2 * An example showing how to play a stream sync'd to video, using ffmpeg.
7 #include <condition_variable>
32 _Pragma("GCC diagnostic push")
33 _Pragma("GCC diagnostic ignored \"-Wconversion\"")
34 _Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
37 #include "libavcodec/avcodec.h"
38 #include "libavformat/avformat.h"
39 #include "libavformat/avio.h"
40 #include "libavformat/version.h"
41 #include "libavutil/avutil.h"
42 #include "libavutil/error.h"
43 #include "libavutil/frame.h"
44 #include "libavutil/mem.h"
45 #include "libavutil/pixfmt.h"
46 #include "libavutil/rational.h"
47 #include "libavutil/samplefmt.h"
48 #include "libavutil/time.h"
49 #include "libavutil/version.h"
50 #include "libavutil/channel_layout.h"
51 #include "libswscale/swscale.h"
52 #include "libswresample/swresample.h"
54 constexpr auto AVNoPtsValue
= AV_NOPTS_VALUE
;
55 constexpr auto AVErrorEOF
= AVERROR_EOF
;
62 _Pragma("GCC diagnostic pop")
69 #include "common/alhelpers.h"
74 inline constexpr int64_t operator "" _i64(unsigned long long int n
) noexcept
{ return static_cast<int64_t>(n
); }
77 #define M_PI (3.14159265358979323846)
80 using fixed32
= std::chrono::duration
<int64_t,std::ratio
<1,(1_i64
<<32)>>;
81 using nanoseconds
= std::chrono::nanoseconds
;
82 using microseconds
= std::chrono::microseconds
;
83 using milliseconds
= std::chrono::milliseconds
;
84 using seconds
= std::chrono::seconds
;
85 using seconds_d64
= std::chrono::duration
<double>;
86 using std::chrono::duration_cast
;
88 const std::string AppName
{"alffplay"};
90 ALenum DirectOutMode
{AL_FALSE
};
91 bool EnableWideStereo
{false};
92 bool EnableUhj
{false};
93 bool EnableSuperStereo
{false};
94 bool DisableVideo
{false};
95 LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT
;
96 LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT
;
97 LPALEVENTCONTROLSOFT alEventControlSOFT
;
98 LPALEVENTCALLBACKSOFT alEventCallbackSOFT
;
100 LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT
;
102 const seconds AVNoSyncThreshold
{10};
104 #define VIDEO_PICTURE_QUEUE_SIZE 24
106 const seconds_d64 AudioSyncThreshold
{0.03};
107 const milliseconds AudioSampleCorrectionMax
{50};
108 /* Averaging filter coefficient for audio sync. */
109 #define AUDIO_DIFF_AVG_NB 20
110 const double AudioAvgFilterCoeff
{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB
)};
111 /* Per-buffer size, in time */
112 constexpr milliseconds AudioBufferTime
{20};
113 /* Buffer total size, in time (should be divisible by the buffer time) */
114 constexpr milliseconds AudioBufferTotalTime
{800};
115 constexpr auto AudioBufferCount
= AudioBufferTotalTime
/ AudioBufferTime
;
118 FF_MOVIE_DONE_EVENT
= SDL_USEREVENT
121 enum class SyncMaster
{
130 inline microseconds
get_avtime()
131 { return microseconds
{av_gettime()}; }
133 /* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
134 struct AVIOContextDeleter
{
135 void operator()(AVIOContext
*ptr
) { avio_closep(&ptr
); }
137 using AVIOContextPtr
= std::unique_ptr
<AVIOContext
,AVIOContextDeleter
>;
139 struct AVFormatCtxDeleter
{
140 void operator()(AVFormatContext
*ptr
) { avformat_close_input(&ptr
); }
142 using AVFormatCtxPtr
= std::unique_ptr
<AVFormatContext
,AVFormatCtxDeleter
>;
144 struct AVCodecCtxDeleter
{
145 void operator()(AVCodecContext
*ptr
) { avcodec_free_context(&ptr
); }
147 using AVCodecCtxPtr
= std::unique_ptr
<AVCodecContext
,AVCodecCtxDeleter
>;
149 struct AVPacketDeleter
{
150 void operator()(AVPacket
*pkt
) { av_packet_free(&pkt
); }
152 using AVPacketPtr
= std::unique_ptr
<AVPacket
,AVPacketDeleter
>;
154 struct AVFrameDeleter
{
155 void operator()(AVFrame
*ptr
) { av_frame_free(&ptr
); }
157 using AVFramePtr
= std::unique_ptr
<AVFrame
,AVFrameDeleter
>;
159 struct SwrContextDeleter
{
160 void operator()(SwrContext
*ptr
) { swr_free(&ptr
); }
162 using SwrContextPtr
= std::unique_ptr
<SwrContext
,SwrContextDeleter
>;
164 struct SwsContextDeleter
{
165 void operator()(SwsContext
*ptr
) { sws_freeContext(ptr
); }
167 using SwsContextPtr
= std::unique_ptr
<SwsContext
,SwsContextDeleter
>;
170 template<size_t SizeLimit
>
172 std::mutex mPacketMutex
