Implement opening and closing devices in the router
[openal-soft.git] / Alc / mixer_sse.c
blob687865733f826b7f403045364a8908140ea3a095
1 #include "config.h"
3 #include <xmmintrin.h>
5 #include "AL/al.h"
6 #include "AL/alc.h"
7 #include "alMain.h"
8 #include "alu.h"
10 #include "alSource.h"
11 #include "alAuxEffectSlot.h"
12 #include "mixer_defs.h"
15 const ALfloat *Resample_bsinc32_SSE(const InterpState *state, const ALfloat *restrict src,
16 ALsizei frac, ALint increment, ALfloat *restrict dst,
17 ALsizei dstlen)
19 const __m128 sf4 = _mm_set1_ps(state->bsinc.sf);
20 const ALsizei m = state->bsinc.m;
21 const ALfloat *fil, *scd, *phd, *spd;
22 ALsizei pi, i, j;
23 ALfloat pf;
24 __m128 r4;
26 src += state->bsinc.l;
27 for(i = 0;i < dstlen;i++)
29 // Calculate the phase index and factor.
30 #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
31 pi = frac >> FRAC_PHASE_BITDIFF;
32 pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
33 #undef FRAC_PHASE_BITDIFF
35 fil = ASSUME_ALIGNED(state->bsinc.coeffs[pi].filter, 16);
36 scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16);
37 phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16);
38 spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16);
40 // Apply the scale and phase interpolated filter.
41 r4 = _mm_setzero_ps();
43 const __m128 pf4 = _mm_set1_ps(pf);
44 #define LD4(x) _mm_load_ps(x)
45 #define ULD4(x) _mm_loadu_ps(x)
46 #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
47 for(j = 0;j < m;j+=4)
49 /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
50 const __m128 f4 = MLA4(MLA4(LD4(&fil[j]), sf4, LD4(&scd[j])),
51 pf4, MLA4(LD4(&phd[j]), sf4, LD4(&spd[j]))
53 /* r += f*src */
54 r4 = MLA4(r4, f4, ULD4(&src[j]));
56 #undef MLA4
57 #undef ULD4
58 #undef LD4
60 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
61 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
62 dst[i] = _mm_cvtss_f32(r4);
64 frac += increment;
65 src += frac>>FRACTIONBITS;
66 frac &= FRACTIONMASK;
68 return dst;
72 static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
73 const ALsizei IrSize,
74 const ALfloat (*restrict Coeffs)[2],
75 ALfloat left, ALfloat right)
77 const __m128 lrlr = _mm_setr_ps(left, right, left, right);
78 __m128 vals = _mm_setzero_ps();
79 __m128 coeffs;
80 ALsizei i;
82 Values = ASSUME_ALIGNED(Values, 16);
83 Coeffs = ASSUME_ALIGNED(Coeffs, 16);
84 if((Offset&1))
86 const ALsizei o0 = Offset&HRIR_MASK;
87 const ALsizei o1 = (Offset+IrSize-1)&HRIR_MASK;
88 __m128 imp0, imp1;
90 coeffs = _mm_load_ps(&Coeffs[0][0]);
91 vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
92 imp0 = _mm_mul_ps(lrlr, coeffs);
93 vals = _mm_add_ps(imp0, vals);
94 _mm_storel_pi((__m64*)&Values[o0][0], vals);
95 for(i = 1;i < IrSize-1;i += 2)
97 const ALsizei o2 = (Offset+i)&HRIR_MASK;
99 coeffs = _mm_load_ps(&Coeffs[i+1][0]);
100 vals = _mm_load_ps(&Values[o2][0]);
101 imp1 = _mm_mul_ps(lrlr, coeffs);
102 imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
103 vals = _mm_add_ps(imp0, vals);
104 _mm_store_ps(&Values[o2][0], vals);
105 imp0 = imp1;
107 vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
108 imp0 = _mm_movehl_ps(imp0, imp0);
109 vals = _mm_add_ps(imp0, vals);
110 _mm_storel_pi((__m64*)&Values[o1][0], vals);
112 else
114 for(i = 0;i < IrSize;i += 2)
116 const ALsizei o = (Offset + i)&HRIR_MASK;
118 coeffs = _mm_load_ps(&Coeffs[i][0]);
119 vals = _mm_load_ps(&Values[o][0]);
120 vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
121 _mm_store_ps(&Values[o][0], vals);
126 #define MixHrtf MixHrtf_SSE
127 #define MixHrtfBlend MixHrtfBlend_SSE
128 #define MixDirectHrtf MixDirectHrtf_SSE
129 #include "mixer_inc.c"
130 #undef MixHrtf
133 void Mix_SSE(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
134 ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
135 ALsizei BufferSize)
137 ALfloat gain, delta, step;
138 __m128 gain4;
139 ALsizei c;
141 delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
143 for(c = 0;c < OutChans;c++)
145 ALsizei pos = 0;
146 gain = CurrentGains[c];
147 step = (TargetGains[c] - gain) * delta;
148 if(fabsf(step) > FLT_EPSILON)
150 ALsizei minsize = mini(BufferSize, Counter);
151 /* Mix with applying gain steps in aligned multiples of 4. */
152 if(minsize-pos > 3)
154 __m128 step4;
155 gain4 = _mm_setr_ps(
156 gain,
157 gain + step,
158 gain + step + step,
159 gain + step + step + step
161 step4 = _mm_set1_ps(step + step + step + step);
162 do {
163 const __m128 val4 = _mm_load_ps(&data[pos]);
164 __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
165 dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
166 gain4 = _mm_add_ps(gain4, step4);
167 _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
168 pos += 4;
169 } while(minsize-pos > 3);
170 /* NOTE: gain4 now represents the next four gains after the
171 * last four mixed samples, so the lowest element represents
172 * the next gain to apply.
174 gain = _mm_cvtss_f32(gain4);
176 /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
177 for(;pos < minsize;pos++)
179 OutBuffer[c][OutPos+pos] += data[pos]*gain;
180 gain += step;
182 if(pos == Counter)
183 gain = TargetGains[c];
184 CurrentGains[c] = gain;
186 /* Mix until pos is aligned with 4 or the mix is done. */
187 minsize = mini(BufferSize, (pos+3)&~3);
188 for(;pos < minsize;pos++)
189 OutBuffer[c][OutPos+pos] += data[pos]*gain;
192 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
193 continue;
194 gain4 = _mm_set1_ps(gain);
195 for(;BufferSize-pos > 3;pos += 4)
197 const __m128 val4 = _mm_load_ps(&data[pos]);
198 __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
199 dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
200 _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
202 for(;pos < BufferSize;pos++)
203 OutBuffer[c][OutPos+pos] += data[pos]*gain;
207 void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
209 __m128 gain4;
210 ALsizei c;
212 for(c = 0;c < InChans;c++)
214 ALsizei pos = 0;
215 ALfloat gain = Gains[c];
216 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
217 continue;
219 gain4 = _mm_set1_ps(gain);
220 for(;BufferSize-pos > 3;pos += 4)
222 const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]);
223 __m128 dry4 = _mm_load_ps(&OutBuffer[pos]);
224 dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
225 _mm_store_ps(&OutBuffer[pos], dry4);
227 for(;pos < BufferSize;pos++)
228 OutBuffer[pos] += data[c][InPos+pos]*gain;