2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
37 #include "mastering.h"
38 #include "uhjfilter.h"
39 #include "bformatdec.h"
40 #include "static_assert.h"
41 #include "ringbuffer.h"
42 #include "filters/splitter.h"
44 #include "mixer/defs.h"
45 #include "fpu_modes.h"
47 #include "bsinc_inc.h"
49 #include "backends/base.h"
52 extern inline ALfloat
minf(ALfloat a
, ALfloat b
);
53 extern inline ALfloat
maxf(ALfloat a
, ALfloat b
);
54 extern inline ALfloat
clampf(ALfloat val
, ALfloat min
, ALfloat max
);
56 extern inline ALdouble
mind(ALdouble a
, ALdouble b
);
57 extern inline ALdouble
maxd(ALdouble a
, ALdouble b
);
58 extern inline ALdouble
clampd(ALdouble val
, ALdouble min
, ALdouble max
);
60 extern inline ALuint
minu(ALuint a
, ALuint b
);
61 extern inline ALuint
maxu(ALuint a
, ALuint b
);
62 extern inline ALuint
clampu(ALuint val
, ALuint min
, ALuint max
);
64 extern inline ALint
mini(ALint a
, ALint b
);
65 extern inline ALint
maxi(ALint a
, ALint b
);
66 extern inline ALint
clampi(ALint val
, ALint min
, ALint max
);
68 extern inline ALint64
mini64(ALint64 a
, ALint64 b
);
69 extern inline ALint64
maxi64(ALint64 a
, ALint64 b
);
70 extern inline ALint64
clampi64(ALint64 val
, ALint64 min
, ALint64 max
);
72 extern inline ALuint64
minu64(ALuint64 a
, ALuint64 b
);
73 extern inline ALuint64
maxu64(ALuint64 a
, ALuint64 b
);
74 extern inline ALuint64
clampu64(ALuint64 val
, ALuint64 min
, ALuint64 max
);
76 extern inline size_t minz(size_t a
, size_t b
);
77 extern inline size_t maxz(size_t a
, size_t b
);
78 extern inline size_t clampz(size_t val
, size_t min
, size_t max
);
80 extern inline ALfloat
lerp(ALfloat val1
, ALfloat val2
, ALfloat mu
);
81 extern inline ALfloat
cubic(ALfloat val1
, ALfloat val2
, ALfloat val3
, ALfloat val4
, ALfloat mu
);
83 extern inline void aluVectorSet(aluVector
*restrict vector
, ALfloat x
, ALfloat y
, ALfloat z
, ALfloat w
);
85 extern inline void aluMatrixfSetRow(aluMatrixf
*matrix
, ALuint row
,
86 ALfloat m0
, ALfloat m1
, ALfloat m2
, ALfloat m3
);
87 extern inline void aluMatrixfSet(aluMatrixf
*matrix
,
88 ALfloat m00
, ALfloat m01
, ALfloat m02
, ALfloat m03
,
89 ALfloat m10
, ALfloat m11
, ALfloat m12
, ALfloat m13
,
90 ALfloat m20
, ALfloat m21
, ALfloat m22
, ALfloat m23
,
91 ALfloat m30
, ALfloat m31
, ALfloat m32
, ALfloat m33
);
95 ALfloat ConeScale
= 1.0f
;
97 /* Localized Z scalar for mono sources */
98 ALfloat ZScale
= 1.0f
;
100 /* Force default speed of sound for distance-related reverb decay. */
101 ALboolean OverrideReverbSpeedOfSound
= AL_FALSE
;
103 const aluMatrixf IdentityMatrixf
= {{
104 { 1.0f
, 0.0f
, 0.0f
, 0.0f
},
105 { 0.0f
, 1.0f
, 0.0f
, 0.0f
},
106 { 0.0f
, 0.0f
, 1.0f
, 0.0f
},
107 { 0.0f
, 0.0f
, 0.0f
, 1.0f
},
111 static void ClearArray(ALfloat f
[MAX_OUTPUT_CHANNELS
])
114 for(i
= 0;i
< MAX_OUTPUT_CHANNELS
;i
++)
119 enum Channel channel
;
124 static HrtfDirectMixerFunc MixDirectHrtf
= MixDirectHrtf_C
;
127 void DeinitVoice(ALvoice
*voice
)
129 al_free(ATOMIC_EXCHANGE_PTR_SEQ(&voice
->Update
, NULL
));
133 static inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
136 if((CPUCapFlags
&CPU_CAP_NEON
))
137 return MixDirectHrtf_Neon
;
140 if((CPUCapFlags
&CPU_CAP_SSE
))
141 return MixDirectHrtf_SSE
;
144 return MixDirectHrtf_C
;
148 /* This RNG method was created based on the math found in opusdec. It's quick,
149 * and starting with a seed value of 22222, is suitable for generating
152 static inline ALuint
dither_rng(ALuint
*seed
)
154 *seed
= (*seed
* 96314165) + 907633515;
159 static inline void aluCrossproduct(const ALfloat
*inVector1
, const ALfloat
*inVector2
, ALfloat
*outVector
)
161 outVector
[0] = inVector1
[1]*inVector2
[2] - inVector1
[2]*inVector2
[1];
162 outVector
[1] = inVector1
[2]*inVector2
[0] - inVector1
[0]*inVector2
[2];
163 outVector
[2] = inVector1
[0]*inVector2
[1] - inVector1
[1]*inVector2
[0];
166 static inline ALfloat
aluDotproduct(const aluVector
*vec1
, const aluVector
*vec2
)
168 return vec1
->v
[0]*vec2
->v
[0] + vec1
->v
[1]*vec2
->v
[1] + vec1
->v
[2]*vec2
->v
[2];
171 static ALfloat
aluNormalize(ALfloat
*vec
)
173 ALfloat length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
174 if(length
> FLT_EPSILON
)
176 ALfloat inv_length
= 1.0f
/length
;
177 vec
[0] *= inv_length
;
178 vec
[1] *= inv_length
;
179 vec
[2] *= inv_length
;
182 vec
[0] = vec
[1] = vec
[2] = 0.0f
;
186 static void aluMatrixfFloat3(ALfloat
*vec
, ALfloat w
, const aluMatrixf
*mtx
)
188 ALfloat v
[4] = { vec
[0], vec
[1], vec
[2], w
};
190 vec
[0] = v
[0]*mtx
->m
[0][0] + v
[1]*mtx
->m
[1][0] + v
[2]*mtx
->m
[2][0] + v
[3]*mtx
->m
[3][0];
191 vec
[1] = v
[0]*mtx
->m
[0][1] + v
[1]*mtx
->m
[1][1] + v
[2]*mtx
->m
[2][1] + v
[3]*mtx
->m
[3][1];
192 vec
[2] = v
[0]*mtx
->m
[0][2] + v
[1]*mtx
->m
[1][2] + v
[2]*mtx
->m
[2][2] + v
[3]*mtx
->m
[3][2];
195 static aluVector
aluMatrixfVector(const aluMatrixf
*mtx
, const aluVector
*vec
)
198 v
.v
[0] = vec
->v
[0]*mtx
->m
[0][0] + vec
->v
[1]*mtx
->m
[1][0] + vec
->v
[2]*mtx
->m
[2][0] + vec
->v
[3]*mtx
->m
[3][0];
199 v
.v
[1] = vec
->v
[0]*mtx
->m
[0][1] + vec
->v
[1]*mtx
->m
[1][1] + vec
->v
[2]*mtx
->m
[2][1] + vec
->v
[3]*mtx
->m
[3][1];
200 v
.v
[2] = vec
->v
[0]*mtx
->m
[0][2] + vec
->v
[1]*mtx
->m
[1][2] + vec
->v
[2]*mtx
->m
[2][2] + vec
->v
[3]*mtx
->m
[3][2];
201 v
.v
[3] = vec
->v
[0]*mtx
->m
[0][3] + vec
->v
[1]*mtx
->m
[1][3] + vec
->v
[2]*mtx
->m
[2][3] + vec
->v
[3]*mtx
->m
[3][3];
208 MixDirectHrtf
= SelectHrtfMixer();
212 static void SendSourceStoppedEvent(ALCcontext
*context
, ALuint id
)
214 ALbitfieldSOFT enabledevt
;
219 enabledevt
= ATOMIC_LOAD(&context
->EnabledEvts
, almemory_order_acquire
);
220 if(!(enabledevt
&EventType_SourceStateChange
)) return;
222 evt
.EnumType
= EventType_SourceStateChange
;
223 evt
.Type
= AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
;
225 evt
.Param
= AL_STOPPED
;
227 /* Normally snprintf would be used, but this is called from the mixer and
228 * that function's not real-time safe, so we have to construct it manually.
