort the slots into scratch storage, so that effects come before
1374 * their effect target (or their targets' target).
1376 auto sorted_slots
= const_cast<ALeffectslot
**>(slots_end
);
1377 auto sorted_slots_end
= sorted_slots
;
1378 auto in_chain
= [](const ALeffectslot
*slot1
, const ALeffectslot
*slot2
) noexcept
-> bool
1380 while((slot1
=slot1
->Params
.Target
) != nullptr) {
1381 if(slot1
== slot2
) return true;
1386 *sorted_slots_end
= *slots
;
1388 while(++slots
!= slots_end
)
1390 /* If this effect slot targets an effect slot already in the list (i.e.
1391 * slots outputs to something in sorted_slots), directly or indirectly,
1392 * insert it prior to that element.
1394 auto checker
= sorted_slots
;
1396 if(in_chain(*slots
, *checker
)) break;
1397 } while(++checker
!= sorted_slots_end
);
1399 checker
= std::move_backward(checker
, sorted_slots_end
, sorted_slots_end
+1);
1400 *--checker
= *slots
;
1404 std::for_each(sorted_slots
, sorted_slots_end
,
1405 [SamplesToDo
](const ALeffectslot
*slot
) -> void
1407 EffectState
*state
{slot
->Params
.mEffectState
};
1408 state
->process(SamplesToDo
, slot
->Wet
.Buffer
, state
->mOutTarget
);
1414 void ApplyStablizer(FrontStablizer
*Stablizer
, const al::span
<FloatBufferLine
> Buffer
,
1415 const ALuint lidx
, const ALuint ridx
, const ALuint cidx
, const ALuint SamplesToDo
)
1417 ASSUME(SamplesToDo
> 0);
1419 /* Apply a delay to all channels, except the front-left and front-right, so
1420 * they maintain correct timing.
1422 const size_t NumChannels
{Buffer
.size()};
1423 for(size_t i
{0u};i
< NumChannels
;i
++)
1425 if(i
== lidx
|| i
== ridx
)
1428 auto &DelayBuf
= Stablizer
->DelayBuf
[i
];
1429 auto buffer_end
= Buffer
[i
].begin() + SamplesToDo
;
1430 if LIKELY(SamplesToDo
>= ALuint
{FrontStablizer::DelayLength
})
1432 auto delay_end
= std::rotate(Buffer
[i
].begin(),
1433 buffer_end
- FrontStablizer::DelayLength
, buffer_end
);
1434 std::swap_ranges(Buffer
[i
].begin(), delay_end
, std::begin(DelayBuf
));
1438 auto delay_start
= std::swap_ranges(Buffer
[i
].begin(), buffer_end
,
1439 std::begin(DelayBuf
));
1440 std::rotate(std::begin(DelayBuf
), delay_start
, std::end(DelayBuf
));
1444 ALfloat (&lsplit
)[2][BUFFERSIZE
] = Stablizer
->LSplit
;
1445 ALfloat (&rsplit
)[2][BUFFERSIZE
] = Stablizer
->RSplit
;
1446 auto &tmpbuf
= Stablizer
->TempBuf
;
1448 /* This applies the band-splitter, preserving phase at the cost of some
1449 * delay. The shorter the delay, the more error seeps into the result.
1451 auto apply_splitter
= [&tmpbuf
,SamplesToDo
](const FloatBufferLine
&InBuf
,
1452 ALfloat (&DelayBuf
)[FrontStablizer::DelayLength
], BandSplitter
&Filter
,
1453 ALfloat (&splitbuf
)[2][BUFFERSIZE
]) -> void
1455 /* Combine the delayed samples and the input samples into the temp
1456 * buffer, in reverse. Then copy the final samples back into the delay
1457 * buffer for next time. Note that the delay buffer's samples are
1458 * stored backwards here.
1460 auto tmpbuf_end
= std::begin(tmpbuf
) + SamplesToDo
;
1461 std::copy_n(std::begin(DelayBuf
), FrontStablizer::DelayLength
, tmpbuf_end
);
1462 std::reverse_copy(InBuf
.begin(), InBuf
.begin()+SamplesToDo
, std::begin(tmpbuf
));
1463 std::copy_n(std::begin(tmpbuf
), FrontStablizer::DelayLength
, std::begin(DelayBuf
));
1465 /* Apply an all-pass on the reversed signal, then reverse the samples
1466 * to get the forward signal with a reversed phase shift.
