Remove another gratuitous [[likely]]
[openal-soft.git] / common / phase_shifter.h
blob0d4166bce35629d1c55bd14f25d36f965b5da211
1 #ifndef PHASE_SHIFTER_H
2 #define PHASE_SHIFTER_H
4 #ifdef HAVE_SSE_INTRINSICS
5 #include <xmmintrin.h>
6 #elif defined(HAVE_NEON)
7 #include <arm_neon.h>
8 #endif
10 #include <array>
11 #include <stddef.h>
13 #include "alcomplex.h"
14 #include "alspan.h"
17 /* Implements a wide-band +90 degree phase-shift. Note that this should be
18 * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
19 * signal delay (FilterSize/2) to properly align.
21 template<size_t FilterSize>
22 struct PhaseShifterT {
23 static_assert(FilterSize >= 16, "FilterSize needs to be at least 16");
24 static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");
26 alignas(16) std::array<float,FilterSize/2> mCoeffs{};
28 /* Some notes on this filter construction.
30 * A wide-band phase-shift filter needs a delay to maintain linearity. A
31 * dirac impulse in the center of a time-domain buffer represents a filter
32 * passing all frequencies through as-is with a pure delay. Converting that
33 * to the frequency domain, adjusting the phase of each frequency bin by
34 * +90 degrees, then converting back to the time domain, results in a FIR
35 * filter that applies a +90 degree wide-band phase-shift.
37 * A particularly notable aspect of the time-domain filter response is that
38 * every other coefficient is 0. This allows doubling the effective size of
39 * the filter, by storing only the non-0 coefficients and double-stepping
40 * over the input to apply it.
42 * Additionally, the resulting filter is independent of the sample rate.
43 * The same filter can be applied regardless of the device's sample rate
44 * and achieve the same effect.
46 PhaseShifterT()
48 using complex_d = std::complex<double>;
49 constexpr size_t fft_size{FilterSize};
50 constexpr size_t half_size{fft_size / 2};
52 auto fftBuffer = std::make_unique<complex_d[]>(fft_size);
53 std::fill_n(fftBuffer.get(), fft_size, complex_d{});
54 fftBuffer[half_size] = 1.0;
56 forward_fft(al::as_span(fftBuffer.get(), fft_size));
57 for(size_t i{0};i < half_size+1;++i)
58 fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()};
59 for(size_t i{half_size+1};i < fft_size;++i)
60 fftBuffer[i] = std::conj(fftBuffer[fft_size - i]);
61 inverse_fft(al::as_span(fftBuffer.get(), fft_size));
63 auto fftiter = fftBuffer.get() + half_size + (FilterSize/2 - 1);
64 for(float &coeff : mCoeffs)
66 coeff = static_cast<float>(fftiter->real() / double{fft_size});
67 fftiter -= 2;
71 void process(al::span<float> dst, const float *RESTRICT src) const;
73 private:
74 #if defined(HAVE_NEON)
75 /* There doesn't seem to be NEON intrinsics to do this kind of stipple
76 * shuffling, so there's two custom methods for it.
78 static auto shuffle_2020(float32x4_t a, float32x4_t b)
80 float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))};
81 ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1);
82 ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2);
83 ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3);
84 return ret;
86 static auto shuffle_3131(float32x4_t a, float32x4_t b)
88 float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))};
89 ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1);
90 ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2);
91 ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3);
92 return ret;
94 static auto unpacklo(float32x4_t a, float32x4_t b)
96 float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
97 return vcombine_f32(result.val[0], result.val[1]);
99 static auto unpackhi(float32x4_t a, float32x4_t b)
101 float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
102 return vcombine_f32(result.val[0], result.val[1]);
104 static auto load4(float32_t a, float32_t b, float32_t c, float32_t d)
106 float32x4_t ret{vmovq_n_f32(a)};
107 ret = vsetq_lane_f32(b, ret, 1);
108 ret = vsetq_lane_f32(c, ret, 2);
109 ret = vsetq_lane_f32(d, ret, 3);
110 return ret;
112 #endif
115 template<size_t S>
116 inline void PhaseShifterT<S>::process(al::span<float> dst, const float *RESTRICT src) const
118 #ifdef HAVE_SSE_INTRINSICS
119 if(size_t todo{dst.size()>>1})
121 auto *out = reinterpret_cast<__m64*>(dst.data());
122 do {
123 __m128 r04{_mm_setzero_ps()};
124 __m128 r14{_mm_setzero_ps()};
125 for(size_t j{0};j < mCoeffs.size();j+=4)
127 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
128 const __m128 s0{_mm_loadu_ps(&src[j*2])};
129 const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
131 __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
132 r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
134 s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
135 r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
137 src += 2;
139 __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
140 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
142 _mm_storel_pi(out, r4);
143 ++out;
144 } while(--todo);
146 if((dst.size()&1))
148 __m128 r4{_mm_setzero_ps()};
149 for(size_t j{0};j < mCoeffs.size();j+=4)
151 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
152 const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
153 r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
155 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
156 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
158 dst.back() = _mm_cvtss_f32(r4);
161 #elif defined(HAVE_NEON)
163 size_t pos{0};
164 if(size_t todo{dst.size()>>1})
166 do {
167 float32x4_t r04{vdupq_n_f32(0.0f)};
168 float32x4_t r14{vdupq_n_f32(0.0f)};
169 for(size_t j{0};j < mCoeffs.size();j+=4)
171 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
172 const float32x4_t s0{vld1q_f32(&src[j*2])};
173 const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};
175 r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
176 r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
178 src += 2;
180 float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
181 float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};
183 vst1_f32(&dst[pos], r2);
184 pos += 2;
185 } while(--todo);
187 if((dst.size()&1))
189 float32x4_t r4{vdupq_n_f32(0.0f)};
190 for(size_t j{0};j < mCoeffs.size();j+=4)
192 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
193 const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
194 r4 = vmlaq_f32(r4, s, coeffs);
196 r4 = vaddq_f32(r4, vrev64q_f32(r4));
197 dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
200 #else
202 for(float &output : dst)
204 float ret{0.0f};
205 for(size_t j{0};j < mCoeffs.size();++j)
206 ret += src[j*2] * mCoeffs[j];
208 output = ret;
209 ++src;
211 #endif
214 #endif /* PHASE_SHIFTER_H */