230 strcpy(evt
.Message
, "Source ID "); strpos
= 10;
232 while(scale
> 0 && scale
> id
)
236 evt
.Message
[strpos
++] = '0' + ((id
/scale
)%10);
239 strcpy(evt
.Message
+strpos
, " state changed to AL_STOPPED");
241 if(ll_ringbuffer_write(context
->AsyncEvents
, (const char*)&evt
, 1) == 1)
242 alsem_post(&context
->EventSem
);
246 static void ProcessHrtf(ALCdevice
*device
, ALsizei SamplesToDo
)
248 DirectHrtfState
*state
;
253 ambiup_process(device
->AmbiUp
,
254 device
->Dry
.Buffer
, device
->Dry
.NumChannels
, device
->FOAOut
.Buffer
,
258 lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
259 ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
260 assert(lidx
!= -1 && ridx
!= -1);
262 state
= device
->Hrtf
;
263 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
265 MixDirectHrtf(device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
266 device
->Dry
.Buffer
[c
], state
->Offset
, state
->IrSize
,
267 state
->Chan
[c
].Coeffs
, state
->Chan
[c
].Values
, SamplesToDo
270 state
->Offset
+= SamplesToDo
;
273 static void ProcessAmbiDec(ALCdevice
*device
, ALsizei SamplesToDo
)
275 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
276 bformatdec_upSample(device
->AmbiDecoder
,
277 device
->Dry
.Buffer
, device
->FOAOut
.Buffer
, device
->FOAOut
.NumChannels
,
280 bformatdec_process(device
->AmbiDecoder
,
281 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
, device
->Dry
.Buffer
,
286 static void ProcessAmbiUp(ALCdevice
*device
, ALsizei SamplesToDo
)
288 ambiup_process(device
->AmbiUp
,
289 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
, device
->FOAOut
.Buffer
,
294 static void ProcessUhj(ALCdevice
*device
, ALsizei SamplesToDo
)
296 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
297 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
298 assert(lidx
!= -1 && ridx
!= -1);
300 /* Encode to stereo-compatible 2-channel UHJ output. */
301 EncodeUhj2(device
->Uhj_Encoder
,
302 device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
303 device
->Dry
.Buffer
, SamplesToDo
307 static void ProcessBs2b(ALCdevice
*device
, ALsizei SamplesToDo
)
309 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
310 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
311 assert(lidx
!= -1 && ridx
!= -1);
313 /* Apply binaural/crossfeed filter */
314 bs2b_cross_feed(device
->Bs2b
, device
->RealOut
.Buffer
[lidx
],
315 device
->RealOut
.Buffer
[ridx
], SamplesToDo
);
318 void aluSelectPostProcess(ALCdevice
*device
)
320 if(device
->HrtfHandle
)
321 device
->PostProcess
= ProcessHrtf
;
322 else if(device
->AmbiDecoder
)
323 device
->PostProcess
= ProcessAmbiDec
;
324 else if(device
->AmbiUp
)
325 device
->PostProcess
= ProcessAmbiUp
;
326 else if(device
->Uhj_Encoder
)
327 device
->PostProcess
= ProcessUhj
;
328 else if(device
->Bs2b
)
329 device
->PostProcess
= ProcessBs2b
;
331 device
->PostProcess
= NULL
;
335 /* Prepares the interpolator for a given rate (determined by increment).
337 * With a bit of work, and a trade of memory for CPU cost, this could be
338 * modified for use with an interpolated increment for buttery-smooth pitch
341 void BsincPrepare(const ALuint increment
, BsincState
*state
, const BSincTable
*table
)
344 ALsizei si
= BSINC_SCALE_COUNT
-1;
346 if(increment
> FRACTIONONE
)
348 sf
= (ALfloat
)FRACTIONONE
/ increment
;
349 sf
= maxf(0.0f
, (BSINC_SCALE_COUNT
-1) * (sf
-table
->scaleBase
) * table
->scaleRange
);
351 /* The interpolation factor is fit to this diagonally-symmetric curve
352 * to reduce the transition ripple caused by interpolating different
353 * scales of the sinc function.
355 sf
= 1.0f
- cosf(asinf(sf
- si
));
359 state
->m
= table
->m
[si
];
360 state
->l
= (state
->m
/2) - 1;
361 state
->filter
= table
->Tab
+ table
->filterOffset
[si
];
365 static bool CalcContextParams(ALCcontext
*Context
)
367 ALlistener
*Listener
= Context
->Listener
;
368 struct ALcontextProps
*props
;
370 props
= ATOMIC_EXCHANGE_PTR(&Context
->Update
, NULL
, almemory_order_acq_rel
);
371 if(!props
) return false;
373 Listener
->Params
.MetersPerUnit
= props
->MetersPerUnit
;
375 Listener
->Params
.DopplerFactor
= props
->DopplerFactor
;
376 Listener
->Params
.SpeedOfSound
= props
->SpeedOfSound
* props
->DopplerVelocity
;
377 if(!OverrideReverbSpeedOfSound
)
378 Listener
->Params
.ReverbSpeedOfSound
= Listener
->Params
.SpeedOfSound
*
379 Listener
->Params
.MetersPerUnit
;
381 Listener
->Params
.SourceDistanceModel
= props
->SourceDistanceModel
;
382 Listener
->Params
.DistanceModel
= props
->DistanceModel
;
384 ATOMIC_REPLACE_HEAD(struct ALcontextProps
*, &Context
->FreeContextProps
, props
);
388 static bool CalcListenerParams(ALCcontext
*Context
)
390 ALlistener
*Listener
= Context
->Listener
;
391 ALfloat N
[3], V
[3], U
[3], P
[3];
392 struct ALlistenerProps
*props
;
395 props
= ATOMIC_EXCHANGE_PTR(&Listener
->Update
, NULL
, almemory_order_acq_rel
);
396 if(!props
) return false;
399 N
[0] = props
->Forward
[0];
400 N
[1] = props
->Forward
[1];
401 N
[2] = props
->Forward
[2];
407 /* Build and normalize right-vector */
408 aluCrossproduct(N
, V
, U
);
411 aluMatrixfSet(&Listener
->Params
.Matrix
,
412 U
[0], V
[0], -N
[0], 0.0,
413 U
[1], V
[1], -N
[1], 0.0,
414 U
[2], V
[2], -N
[2], 0.0,
418 P
[0] = props
->Position
[0];
419 P
[1] = props
->Position
[1];
420 P
[2] = props
->Position
[2];
421 aluMatrixfFloat3(P
, 1.0, &Listener
->Params
.Matrix
);
422 aluMatrixfSetRow(&Listener
->Params
.Matrix
, 3, -P
[0], -P
[1], -P
[2], 1.0f
);
424 aluVectorSet(&vel
, props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
);
425 Listener
->Params
.Velocity
= aluMatrixfVector(&Listener
->Params
.Matrix
, &vel
);
427 Listener
->Params
.Gain
= props
->Gain
* Context
->GainBoost
;
429 ATOMIC_REPLACE_HEAD(struct ALlistenerProps
*, &Context
->FreeListenerProps
, props
);
433 static bool CalcEffectSlotParams(ALeffectslot
*slot
, ALCcontext
*context
, bool force
)
435 struct ALeffectslotProps
*props
;
436 ALeffectState
*state
;
438 props
= ATOMIC_EXCHANGE_PTR(&slot
->Update
, NULL
, almemory_order_acq_rel
);
439 if(!props
&& !force
) return false;
443 slot
->Params
.Gain
= props
->Gain
;
444 slot
->Params
.AuxSendAuto
= props
->AuxSendAuto
;
445 slot
->Params
.EffectType
= props
->Type
;
446 slot
->Params
.EffectProps
= props
->Props
;
447 if(IsReverbEffect(props
->Type
))
449 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
450 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
451 slot
->Params
.DecayLFRatio
= props
->Props
.Reverb
.DecayLFRatio
;
452 slot
->Params
.DecayHFRatio
= props
->Props
.Reverb
.DecayHFRatio
;
453 slot
->Params
.DecayHFLimit
= props
->Props
.Reverb
.DecayHFLimit
;
454 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
458 slot
->Params
.RoomRolloff
= 0.0f
;
459 slot
->Params
.DecayTime
= 0.0f
;
460 slot
->Params
.DecayLFRatio
= 0.0f
;
461 slot
->Params
.DecayHFRatio
= 0.0f
;
462 slot
->Params
.DecayHFLimit
= AL_FALSE
;
463 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
466 /* Swap effect states. No need to play with the ref counts since they
467 * keep the same number of refs.