1468 Filter
.applyAllpass(tmpbuf
, SamplesToDo
+FrontStablizer::DelayLength
);
1469 std::reverse(std::begin(tmpbuf
), tmpbuf_end
+FrontStablizer::DelayLength
);
1471 /* Now apply the band-splitter, combining its phase shift with the
1472 * reversed phase shift, restoring the original phase on the split
1475 Filter
.process(splitbuf
[1], splitbuf
[0], tmpbuf
, SamplesToDo
);
1477 apply_splitter(Buffer
[lidx
], Stablizer
->DelayBuf
[lidx
], Stablizer
->LFilter
, lsplit
);
1478 apply_splitter(Buffer
[ridx
], Stablizer
->DelayBuf
[ridx
], Stablizer
->RFilter
, rsplit
);
1480 for(ALuint i
{0};i
< SamplesToDo
;i
++)
1482 ALfloat lfsum
{lsplit
[0][i
] + rsplit
[0][i
]};
1483 ALfloat hfsum
{lsplit
[1][i
] + rsplit
[1][i
]};
1484 ALfloat s
{lsplit
[0][i
] + lsplit
[1][i
] - rsplit
[0][i
] - rsplit
[1][i
]};
1486 /* This pans the separate low- and high-frequency sums between being on
1487 * the center channel and the left/right channels. The low-frequency
1488 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1489 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1490 * values can be tweaked.
1492 ALfloat m
{lfsum
*std::cos(1.0f
/3.0f
* (al::MathDefs
<float>::Pi()*0.5f
)) +
1493 hfsum
*std::cos(1.0f
/4.0f
* (al::MathDefs
<float>::Pi()*0.5f
))};
1494 ALfloat c
{lfsum
*std::sin(1.0f
/3.0f
* (al::MathDefs
<float>::Pi()*0.5f
)) +
1495 hfsum
*std::sin(1.0f
/4.0f
* (al::MathDefs
<float>::Pi()*0.5f
))};
1497 /* The generated center channel signal adds to the existing signal,
1498 * while the modified left and right channels replace.
1500 Buffer
[lidx
][i
] = (m
+ s
) * 0.5f
;
1501 Buffer
[ridx
][i
] = (m
- s
) * 0.5f
;
1502 Buffer
[cidx
][i
] += c
* 0.5f
;
1506 void ApplyDistanceComp(const al::span
<FloatBufferLine
> Samples
, const ALuint SamplesToDo
,
1507 const DistanceComp::DistData
*distcomp
)
1509 ASSUME(SamplesToDo
> 0);
1511 for(auto &chanbuffer
: Samples
)
1513 const ALfloat gain
{distcomp
->Gain
};
1514 const ALuint base
{distcomp
->Length
};
1515 ALfloat
*distbuf
{al::assume_aligned
<16>(distcomp
->Buffer
)};
1521 ALfloat
*inout
{al::assume_aligned
<16>(chanbuffer
.data())};
1522 auto inout_end
= inout
+ SamplesToDo
;
1523 if LIKELY(SamplesToDo
>= base
)
1525 auto delay_end
= std::rotate(inout
, inout_end
- base
, inout_end
);
1526 std::swap_ranges(inout
, delay_end
, distbuf
);
1530 auto delay_start
= std::swap_ranges(inout
, inout_end
, distbuf
);
1531 std::rotate(distbuf
, delay_start
, distbuf
+ base
);
1533 std::transform(inout
, inout_end
, inout
, std::bind(std::multiplies
<float>{}, _1
, gain
));
1537 void ApplyDither(const al::span
<FloatBufferLine
> Samples
, ALuint
*dither_seed
,
1538 const ALfloat quant_scale
, const ALuint SamplesToDo
)
1540 /* Dithering. Generate whitenoise (uniform distribution of random values
1541 * between -1 and +1) and add it to the sample values, after scaling up to
1542 * the desired quantization depth amd before rounding.
1544 const ALfloat invscale
{1.0f
/ quant_scale
};
1545 ALuint seed
{*dither_seed
};
1546 auto dither_channel
= [&seed
,invscale
,quant_scale
,SamplesToDo
](FloatBufferLine
&input
) -> void
1548 ASSUME(SamplesToDo
> 0);
1549 auto dither_sample
= [&seed
,invscale
,quant_scale
](const ALfloat sample
) noexcept
-> ALfloat
1551 ALfloat val
{sample
* quant_scale
};
1552 ALuint rng0
{dither_rng(&seed
)};
1553 ALuint rng1
{dither_rng(&seed
)};
1554 val
+= static_cast<ALfloat
>(rng0
*(1.0/UINT_MAX
) - rng1
*(1.0/UINT_MAX
));
1555 return fast_roundf(val
) * invscale
;
1557 std::transform(input
.begin(), input
.begin()+SamplesToDo
, input
.begin(), dither_sample
);
1559 std::for_each(Samples
.begin(), Samples
.end(), dither_channel
);
1560 *dither_seed
= seed
;
1564 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1565 * chokes on that given the inline specializations.