469 state
= props
->State
;
470 props
->State
= slot
->Params
.EffectState
;
471 slot
->Params
.EffectState
= state
;
473 ATOMIC_REPLACE_HEAD(struct ALeffectslotProps
*, &context
->FreeEffectslotProps
, props
);
476 state
= slot
->Params
.EffectState
;
478 V(state
,update
)(context
, slot
, &slot
->Params
.EffectProps
);
483 static const struct ChanMap MonoMap
[1] = {
484 { FrontCenter
, 0.0f
, 0.0f
}
486 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
487 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) }
489 { FrontLeft
, DEG2RAD( -45.0f
), DEG2RAD(0.0f
) },
490 { FrontRight
, DEG2RAD( 45.0f
), DEG2RAD(0.0f
) },
491 { BackLeft
, DEG2RAD(-135.0f
), DEG2RAD(0.0f
) },
492 { BackRight
, DEG2RAD( 135.0f
), DEG2RAD(0.0f
) }
494 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
495 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
496 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
498 { SideLeft
, DEG2RAD(-110.0f
), DEG2RAD(0.0f
) },
499 { SideRight
, DEG2RAD( 110.0f
), DEG2RAD(0.0f
) }
501 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
502 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
503 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
505 { BackCenter
, DEG2RAD(180.0f
), DEG2RAD(0.0f
) },
506 { SideLeft
, DEG2RAD(-90.0f
), DEG2RAD(0.0f
) },
507 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
509 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
510 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
511 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
513 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
514 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) },
515 { SideLeft
, DEG2RAD( -90.0f
), DEG2RAD(0.0f
) },
516 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
519 static void CalcPanningAndFilters(ALvoice
*voice
, const ALfloat Azi
, const ALfloat Elev
,
520 const ALfloat Distance
, const ALfloat Spread
,
521 const ALfloat DryGain
, const ALfloat DryGainHF
,
522 const ALfloat DryGainLF
, const ALfloat
*WetGain
,
523 const ALfloat
*WetGainLF
, const ALfloat
*WetGainHF
,
524 ALeffectslot
**SendSlots
, const ALbuffer
*Buffer
,
525 const struct ALvoiceProps
*props
, const ALlistener
*Listener
,
526 const ALCdevice
*Device
)
528 struct ChanMap StereoMap
[2] = {
529 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
530 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) }
532 bool DirectChannels
= props
->DirectChannels
;
533 const ALsizei NumSends
= Device
->NumAuxSends
;
534 const ALuint Frequency
= Device
->Frequency
;
535 const struct ChanMap
*chans
= NULL
;
536 ALsizei num_channels
= 0;
537 bool isbformat
= false;
538 ALfloat downmix_gain
= 1.0f
;
541 switch(Buffer
->FmtChannels
)
546 /* Mono buffers are never played direct. */
547 DirectChannels
= false;
551 /* Convert counter-clockwise to clockwise. */
552 StereoMap
[0].angle
= -props
->StereoPan
[0];
553 StereoMap
[1].angle
= -props
->StereoPan
[1];
557 downmix_gain
= 1.0f
/ 2.0f
;
563 downmix_gain
= 1.0f
/ 2.0f
;
569 downmix_gain
= 1.0f
/ 4.0f
;
575 /* NOTE: Excludes LFE. */
576 downmix_gain
= 1.0f
/ 5.0f
;
582 /* NOTE: Excludes LFE. */
583 downmix_gain
= 1.0f
/ 6.0f
;
589 /* NOTE: Excludes LFE. */
590 downmix_gain
= 1.0f
/ 7.0f
;
596 DirectChannels
= false;
602 DirectChannels
= false;
606 for(c
= 0;c
< num_channels
;c
++)
608 memset(&voice
->Direct
.Params
[c
].Hrtf
.Target
, 0,
609 sizeof(voice
->Direct
.Params
[c
].Hrtf
.Target
));
610 ClearArray(voice
->Direct
.Params
[c
].Gains
.Target
);
612 for(i
= 0;i
< NumSends
;i
++)
614 for(c
= 0;c
< num_channels
;c
++)
615 ClearArray(voice
->Send
[i
].Params
[c
].Gains
.Target
);
618 voice
->Flags
&= ~(VOICE_HAS_HRTF
| VOICE_HAS_NFC
);
621 /* Special handling for B-Format sources. */
623 if(Distance
> FLT_EPSILON
)
625 /* Panning a B-Format sound toward some direction is easy. Just pan
626 * the first (W) channel as a normal mono sound and silence the
629 ALfloat coeffs
[MAX_AMBI_COEFFS
];
631 if(Device
->AvgSpeakerDist
> 0.0f
)
633 ALfloat mdist
= Distance
* Listener
->Params
.MetersPerUnit
;
634 ALfloat w0
= SPEEDOFSOUNDMETRESPERSEC
/
635 (mdist
* (ALfloat
)Device
->Frequency
);
636 ALfloat w1
= SPEEDOFSOUNDMETRESPERSEC
/
637 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
638 /* Clamp w0 for really close distances, to prevent excessive
641 w0
= minf(w0
, w1
*4.0f
);
643 /* Only need to adjust the first channel of a B-Format source. */
644 NfcFilterAdjust(&voice
->Direct
.Params
[0].NFCtrlFilter
, w0
);
646 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
647 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
648 voice
->Flags
|= VOICE_HAS_NFC
;
651 /* A scalar of 1.5 for plain stereo results in +/-60 degrees being
652 * moved to +/-90 degrees for direct right and left speaker
655 CalcAngleCoeffs((Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(Azi
, 1.5f
) : Azi
,
656 Elev
, Spread
, coeffs
);
658 /* NOTE: W needs to be scaled by sqrt(2) due to FuMa normalization. */
659 ComputeDryPanGains(&Device
->Dry
, coeffs
, DryGain
*SQRTF_2
,
660 voice
->Direct
.Params
[0].Gains
.Target
);
661 for(i
= 0;i
< NumSends
;i
++)
663 const ALeffectslot
*Slot
= SendSlots
[i
];
665 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
666 WetGain
[i
]*SQRTF_2
, voice
->Send
[i
].Params
[0].Gains
.Target
672 /* Local B-Format sources have their XYZ channels rotated according
673 * to the orientation.
675 ALfloat N
[3], V
[3], U
[3];
678 if(Device
->AvgSpeakerDist
> 0.0f
)
680 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
681 * is what we want for FOA input. The first channel may have
682 * been previously re-adjusted if panned, so reset it.
684 NfcFilterAdjust(&voice
->Direct
.Params
[0].NFCtrlFilter
, 0.0f
);
686 voice
->Direct
.ChannelsPerOrder
[0] = 1;
687 voice
->Direct
.ChannelsPerOrder
[1] = mini(voice
->Direct
.Channels
-1, 3);
688 for(i
= 2;i
< MAX_AMBI_ORDER
+1;i
++)
689 voice
->Direct
.ChannelsPerOrder
[i
] = 0;
690 voice
->Flags
|= VOICE_HAS_NFC
;
694 N
[0] = props
->Orientation
[0][0];
695 N
[1] = props
->Orientation
[0][1];
696 N
[2] = props
->Orientation
[0][2];
698 V
[0] = props
->Orientation
[1][0];
699 V
[1] = props
->Orientation
[1][1];
700 V
[2] = props
->Orientation
[1][2];
702 if(!props
->HeadRelative
)
704 const aluMatrixf
*lmatrix
= &Listener
->Params
.Matrix
;
705 aluMatrixfFloat3(N
, 0.0f
, lmatrix
);
706 aluMatrixfFloat3(V
, 0.0f
, lmatrix
);
708 /* Build and normalize right-vector */
709 aluCrossproduct(N
, V
, U
);
712 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
713 * matrix is transposed, for the inputs to align on the rows and
714 * outputs on the columns.
716 aluMatrixfSet(&matrix
,
717 // ACN0 ACN1 ACN2 ACN3
718 SQRTF_2
, 0.0f
, 0.0f
, 0.0f
, // Ambi W
719 0.0f
, -N
[0]*SQRTF_3
, N
[1]*SQRTF_3
, -N
[2]*SQRTF_3
, // Ambi X
720 0.0f
, U
[0]*SQRTF_3
, -U
[1]*SQRTF_3
, U
[2]*SQRTF_3
, // Ambi Y
721 0.0f
, -V
[0]*SQRTF_3
, V
[1]*SQRTF_3
, -V
[2]*SQRTF_3
// Ambi Z
724 voice
->Direct
.Buffer
= Device
->FOAOut
.Buffer
;
725 voice
->Direct
.Channels
= Device
->FOAOut
.NumChannels
;
726 for(c
= 0;c
< num_channels
;c
++)
727 ComputeFirstOrderGains(&Device
->FOAOut
, matrix
.m
[c
], DryGain
,
728 voice
->Direct
.Params
[c
].Gains
.Target
);
729 for(i
= 0;i
< NumSends
;i
++)
731 const ALeffectslot
*Slot
= SendSlots
[i
];
734 for(c
= 0;c
< num_channels
;c
++)
735 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
736 matrix
.m
[c
], WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
742 else if(DirectChannels
)
744 /* Direct source channels always play local. Skip the virtual channels
745 * and write inputs to the matching real outputs.
747 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
748 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
750 for(c
= 0;c
< num_channels
;c
++)
752 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
753 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
756 /* Auxiliary sends still use normal channel panning since they mix to
757 * B-Format, which can't channel-match.
759 for(c
= 0;c
< num_channels
;c
++)
761 ALfloat coeffs
[MAX_AMBI_COEFFS
];
762 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
764 for(i
= 0;i
< NumSends
;i
++)
766 const ALeffectslot
*Slot
= SendSlots
[i
];
768 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
769 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
774 else if(Device
->Render_Mode
== HrtfRender
)
776 /* Full HRTF rendering. Skip the virtual channels and render to the
779 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
780 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
782 if(Distance
> FLT_EPSILON
)
784 ALfloat coeffs
[MAX_AMBI_COEFFS
];
786 /* Get the HRIR coefficients and delays just once, for the given
789 GetHrtfCoeffs(Device
->HrtfHandle
, Elev
, Azi
, Spread
,
790 voice
->Direct
.Params
[0].Hrtf
.Target
.Coeffs
,
791 voice
->Direct
.Params
[0].Hrtf
.Target
.Delay
);
792 voice
->Direct
.Params
[0].Hrtf
.Target
.Gain
= DryGain
* downmix_gain
;
794 /* Remaining channels use the same results as the first. */
795 for(c
= 1;c
< num_channels
;c
++)
798 if(chans
[c
].channel
!= LFE
)
799 voice
->Direct
.Params
[c
].Hrtf
.Target
= voice
->Direct
.Params
[0].Hrtf
.Target
;
802 /* Calculate the directional coefficients once, which apply to all
803 * input channels of the source sends.
805 CalcAngleCoeffs(Azi
, Elev
, Spread
, coeffs
);
807 for(i
= 0;i
< NumSends
;i
++)
809 const ALeffectslot
*Slot
= SendSlots
[i
];
811 for(c
= 0;c
< num_channels
;c
++)
814 if(chans
[c
].channel
!= LFE
)
815 ComputePanningGainsBF(Slot
->ChanMap
,
816 Slot
->NumChannels
, coeffs
, WetGain
[i
] * downmix_gain
,
817 voice
->Send
[i
].Params
[c
].Gains
.Target
824 /* Local sources on HRTF play with each channel panned to its
825 * relative location around the listener, providing "virtual
826 * speaker" responses.
828 for(c
= 0;c
< num_channels
;c
++)
830 ALfloat coeffs
[MAX_AMBI_COEFFS
];
832 if(chans
[c
].channel
== LFE
)
838 /* Get the HRIR coefficients and delays for this channel
841 GetHrtfCoeffs(Device
->HrtfHandle
,
842 chans
[c
].elevation
, chans
[c
].angle
, Spread
,
843 voice
->Direct
.Params
[c
].Hrtf
.Target
.Coeffs
,
844 voice
->Direct
.Params
[c
].Hrtf
.Target
.Delay
846 voice
->Direct
.Params
[c
].Hrtf
.Target
.Gain
= DryGain
;
848 /* Normal panning for auxiliary sends. */
849 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, Spread
, coeffs
);
851 for(i
= 0;i
< NumSends
;i
++)
853 const ALeffectslot
*Slot
= SendSlots
[i
];
855 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
856 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
862 voice
->Flags
|= VOICE_HAS_HRTF
;
866 /* Non-HRTF rendering. Use normal panning to the output. */
868 if(Distance
> FLT_EPSILON
)
870 ALfloat coeffs
[MAX_AMBI_COEFFS
];
873 /* Calculate NFC filter coefficient if needed. */
874 if(Device
->AvgSpeakerDist
> 0.0f
)
876 ALfloat mdist
= Distance
* Listener
->Params
.MetersPerUnit
;
877 ALfloat w1
= SPEEDOFSOUNDMETRESPERSEC
/
878 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
879 w0
= SPEEDOFSOUNDMETRESPERSEC
/
880 (mdist
* (ALfloat
)Device
->Frequency
);
881 /* Clamp w0 for really close distances, to prevent excessive
884 w0
= minf(w0
, w1
*4.0f
);
886 /* Adjust NFC filters. */
887 for(c
= 0;c
< num_channels
;c
++)
888 NfcFilterAdjust(&voice
->Direct
.Params
[c
].NFCtrlFilter
, w0
);
890 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
891 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
892 voice
->Flags
|= VOICE_HAS_NFC
;
895 /* Calculate the directional coefficients once, which apply to all
898 CalcAngleCoeffs((Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(Azi
, 1.5f
) : Azi
,
899 Elev
, Spread
, coeffs
);
901 for(c
= 0;c
< num_channels
;c
++)
903 /* Special-case LFE */
904 if(chans
[c
].channel
== LFE
)
906 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
908 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
909 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
914 ComputeDryPanGains(&Device
->Dry
,
915 coeffs
, DryGain
* downmix_gain
, voice
->Direct
.Params
[c
].Gains
.Target
919 for(i
= 0;i
< NumSends
;i
++)
921 const ALeffectslot
*Slot
= SendSlots
[i
];
923 for(c
= 0;c
< num_channels
;c
++)
926 if(chans
[c
].channel
!= LFE
)
927 ComputePanningGainsBF(Slot
->ChanMap
,
928 Slot
->NumChannels
, coeffs
, WetGain
[i
] * downmix_gain
,
929 voice
->Send
[i
].Params
[c
].Gains
.Target
938 if(Device
->AvgSpeakerDist
> 0.0f
)
940 /* If the source distance is 0, set w0 to w1 to act as a pass-
941 * through. We still want to pass the signal through the
942 * filters so they keep an appropriate history, in case the
943 * source moves away from the listener.
945 w0
= SPEEDOFSOUNDMETRESPERSEC
/
946 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
948 for(c
= 0;c
< num_channels
;c
++)
949 NfcFilterAdjust(&voice
->Direct
.Params
[c
].NFCtrlFilter
, w0
);
951 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
952 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
953 voice
->Flags
|= VOICE_HAS_NFC
;
956 for(c
= 0;c
< num_channels
;c
++)
958 ALfloat coeffs
[MAX_AMBI_COEFFS
];
960 /* Special-case LFE */
961 if(chans
[c
].channel
== LFE
)
963 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
965 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
966 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
972 (Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(chans
[c
].angle
, 3.0f
)
974 chans
[c
].elevation
, Spread
, coeffs
977 ComputeDryPanGains(&Device
->Dry
,
978 coeffs
, DryGain
, voice
->Direct
.Params
[c
].Gains
.Target
980 for(i
= 0;i
< NumSends
;i
++)
982 const ALeffectslot
*Slot
= SendSlots
[i
];
984 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
985 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
993 ALfloat hfScale
= props
->Direct
.HFReference
/ Frequency
;
994 ALfloat lfScale
= props
->Direct
.LFReference
/ Frequency
;
995 ALfloat gainHF
= maxf(DryGainHF
, 0.001f
); /* Limit -60dB */
996 ALfloat gainLF
= maxf(DryGainLF
, 0.001f
);
998 voice
->Direct
.FilterType
= AF_None
;
999 if(gainHF
!= 1.0f
) voice
->Direct
.FilterType
|= AF_LowPass
;
1000 if(gainLF
!= 1.0f
) voice
->Direct
.FilterType
|= AF_HighPass
;
1001 BiquadFilter_setParams(
1002 &voice
->Direct
.Params
[0].LowPass
, BiquadType_HighShelf
,
1003 gainHF
, hfScale
, calc_rcpQ_from_slope(gainHF
, 1.0f
)
1005 BiquadFilter_setParams(
1006 &voice
->Direct
.Params
[0].HighPass
, BiquadType_LowShelf
,
1007 gainLF
, lfScale
, calc_rcpQ_from_slope(gainLF
, 1.0f
)
1009 for(c
= 1;c
< num_channels
;c
++)
1011 BiquadFilter_copyParams(&voice
->Direct
.Params
[c
].LowPass
,
1012 &voice
->Direct
.Params
[0].LowPass
);
1013 BiquadFilter_copyParams(&voice
->Direct
.Params
[c
].HighPass
,
1014 &voice
->Direct
.Params
[0].HighPass
);
1017 for(i
= 0;i
< NumSends
;i
++)
1019 ALfloat hfScale
= props
->Send
[i
].HFReference
/ Frequency
;
1020 ALfloat lfScale
= props
->Send
[i
].LFReference
/ Frequency
;
1021 ALfloat gainHF
= maxf(WetGainHF
[i
], 0.001f
);
1022 ALfloat gainLF
= maxf(WetGainLF
[i
], 0.001f
);
1024 voice
->Send
[i
].FilterType
= AF_None
;
1025 if(gainHF
!= 1.0f
) voice
->Send
[i