1567 template<typename T
>
1568 inline T
SampleConv(ALfloat
) noexcept
;
1570 template<> inline ALfloat
SampleConv(ALfloat val
) noexcept
1572 template<> inline ALint
SampleConv(ALfloat val
) noexcept
1574 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1575 * This means a normalized float has at most 25 bits of signed precision.
1576 * When scaling and clamping for a signed 32-bit integer, these following
1577 * values are the best a float can give.
1579 return fastf2i(clampf(val
*2147483648.0f
, -2147483648.0f
, 2147483520.0f
));
1581 template<> inline ALshort
SampleConv(ALfloat val
) noexcept
1582 { return static_cast<ALshort
>(fastf2i(clampf(val
*32768.0f
, -32768.0f
, 32767.0f
))); }
1583 template<> inline ALbyte
SampleConv(ALfloat val
) noexcept
1584 { return static_cast<ALbyte
>(fastf2i(clampf(val
*128.0f
, -128.0f
, 127.0f
))); }
1586 /* Define unsigned output variations. */
1587 template<> inline ALuint
SampleConv(ALfloat val
) noexcept
1588 { return static_cast<ALuint
>(SampleConv
<ALint
>(val
)) + 2147483648u; }
1589 template<> inline ALushort
SampleConv(ALfloat val
) noexcept
1590 { return static_cast<ALushort
>(SampleConv
<ALshort
>(val
) + 32768); }
1591 template<> inline ALubyte
SampleConv(ALfloat val
) noexcept
1592 { return static_cast<ALubyte
>(SampleConv
<ALbyte
>(val
) + 128); }
1594 template<DevFmtType T
>
1595 void Write(const al::span
<const FloatBufferLine
> InBuffer
, ALvoid
*OutBuffer
, const size_t Offset
,
1596 const ALuint SamplesToDo
)
1598 using SampleType
= typename DevFmtTypeTraits
<T
>::Type
;
1600 const size_t numchans
{InBuffer
.size()};
1601 ASSUME(numchans
> 0);
1603 SampleType
*outbase
= static_cast<SampleType
*>(OutBuffer
) + Offset
*numchans
;
1604 auto conv_channel
= [&outbase
,SamplesToDo
,numchans
](const FloatBufferLine
&inbuf
) -> void
1606 ASSUME(SamplesToDo
> 0);
1607 SampleType
*out
{outbase
++};
1608 auto conv_sample
= [numchans
,&out
](const ALfloat s
) noexcept
-> void
1610 *out
= SampleConv
<SampleType
>(s
);
1613 std::for_each(inbuf
.begin(), inbuf
.begin()+SamplesToDo
, conv_sample
);
1615 std::for_each(InBuffer
.cbegin(), InBuffer
.cend(), conv_channel
);
1620 void aluMixData(ALCdevice
*device
, ALvoid
*OutBuffer
, const ALuint NumSamples
)
1622 FPUCtl mixer_mode
{};
1623 for(ALuint SamplesDone
{0u};SamplesDone
< NumSamples
;)
1625 const ALuint SamplesToDo
{minu(NumSamples
-SamplesDone
, BUFFERSIZE
)};
1627 /* Clear main mixing buffers. */
1628 std::for_each(device
->MixBuffer
.begin(), device
->MixBuffer
.end(),
1629 [SamplesToDo
](std::array
<ALfloat
,BUFFERSIZE
> &buffer
) -> void
1630 { std::fill_n(buffer
.begin(), SamplesToDo
, 0.0f
); }
1633 /* Increment the mix count at the start (lsb should now be 1). */
1634 IncrementRef(device
->MixCount
);
1636 /* For each context on this device, process and mix its sources and
1639 for(ALCcontext
*ctx
: *device
->mContexts
.load(std::memory_order_acquire
))
1640 ProcessContext(ctx
, SamplesToDo
);
1642 /* Increment the clock time. Every second's worth of samples is
1643 * converted and added to clock base so that large sample counts don't
1644 * overflow during conversion. This also guarantees a stable
1647 device
->SamplesDone
+= SamplesToDo
;
1648 device
->ClockBase
+= std::chrono::seconds
{device
->SamplesDone
/ device
->Frequency
};
1649 device
->SamplesDone
%= device
->Frequency
;
1651 /* Increment the mix count at the end (lsb should now be 0). */
1652 IncrementRef(device
->MixCount
);
1654 /* Apply any needed post-process for finalizing the Dry mix to the
1655 * RealOut (Ambisonic decode, UHJ encode, etc).
1657 device
->postProcess(SamplesToDo
);
1659 const al::span
<FloatBufferLine
> RealOut
{device
->RealOut
.Buffer
};
1661 /* Apply front image stablization for surround sound, if applicable. */
1662 if(device
->Stablizer
)
1664 const ALuint lidx
{GetChannelIdxByName(device
->RealOut
, FrontLeft
)};
1665 const ALuint ridx
{GetChannelIdxByName(device
->RealOut
, FrontRight
)};
1666 const ALuint cidx
{GetChannelIdxByName(device
->RealOut
, FrontCenter
)};
1668 ApplyStablizer(device
->Stablizer
.get(), RealOut
, lidx
, ridx
, cidx
, SamplesToDo
);
1671 /* Apply compression, limiting sample amplitude if needed or desired. */
1672 if(Compressor
*comp
{device
->Limiter
.get()})
1673 comp
->process(SamplesToDo
, RealOut
.data());
1675 /* Apply delays and attenuation for mismatched speaker distances. */
1676 ApplyDistanceComp(RealOut
, SamplesToDo
, device
->ChannelDelay
.as_span().cbegin());
1678 /* Apply dithering. The compressor should have left enough headroom for
1679 * the dither noise to not saturate.
1681 if(device
->DitherDepth
> 0.0f
)
1682 ApplyDither(RealOut
, &device
->DitherSeed
, device
->DitherDepth
, SamplesToDo
);
1684 if LIKELY(OutBuffer
)
1686 /* Finally, interleave and convert samples, writing to the device's
1689 switch(device
->FmtType
)
1691 #define HANDLE_WRITE(T) case T: \
1692 Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break;
1693 HANDLE_WRITE(DevFmtByte
)
1694 HANDLE_WRITE(DevFmtUByte
)
1695 HANDLE_WRITE(DevFmtShort
)
1696 HANDLE_WRITE(DevFmtUShort
)
1697 HANDLE_WRITE(DevFmtInt
)
1698 HANDLE_WRITE(DevFmtUInt
)
1699 HANDLE_WRITE(DevFmtFloat
)
1704 SamplesDone
+= SamplesToDo
;
1709 void aluHandleDisconnect(ALCdevice
*device
, const char *msg
, ...)
1711 if(!device
->Connected
.exchange(false, std::memory_order_acq_rel
))
1714 AsyncEvent evt
{EventType_Disconnected
};
1715 evt
.u
.user
.type
= AL_EVENT_TYPE_DISCONNECTED_SOFT
;
1717 evt
.u
.user
.param
= 0;
1720 va_start(args
, msg
);
1721 int msglen
{vsnprintf(evt
.u
.user
.msg
, sizeof(evt
.u
.user
.msg
), msg
, args
)};
1724 if(msglen
< 0 || static_cast<size_t>(msglen
) >= sizeof(evt
.u
.user
.msg
))
1725 evt
.u
.user
.msg
[sizeof(evt
.u
.user
.msg
)-1] = 0;
1727 IncrementRef(device
->MixCount
);
1728 for(ALCcontext
*ctx
: *device
->mContexts
.load())
1730 const ALbitfieldSOFT enabledevt
{ctx
->mEnabledEvts
.load(std::memory_order_acquire
)};
1731 if((enabledevt
&EventType_Disconnected
))
1733 RingBuffer
*ring
{ctx
->mAsyncEvents
.get()};
1734 auto evt_data
= ring
->getWriteVector().first
;
1735 if(evt_data
.len
> 0)
1737 ::new (evt_data
.buf
) AsyncEvent
{evt
};
1738 ring
->writeAdvance(1);
1739 ctx
->mEventSem
.post();
1743 auto stop_voice
= [](ALvoice
&voice
) -> void
1745 voice
.mCurrentBuffer
.store(nullptr, std::memory_order_relaxed
);
1746 voice
.mLoopBuffer
.store(nullptr, std::memory_order_relaxed
);
1747 voice
.mSourceID
.store(0u, std::memory_order_relaxed
);
1748 voice
.mPlayState
.store(ALvoice::Stopped
, std::memory_order_release
);
1750 std::for_each(ctx
->mVoices
.begin(), ctx
->mVoices
.end(), stop_voice
);
1752 IncrementRef(device
->MixCount
);