].FilterType
|= AF_LowPass
;
1026 if(gainLF
!= 1.0f
) voice
->Send
[i
].FilterType
|= AF_HighPass
;
1027 BiquadFilter_setParams(
1028 &voice
->Send
[i
].Params
[0].LowPass
, BiquadType_HighShelf
,
1029 gainHF
, hfScale
, calc_rcpQ_from_slope(gainHF
, 1.0f
)
1031 BiquadFilter_setParams(
1032 &voice
->Send
[i
].Params
[0].HighPass
, BiquadType_LowShelf
,
1033 gainLF
, lfScale
, calc_rcpQ_from_slope(gainLF
, 1.0f
)
1035 for(c
= 1;c
< num_channels
;c
++)
1037 BiquadFilter_copyParams(&voice
->Send
[i
].Params
[c
].LowPass
,
1038 &voice
->Send
[i
].Params
[0].LowPass
);
1039 BiquadFilter_copyParams(&voice
->Send
[i
].Params
[c
].HighPass
,
1040 &voice
->Send
[i
].Params
[0].HighPass
);
1045 static void CalcNonAttnSourceParams(ALvoice
*voice
, const struct ALvoiceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
1047 const ALCdevice
*Device
= ALContext
->Device
;
1048 const ALlistener
*Listener
= ALContext
->Listener
;
1049 ALfloat DryGain
, DryGainHF
, DryGainLF
;
1050 ALfloat WetGain
[MAX_SENDS
];
1051 ALfloat WetGainHF
[MAX_SENDS
];
1052 ALfloat WetGainLF
[MAX_SENDS
];
1053 ALeffectslot
*SendSlots
[MAX_SENDS
];
1057 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
1058 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
1059 for(i
= 0;i
< Device
->NumAuxSends
;i
++)
1061 SendSlots
[i
] = props
->Send
[i
].Slot
;
1062 if(!SendSlots
[i
] && i
== 0)
1063 SendSlots
[i
] = ALContext
->DefaultSlot
;
1064 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1066 SendSlots
[i
] = NULL
;
1067 voice
->Send
[i
].Buffer
= NULL
;
1068 voice
->Send
[i
].Channels
= 0;
1072 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
1073 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
1077 /* Calculate the stepping value */
1078 Pitch
= (ALfloat
)ALBuffer
->Frequency
/(ALfloat
)Device
->Frequency
* props
->Pitch
;
1079 if(Pitch
> (ALfloat
)MAX_PITCH
)
1080 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1082 voice
->Step
= maxi(fastf2i(Pitch
* FRACTIONONE
), 1);
1083 if(props
->Resampler
== BSinc24Resampler
)
1084 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc24
);
1085 else if(props
->Resampler
== BSinc12Resampler
)
1086 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc12
);
1087 voice
->Resampler
= SelectResampler(props
->Resampler
);
1089 /* Calculate gains */
1090 DryGain
= clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
1091 DryGain
*= props
->Direct
.Gain
* Listener
->Params
.Gain
;
1092 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
1093 DryGainHF
= props
->Direct
.GainHF
;
1094 DryGainLF
= props
->Direct
.GainLF
;
1095 for(i
= 0;i
< Device
->NumAuxSends
;i
++)
1097 WetGain
[i
] = clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
1098 WetGain
[i
] *= props
->Send
[i
].Gain
* Listener
->Params
.Gain
;
1099 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
1100 WetGainHF
[i
] = props
->Send
[i
].GainHF
;
1101 WetGainLF
[i
] = props
->Send
[i
].GainLF
;
1104 CalcPanningAndFilters(voice
, 0.0f
, 0.0f
, 0.0f
, 0.0f
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1105 WetGainLF
, WetGainHF
, SendSlots
, ALBuffer
, props
, Listener
, Device
);
1108 static void CalcAttnSourceParams(ALvoice
*voice
, const struct ALvoiceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
1110 const ALCdevice
*Device
= ALContext
->Device
;
1111 const ALlistener
*Listener
= ALContext
->Listener
;
1112 const ALsizei NumSends
= Device
->NumAuxSends
;
1113 aluVector Position
, Velocity
, Direction
, SourceToListener
;
1114 ALfloat Distance
, ClampedDist
, DopplerFactor
;
1115 ALeffectslot
*SendSlots
[MAX_SENDS
];
1116 ALfloat RoomRolloff
[MAX_SENDS
];
1117 ALfloat DecayDistance
[MAX_SENDS
];
1118 ALfloat DecayLFDistance
[MAX_SENDS
];
1119 ALfloat DecayHFDistance
[MAX_SENDS
];
1120 ALfloat DryGain
, DryGainHF
, DryGainLF
;
1121 ALfloat WetGain
[MAX_SENDS
];
1122 ALfloat WetGainHF
[MAX_SENDS
];
1123 ALfloat WetGainLF
[MAX_SENDS
];
1130 /* Set mixing buffers and get send parameters. */
1131 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
1132 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
1133 for(i
= 0;i
< NumSends
;i
++)
1135 SendSlots
[i
] = props
->Send
[i
].Slot
;
1136 if(!SendSlots
[i
] && i
== 0)
1137 SendSlots
[i
] = ALContext
->DefaultSlot
;
1138 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1140 SendSlots
[i
] = NULL
;
1141 RoomRolloff
[i
] = 0.0f
;
1142 DecayDistance
[i
] = 0.0f
;
1143 DecayLFDistance
[i
] = 0.0f
;
1144 DecayHFDistance
[i
] = 0.0f
;
1146 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
1148 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ props
->RoomRolloffFactor
;
1149 /* Calculate the distances to where this effect's decay reaches
1152 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
*
1153 Listener
->Params
.ReverbSpeedOfSound
;
1154 DecayLFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayLFRatio
;
1155 DecayHFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayHFRatio
;
1156 if(SendSlots
[i
]->Params
.DecayHFLimit
)
1158 ALfloat airAbsorption
= SendSlots
[i
]->Params
.AirAbsorptionGainHF
;
1159 if(airAbsorption
< 1.0f
)
1161 /* Calculate the distance to where this effect's air
1162 * absorption reaches -60dB, and limit the effect's HF
1163 * decay distance (so it doesn't take any longer to decay
1164 * than the air would allow).
1166 ALfloat absorb_dist
= log10f(REVERB_DECAY_GAIN
) / log10f(airAbsorption
);
1167 DecayHFDistance
[i
] = minf(absorb_dist
, DecayHFDistance
[i
]);
1173 /* If the slot's auxiliary send auto is off, the data sent to the
1174 * effect slot is the same as the dry path, sans filter effects */
1175 RoomRolloff
[i
] = props
->RolloffFactor
;
1176 DecayDistance
[i
] = 0.0f
;
1177 DecayLFDistance
[i
] = 0.0f
;
1178 DecayHFDistance
[i
] = 0.0f
;
1183 voice
->Send
[i
].Buffer
= NULL
;
1184 voice
->Send
[i
].Channels
= 0;
1188 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
1189 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
1193 /* Transform source to listener space (convert to head relative) */
1194 aluVectorSet(&Position
, props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
);
1195 aluVectorSet(&Direction
, props
->Direction
[0], props
->Direction
[1], props
->Direction
[2], 0.0f
);
1196 aluVectorSet(&Velocity
, props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
);
1197 if(props
->HeadRelative
== AL_FALSE
)
1199 const aluMatrixf
*Matrix
= &Listener
->Params
.Matrix
;
1200 /* Transform source vectors */
1201 Position
= aluMatrixfVector(Matrix
, &Position
);
1202 Velocity
= aluMatrixfVector(Matrix
, &Velocity
);
1203 Direction
= aluMatrixfVector(Matrix
, &Direction
);
1207 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
1208 /* Offset the source velocity to be relative of the listener velocity */
1209 Velocity
.v
[0] += lvelocity
->v
[0];
1210 Velocity
.v
[1] += lvelocity
->v
[1];
1211 Velocity
.v
[2] += lvelocity
->v
[2];
1214 directional
= aluNormalize(Direction
.v
) > 0.0f
;
1215 SourceToListener
.v
[0] = -Position
.v
[0];
1216 SourceToListener
.v
[1] = -Position
.v
[1];
1217 SourceToListener
.v
[2] = -Position
.v
[2];
1218 SourceToListener
.v
[3] = 0.0f
;
1219 Distance
= aluNormalize(SourceToListener
.v
);
1221 /* Initial source gain */
1222 DryGain
= props
->Gain
;
1225 for(i
= 0;i
< NumSends
;i
++)
1227 WetGain
[i
] = props
->Gain
;
1228 WetGainHF
[i
] = 1.0f
;
1229 WetGainLF
[i
] = 1.0f
;
1232 /* Calculate distance attenuation */
1233 ClampedDist
= Distance
;
1235 switch(Listener
->Params
.SourceDistanceModel
?
1236 props
->DistanceModel
: Listener
->Params
.DistanceModel
)
1238 case InverseDistanceClamped
:
1239 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1240 if(props
->MaxDistance
< props
->RefDistance
)
1243 case InverseDistance
:
1244 if(!(props
->RefDistance
> 0.0f
))
1245 ClampedDist
= props
->RefDistance
;
1248 ALfloat dist
= lerp(props
->RefDistance
, ClampedDist
, props
->RolloffFactor
);
1249 if(dist
> 0.0f
) DryGain
*= props
->RefDistance
/ dist
;
1250 for(i
= 0;i
< NumSends
;i
++)
1252 dist
= lerp(props
->RefDistance
, ClampedDist
, RoomRolloff
[i
]);
1253 if(dist
> 0.0f
) WetGain
[i
] *= props
->RefDistance
/ dist
;
1258 case LinearDistanceClamped
:
1259 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1260 if(props
->MaxDistance
< props
->RefDistance
)
1263 case LinearDistance
:
1264 if(!(props
->MaxDistance
!= props
->RefDistance
))
1265 ClampedDist
= props
->RefDistance
;
1268 ALfloat attn
= props
->RolloffFactor
* (ClampedDist
-props
->RefDistance
) /
1269 (props
->MaxDistance
-props
->RefDistance
);
1270 DryGain
*= maxf(1.0f
- attn
, 0.0f
);
1271 for(i
= 0;i
< NumSends
;i
++)
1273 attn
= RoomRolloff
[i
] * (ClampedDist
-props
->RefDistance
) /
1274 (props
->MaxDistance
-props
->RefDistance
);
1275 WetGain
[i
] *= maxf(1.0f
- attn
, 0.0f
);
1280 case ExponentDistanceClamped
:
1281 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1282 if(props
->MaxDistance
< props
->RefDistance
)
1285 case ExponentDistance
:
1286 if(!(ClampedDist
> 0.0f
&& props
->RefDistance
> 0.0f
))
1287 ClampedDist
= props
->RefDistance
;
1290 DryGain
*= powf(ClampedDist
/props
->RefDistance
, -props
->RolloffFactor
);
1291 for(i
= 0;i
< NumSends
;i
++)
1292 WetGain
[i
] *= powf(ClampedDist
/props
->RefDistance
, -RoomRolloff
[i
]);
1296 case DisableDistance
:
1297 ClampedDist
= props
->RefDistance
;
1301 /* Calculate directional soundcones */
1302 if(directional
&& props
->InnerAngle
< 360.0f
)
1308 Angle
= acosf(aluDotproduct(&Direction
, &SourceToListener
));
1309 Angle
= RAD2DEG(Angle
* ConeScale
* 2.0f
);
1310 if(!(Angle
> props
->InnerAngle
))
1315 else if(Angle
< props
->OuterAngle
)
1317 ALfloat scale
= ( Angle
-props
->InnerAngle
) /
1318 (props
->OuterAngle
-props
->InnerAngle
);
1319 ConeVolume
= lerp(1.0f
, props
->OuterGain
, scale
);
1320 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, scale
);
1324 ConeVolume
= props
->OuterGain
;
1325 ConeHF
= props
->OuterGainHF
;
1328 DryGain
*= ConeVolume
;
1329 if(props
->DryGainHFAuto
)
1330 DryGainHF
*= ConeHF
;
1331 if(props
->WetGainAuto
)
1333 for(i
= 0;i
< NumSends
;i
++)
1334 WetGain
[i
] *= ConeVolume
;
1336 if(props
->WetGainHFAuto
)
1338 for(i
= 0;i
< NumSends
;i
++)
1339 WetGainHF
[i
] *= ConeHF
;
1343 /* Apply gain and frequency filters */
1344 DryGain
= clampf(DryGain
, props
->MinGain
, props
->MaxGain
);
1345 DryGain
= minf(DryGain
*props
->Direct
.Gain
*Listener
->Params
.Gain
, GAIN_MIX_MAX
);
1346 DryGainHF
*= props
->Direct
.GainHF
;
1347 DryGainLF
*= props
->Direct
.GainLF
;
1348 for(i
= 0;i
< NumSends
;i
++)
1350 WetGain
[i
] = clampf(WetGain
[i
], props
->MinGain
, props
->MaxGain
);
1351 WetGain
[i
] = minf(WetGain
[i
]*props
->Send
[i
].Gain
*Listener
->Params
.Gain
, GAIN_MIX_MAX
);
1352 WetGainHF
[i
] *= props
->Send
[i
].GainHF
;
1353 WetGainLF
[i
] *= props
->Send
[i
].GainLF
;
1356 /* Distance-based air absorption and initial send decay. */
1357 if(ClampedDist
> props
->RefDistance
&& props
->RolloffFactor
> 0.0f
)
1359 ALfloat meters_base
= (ClampedDist
-props
->RefDistance
) * props
->RolloffFactor
*
1360 Listener
->Params
.MetersPerUnit
;
1361 if(props
->AirAbsorptionFactor
> 0.0f
)
1363 ALfloat hfattn
= powf(AIRABSORBGAINHF
, meters_base
* props
->AirAbsorptionFactor
);
1364 DryGainHF
*= hfattn
;
1365 for(i
= 0;i
< NumSends
;i
++)
1366 WetGainHF
[i
] *= hfattn
;
1369 if(props
->WetGainAuto
)
1371 /* Apply a decay-time transformation to the wet path, based on the
1372 * source distance in meters. The initial decay of the reverb
1373 * effect is calculated and applied to the wet path.
1375 for(i
= 0;i
< NumSends
;i
++)
1377 ALfloat gain
, gainhf
, gainlf
;
1379 if(!(DecayDistance
[i
] > 0.0f
))
1382 gain
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayDistance
[i
]);
1384 /* Yes, the wet path's air absorption is applied with
1385 * WetGainAuto on, rather than WetGainHFAuto.
1389 gainhf
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayHFDistance
[i
]);
1390 WetGainHF
[i
] *= minf(gainhf
/ gain
, 1.0f
);
1391 gainlf
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayLFDistance
[i
]);
1392 WetGainLF
[i
] *= minf(gainlf
/ gain
, 1.0f
);
1399 /* Initial source pitch */
1400 Pitch
= props
->Pitch
;
1402 /* Calculate velocity-based doppler effect */
1403 DopplerFactor
= props
->DopplerFactor
* Listener
->Params
.DopplerFactor
;
1404 if(DopplerFactor
> 0.0f
)
1406 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
1407 const ALfloat SpeedOfSound
= Listener
->Params
.SpeedOfSound
;
1410 vss
= aluDotproduct(&Velocity
, &SourceToListener
) * DopplerFactor
;
1411 vls
= aluDotproduct(lvelocity
, &SourceToListener
) * DopplerFactor
;
1413 if(!(vls
< SpeedOfSound
))
1415 /* Listener moving away from the source at the speed of sound.
1416 * Sound waves can't catch it.
1420 else if(!(vss
< SpeedOfSound
))
1422 /* Source moving toward the listener at the speed of sound. Sound
1423 * waves bunch up to extreme frequencies.
1429 /* Source and listener movement is nominal. Calculate the proper
1432 Pitch
*= (SpeedOfSound
-vls
) / (SpeedOfSound
-vss
);
1436 /* Adjust pitch based on the buffer and output frequencies, and calculate
1437 * fixed-point stepping value.
1439 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/(ALfloat
)Device
->Frequency
;
1440 if(Pitch
> (ALfloat
)MAX_PITCH
)
1441 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1443 voice
->Step
= maxi(fastf2i(Pitch
* FRACTIONONE
), 1);
1444 if(props
->Resampler
== BSinc24Resampler
)
1445 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc24
);
1446 else if(props
->Resampler
== BSinc12Resampler
)
1447 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc12
);
1448 voice
->Resampler
= SelectResampler(props
->Resampler
);
1452 /* Clamp Y, in case rounding errors caused it to end up outside of
1455 ev
= asinf(clampf(-SourceToListener
.v
[1], -1.0f
, 1.0f
));
1456 /* Double negation on Z cancels out; negate once for changing source-
1457 * to-listener to listener-to-source, and again for right-handed coords
1460 az
= atan2f(-SourceToListener
.v
[0], SourceToListener
.v
[2]*ZScale
);
1465 if(props
->Radius
> Distance
)
1466 spread
= F_TAU
- Distance
/props
->Radius
*F_PI
;
1467 else if(Distance
> 0.0f
)
1468 spread
= asinf(props
->Radius
/ Distance
) * 2.0f
;
1472 CalcPanningAndFilters(voice
, az
, ev
, Distance
, spread
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1473 WetGainLF
, WetGainHF
, SendSlots
, ALBuffer
, props
, Listener
, Device
);
1476 static void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, bool force
)
1478 ALbufferlistitem
*BufferListItem
;
1479 struct ALvoiceProps
*props
;
1481 props
= ATOMIC_EXCHANGE_PTR(&voice
->Update
, NULL
, almemory_order_acq_rel
);
1482 if(!props
&& !force
) return;
1486 memcpy(voice
->Props
, props
,
1487 FAM_SIZE(struct ALvoiceProps
, Send
, context
->Device
->NumAuxSends
)
1490 ATOMIC_REPLACE_HEAD(struct ALvoiceProps
*, &context
->FreeVoiceProps
, props
);
1492 props
= voice
->Props
;
1494 BufferListItem
= ATOMIC_LOAD(&voice
->current_buffer
, almemory_order_relaxed
);
1495 while(BufferListItem
!= NULL
)
1497 const ALbuffer
*buffer
= NULL
;
1499 while(!buffer
&& i
< BufferListItem
->num_buffers
)
1500 buffer
= BufferListItem
->buffers
[i
];
1503 if(props
->SpatializeMode
== SpatializeOn
||
1504 (props
->SpatializeMode
== SpatializeAuto
&& buffer
->FmtChannels
== FmtMono
))
1505 CalcAttnSourceParams(voice
, props
, buffer
, context
);
1507 CalcNonAttnSourceParams(voice
, props
, buffer
, context
);
1510 BufferListItem
= ATOMIC_LOAD(&BufferListItem
->next
, almemory_order_acquire
);
1515 static void ProcessParamUpdates(ALCcontext
*ctx
, const struct ALeffectslotArray
*slots
)
1517 ALvoice
**voice
, **voice_end
;
1521 IncrementRef(&ctx
->UpdateCount
);
1522 if(!ATOMIC_LOAD(&ctx
->HoldUpdates
, almemory_order_acquire
))
1524 bool cforce
= CalcContextParams(ctx
);
1525 bool force
= CalcListenerParams(ctx
) | cforce
;
1526 for(i
= 0;i
< slots
->count
;i
++)
1527 force
|= CalcEffectSlotParams(slots
->slot
[i
], ctx
, cforce
);
1529 voice
= ctx
->Voices
;
1530 voice_end
= voice
+ ctx
->VoiceCount
;
1531 for(;voice
!= voice_end
;++voice
)
1533 source
= ATOMIC_LOAD(&(*voice
)->Source
, almemory_order_acquire
);
1534 if(source
) CalcSourceParams(*voice
, ctx
, force
);
1537 IncrementRef(&ctx
->UpdateCount
);
1541 static void ApplyStablizer(FrontStablizer
*Stablizer
, ALfloat (*restrict Buffer
)[BUFFERSIZE
],
1542 int lidx
, int ridx
, int cidx
, ALsizei SamplesToDo
,
1543 ALsizei NumChannels
)
1545 ALfloat (*restrict lsplit
)[BUFFERSIZE
] = ASSUME_ALIGNED(Stablizer
->LSplit
, 16);
1546 ALfloat (*restrict rsplit
)[BUFFERSIZE
] = ASSUME_ALIGNED(Stablizer
->RSplit
, 16);
1549 /* Apply an all-pass to all channels, except the front-left and front-
1550 * right, so they maintain the same relative phase.
1552 for(i
= 0;i
< NumChannels
;i
++)
1554 if(i
== lidx
|| i
== ridx
)
1556 splitterap_process(&Stablizer
->APFilter
[i
], Buffer
[i
], SamplesToDo
);
1559 bandsplit_process(&Stablizer
->LFilter
, lsplit
[1], lsplit
[0], Buffer
[lidx
], SamplesToDo
);
1560 bandsplit_process(&Stablizer
->RFilter
, rsplit
[1], rsplit
[0], Buffer
[ridx
], SamplesToDo
);
1562 for(i
= 0;i
< SamplesToDo
;i
++)
1564 ALfloat lfsum
, hfsum
;
1567 lfsum
= lsplit
[0][i
] + rsplit
[0][i
];
1568 hfsum
= lsplit
[1][i
] + rsplit
[1][i
];
1569 s
= lsplit
[0][i
] + lsplit
[1][i
] - rsplit
[0][i
] - rsplit
[1][i
];
1571 /* This pans the separate low- and high-frequency sums between being on
1572 * the center channel and the left/right channels. The low-frequency
1573 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1574 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1575 * values can be tweaked.
1577 m
= lfsum
*cosf(1.0f
/3.0f
* F_PI_2
) + hfsum
*cosf(1.0f
/4.0f
* F_PI_2
);
1578 c
= lfsum
*sinf(1.0f
/3.0f
* F_PI_2
) + hfsum
*sinf(1.0f
/4.0f
* F_PI_2
);
1580 /* The generated center channel signal adds to the existing signal,
1581 * while the modified left and right channels replace.
1583 Buffer
[lidx
][i
] = (m
+ s
) * 0.5f
;
1584 Buffer
[ridx
][i
] = (m
- s
) * 0.5f
;
1585 Buffer
[cidx
][i
] += c
* 0.5f
;
1589 static void ApplyDistanceComp(ALfloat (*restrict Samples
)[BUFFERSIZE
], DistanceComp
*distcomp
,
1590 ALfloat
*restrict Values
, ALsizei SamplesToDo
, ALsizei numchans
)
1594 Values
= ASSUME_ALIGNED(Values
, 16);
1595 for(c
= 0;c
< numchans
;c
++)
1597 ALfloat
*restrict inout
= ASSUME_ALIGNED(Samples
[c
], 16);
1598 const ALfloat gain
= distcomp
[c
].Gain
;
1599 const ALsizei base
= distcomp
[c
].Length
;
1600 ALfloat
*restrict distbuf
= ASSUME_ALIGNED(distcomp
[c
].Buffer
, 16);
1606 for(i
= 0;i
< SamplesToDo
;i
++)
1612 if(LIKELY(SamplesToDo
>= base
))
1614 for(i
= 0;i
< base
;i
++)
1615 Values
[i
] = distbuf
[i
];
1616 for(;i
< SamplesToDo
;i
++)
1617 Values
[i
] = inout
[i
-base
];
1618 memcpy(distbuf
, &inout
[SamplesToDo
-base
], base
*sizeof(ALfloat
));
1622 for(i
= 0;i
< SamplesToDo
;i
++)
1623 Values
[i
] = distbuf
[i
];
1624 memmove(distbuf
, distbuf
+SamplesToDo
, (base
-SamplesToDo
)*sizeof(ALfloat
));
1625 memcpy(distbuf
+base
-SamplesToDo
, inout
, SamplesToDo
*sizeof(ALfloat
));
1627 for(i
= 0;i
< SamplesToDo
;i
++)
1628 inout
[i
] = Values
[i
]*gain
;
1632 static void ApplyDither(ALfloat (*restrict Samples
)[BUFFERSIZE
], ALuint
*dither_seed
,
1633 const ALfloat quant_scale
, const ALsizei SamplesToDo
,
1634 const ALsizei numchans
)
1636 const ALfloat invscale
= 1.0f
/ quant_scale
;
1637 ALuint seed
= *dither_seed
;
1640 ASSUME(numchans
> 0);
1641 ASSUME(SamplesToDo
> 0);
1643 /* Dithering. Step 1, generate whitenoise (uniform distribution of random
1644 * values between -1 and +1). Step 2 is to add the noise to the samples,
1645 * before rounding and after scaling up to the desired quantization depth.
1647 for(c
= 0;c
< numchans
;c
++)
1649 ALfloat
*restrict samples
= Samples
[c
];
1650 for(i
= 0;i
< SamplesToDo
;i
++)
1652 ALfloat val
= samples
[i
] * quant_scale
;
1653 ALuint rng0
= dither_rng(&seed
);
1654 ALuint rng1
= dither_rng(&seed
);
1655 val
+= (ALfloat
)(rng0
*(1.0/UINT_MAX
) - rng1
*(1.0/UINT_MAX
));
1656 samples
[i
] = fast_roundf(val
) * invscale
;
1659 *dither_seed
= seed
;
1663 static inline ALfloat
Conv_ALfloat(ALfloat val
)
1665 static inline ALint
Conv_ALint(ALfloat val
)
1667 /* Floats have a 23-bit mantissa. There is an implied 1 bit in the mantissa
1668 * along with the sign bit, giving 25 bits total, so [-16777216, +16777216]
1669 * is the max value a normalized float can be scaled to before losing
1672 return fastf2i(clampf(val
*16777216.0f
, -16777216.0f
, 16777215.0f
))<<7;
1674 static inline ALshort
Conv_ALshort(ALfloat val
)
1675 { return fastf2i(clampf(val
*32768.0f
, -32768.0f
, 32767.0f
)); }
1676 static inline ALbyte
Conv_ALbyte(ALfloat val
)
1677 { return fastf2i(clampf(val
*128.0f
, -128.0f
, 127.0f
)); }
1679 /* Define unsigned output variations. */
1680 #define DECL_TEMPLATE(T, func, O) \
1681 static inline T Conv_##T(ALfloat val) { return func(val)+O; }
1683 DECL_TEMPLATE(ALubyte
, Conv_ALbyte
, 128)
1684 DECL_TEMPLATE(ALushort
, Conv_ALshort
, 32768)
1685 DECL_TEMPLATE(ALuint
, Conv_ALint
, 2147483648u)
1687 #undef DECL_TEMPLATE
1689 #define DECL_TEMPLATE(T, A) \
1690 static void Write##A(const ALfloat (*restrict InBuffer)[BUFFERSIZE], \
1691 ALvoid *OutBuffer, ALsizei Offset, ALsizei SamplesToDo, \
1696 ASSUME(numchans > 0); \
1697 ASSUME(SamplesToDo > 0); \
1699 for(j = 0;j < numchans;j++) \
1701 const ALfloat *restrict in = ASSUME_ALIGNED(InBuffer[j], 16); \
1702 T *restrict out = (T*)OutBuffer + Offset*numchans + j; \
1704 for(i = 0;i < SamplesToDo;i++) \
1705 out[i*numchans] = Conv_##T(in[i]); \
1709 DECL_TEMPLATE(ALfloat
, F32
)
1710 DECL_TEMPLATE(ALuint
, UI32
)
1711 DECL_TEMPLATE(ALint
, I32
)
1712 DECL_TEMPLATE(ALushort
, UI16
)
1713 DECL_TEMPLATE(ALshort
, I16
)
1714 DECL_TEMPLATE(ALubyte
, UI8
)
1715 DECL_TEMPLATE(ALbyte
, I8
)
1717 #undef DECL_TEMPLATE
1720 void aluMixData(ALCdevice
*device
, ALvoid
*OutBuffer
, ALsizei NumSamples
)
1722 ALsizei SamplesToDo
;
1723 ALsizei SamplesDone
;
1728 for(SamplesDone
= 0;SamplesDone
< NumSamples
;)
1730 SamplesToDo
= mini(NumSamples
-SamplesDone
, BUFFERSIZE
);
1731 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1732 memset(device
->Dry
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1733 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1734 for(c
= 0;c
< device
->FOAOut
.NumChannels
;c
++)
1735 memset(device
->FOAOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1736 if(device
->Dry
.Buffer
!= device
->RealOut
.Buffer
)
1737 for(c
= 0;c
< device
->RealOut
.NumChannels
;c
++)
1738 memset(device
->RealOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1740 IncrementRef(&device
->MixCount
);
1742 ctx
= ATOMIC_LOAD(&device
->ContextList
, almemory_order_acquire
);
1745 const struct ALeffectslotArray
*auxslots
;
1747 auxslots
= ATOMIC_LOAD(&ctx
->ActiveAuxSlots
, almemory_order_acquire
);
1748 ProcessParamUpdates(ctx
, auxslots
);
1750 for(i
= 0;i
< auxslots
->count
;i
++)
1752 ALeffectslot
*slot
= auxslots
->slot
[i
];
1753 for(c
= 0;c
< slot
->NumChannels
;c
++)
1754 memset(slot
->WetBuffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1757 /* source processing */
1758 for(i
= 0;i
< ctx
->VoiceCount
;i
++)
1760 ALvoice
*voice
= ctx
->Voices
[i
];
1761 ALsource
*source
= ATOMIC_LOAD(&voice
->Source
, almemory_order_acquire
);
1762 if(source
&& ATOMIC_LOAD(&voice
->Playing
, almemory_order_relaxed
) &&
1765 if(!MixSource(voice
, source
->id
, ctx
, SamplesToDo
))
1767 ATOMIC_STORE(&voice
->Source
, NULL
, almemory_order_relaxed
);
1768 ATOMIC_STORE(&voice
->Playing
, false, almemory_order_release
);
1769 SendSourceStoppedEvent(ctx
, source
->id
);
1774 /* effect slot processing */
1775 for(i
= 0;i
< auxslots
->count
;i
++)
1777 const ALeffectslot
*slot
= auxslots
->slot
[i
];
1778 ALeffectState
*state
= slot
->Params
.EffectState
;
1779 V(state
,process
)(SamplesToDo
, slot
->WetBuffer
, state
->OutBuffer
,
1780 state
->OutChannels
);
1783 ctx
= ATOMIC_LOAD(&ctx
->next
, almemory_order_relaxed
);
1786 /* Increment the clock time. Every second's worth of samples is
1787 * converted and added to clock base so that large sample counts don't
1788 * overflow during conversion. This also guarantees an exact, stable
1790 device
->SamplesDone
+= SamplesToDo
;
1791 device
->ClockBase
+= (device
->SamplesDone
/device
->Frequency
) * DEVICE_CLOCK_RES
;
1792 device
->SamplesDone
%= device
->Frequency
;
1793 IncrementRef(&device
->MixCount
);
1795 /* Apply post-process for finalizing the Dry mix to the RealOut
1796 * (Ambisonic decode, UHJ encode, etc).
1798 if(LIKELY(device
->PostProcess
))
1799 device
->PostProcess(device
, SamplesToDo
);
1801 if(device
->Stablizer
)
1803 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
1804 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
1805 int cidx
= GetChannelIdxByName(&device
->RealOut
, FrontCenter
);
1806 assert(lidx
>= 0 && ridx
>= 0 && cidx
>= 0);
1808 ApplyStablizer(device
->Stablizer
, device
->RealOut
.Buffer
, lidx
, ridx
, cidx
,
1809 SamplesToDo
, device
->RealOut
.NumChannels
);
1812 ApplyDistanceComp(device
->RealOut
.Buffer
, device
->ChannelDelay
, device
->TempBuffer
[0],
1813 SamplesToDo
, device
->RealOut
.NumChannels
);
1816 ApplyCompression(device
->Limiter
, device
->RealOut
.NumChannels
, SamplesToDo
,
1817 device
->RealOut
.Buffer
);
1819 if(device
->DitherDepth
> 0.0f
)
1820 ApplyDither(device
->RealOut
.Buffer
, &device
->DitherSeed
, device
->DitherDepth
,
1821 SamplesToDo
, device
->RealOut
.NumChannels
);
1823 if(LIKELY(OutBuffer
))
1825 ALfloat (*Buffer
)[BUFFERSIZE
] = device
->RealOut
.Buffer
;
1826 ALsizei Channels
= device
->RealOut
.NumChannels
;
1828 switch(device
->FmtType
)
1830 #define HANDLE_WRITE(T, S) case T: \
1831 Write##S(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
1832 HANDLE_WRITE(DevFmtByte
, I8
)
1833 HANDLE_WRITE(DevFmtUByte
, UI8
)
1834 HANDLE_WRITE(DevFmtShort
, I16
)
1835 HANDLE_WRITE(DevFmtUShort
, UI16
)
1836 HANDLE_WRITE(DevFmtInt
, I32
)
1837 HANDLE_WRITE(DevFmtUInt
, UI32
)
1838 HANDLE_WRITE(DevFmtFloat
, F32
)
1843 SamplesDone
+= SamplesToDo
;
1849 void aluHandleDisconnect(ALCdevice
*device
, const char *msg
, ...)
1856 if(!ATOMIC_EXCHANGE(&device
->Connected
, AL_FALSE
, almemory_order_acq_rel
))
1859 evt
.EnumType
= EventType_Disconnected
;
1860 evt
.Type
= AL_EVENT_TYPE_DISCONNECTED_SOFT
;
1864 va_start(args
, msg
);
1865 msglen
= vsnprintf(evt
.Message
, sizeof(evt
.Message
), msg
, args
);
1868 if(msglen
< 0 || (size_t)msglen
>= sizeof(evt
.Message
))
1869 evt
.Message
[sizeof(evt
.Message
)-1] = 0;
1871 ctx
= ATOMIC_LOAD_SEQ(&device
->ContextList
);
1874 ALbitfieldSOFT enabledevt
= ATOMIC_LOAD(&ctx
->EnabledEvts
, almemory_order_acquire
);
1877 if((enabledevt
&EventType_Disconnected
) &&
1878 ll_ringbuffer_write(ctx
->AsyncEvents
, (const char*)&evt
, 1) == 1)
1879 alsem_post(&ctx
->EventSem
);
1881 for(i
= 0;i
< ctx
->VoiceCount
;i
++)
1883 ALvoice
*voice
= ctx
->Voices
[i
];
1886 source
= ATOMIC_EXCHANGE_PTR(&voice
->Source
, NULL
, almemory_order_relaxed
);
1887 if(source
&& ATOMIC_LOAD(&voice
->Playing
, almemory_order_relaxed
))
1889 /* If the source's voice was playing, it's now effectively
1890 * stopped (the source state will be updated the next time it's
1893 SendSourceStoppedEvent(ctx
, source
->id
);
1895 ATOMIC_STORE(&voice
->Playing
, false, almemory_order_release
);
1898 ctx
= ATOMIC_LOAD(&ctx
->next
, almemory_order_relaxed
);