, mFrameMutex
;
173 std::condition_variable mPacketCond
;
174 std::condition_variable mInFrameCond
, mOutFrameCond
;
176 std::deque
<AVPacketPtr
> mPackets
;
177 size_t mTotalSize
{0};
178 bool mFinished
{false};
180 AVPacketPtr
getPacket()
182 std::unique_lock
<std::mutex
> plock
{mPacketMutex
};
183 while(mPackets
.empty() && !mFinished
)
184 mPacketCond
.wait(plock
);
188 auto ret
= std::move(mPackets
.front());
189 mPackets
.pop_front();
190 mTotalSize
-= static_cast<unsigned int>(ret
->size
);
195 int sendPacket(AVCodecContext
*codecctx
)
197 AVPacketPtr packet
{getPacket()};
201 std::unique_lock
<std::mutex
> flock
{mFrameMutex
};
202 while((ret
=avcodec_send_packet(codecctx
, packet
.get())) == AVERROR(EAGAIN
))
203 mInFrameCond
.wait_for(flock
, milliseconds
{50});
205 mOutFrameCond
.notify_one();
209 if(!ret
) return AVErrorEOF
;
210 std::cerr
<< "Failed to send flush packet: "<<ret
<<std::endl
;
214 std::cerr
<< "Failed to send packet: "<<ret
<<std::endl
;
218 int receiveFrame(AVCodecContext
*codecctx
, AVFrame
*frame
)
222 std::unique_lock
<std::mutex
> flock
{mFrameMutex
};
223 while((ret
=avcodec_receive_frame(codecctx
, frame
)) == AVERROR(EAGAIN
))
224 mOutFrameCond
.wait_for(flock
, milliseconds
{50});
226 mInFrameCond
.notify_one();
233 std::lock_guard
<std::mutex
> _
{mPacketMutex
};
236 mPacketCond
.notify_one();
242 std::lock_guard
<std::mutex
> _
{mPacketMutex
};
248 mPacketCond
.notify_one();
251 bool put(const AVPacket
*pkt
)
254 std::unique_lock
<std::mutex
> lock
{mPacketMutex
};
255 if(mTotalSize
>= SizeLimit
|| mFinished
)
258 mPackets
.push_back(AVPacketPtr
{av_packet_alloc()});
259 if(av_packet_ref(mPackets
.back().get(), pkt
) != 0)
265 mTotalSize
+= static_cast<unsigned int>(mPackets
.back()->size
);
267 mPacketCond
.notify_one();
278 AVStream
*mStream
{nullptr};
279 AVCodecCtxPtr mCodecCtx
;
281 DataQueue
<2*1024*1024> mQueue
;
283 /* Used for clock difference average computation */
284 seconds_d64 mClockDiffAvg
{0};
286 /* Time of the next sample to be buffered */
287 nanoseconds mCurrentPts
{0};
289 /* Device clock time that the stream started at. */
290 nanoseconds mDeviceStartTime
{nanoseconds::min()};
292 /* Decompressed sample frame, and swresample context for conversion */
293 AVFramePtr mDecodedFrame
;
294 SwrContextPtr mSwresCtx
;
296 /* Conversion format, for what gets fed to OpenAL */
297 uint64_t mDstChanLayout
{0};
298 AVSampleFormat mDstSampleFmt
{AV_SAMPLE_FMT_NONE
};
300 /* Storage of converted samples */
301 uint8_t *mSamples
{nullptr};
302 int mSamplesLen
{0}; /* In samples */
306 std::unique_ptr
<uint8_t[]> mBufferData
;
307 size_t mBufferDataSize
{0};
308 std::atomic
<size_t> mReadPos
{0};
309 std::atomic
<size_t> mWritePos
{0};
312 ALenum mFormat
{AL_NONE
};
313 ALuint mFrameSize
{0};
315 std::mutex mSrcMutex
;
316 std::condition_variable mSrcCond
;
317 std::atomic_flag mConnected
;
319 std::array
<ALuint
,AudioBufferCount
> mBuffers
{};
320 ALuint mBufferIdx
{0};
322 AudioState(MovieState
&movie
) : mMovie(movie
)
323 { mConnected
.test_and_set(std::memory_order_relaxed
); }
327 alDeleteSources(1, &mSource
);
329 alDeleteBuffers(static_cast<ALsizei
>(mBuffers
.size()), mBuffers
.data());
334 static void AL_APIENTRY
eventCallbackC(ALenum eventType
, ALuint object
, ALuint param
,
335 ALsizei length
, const ALchar
*message
, void *userParam
)
336 { static_cast<AudioState
*>(userParam
)->eventCallback(eventType
, object
, param
, length
, message
); }
337 void eventCallback(ALenum eventType
, ALuint object
, ALuint param
, ALsizei length
,
338 const ALchar
*message
);
340 static ALsizei AL_APIENTRY
bufferCallbackC(void *userptr
, void *data
, ALsizei size
)
341 { return static_cast<AudioState
*>(userptr
)->bufferCallback(data
, size
); }
342 ALsizei
bufferCallback(void *data
, ALsizei size
);
344 nanoseconds
getClockNoLock();
345 nanoseconds
getClock()
347 std::lock_guard
<std::mutex
> lock
{mSrcMutex
};
348 return getClockNoLock();
351 bool startPlayback();
355 bool readAudio(uint8_t *samples
, unsigned int length
, int &sample_skip
);
356 bool readAudio(int sample_skip
);
364 AVStream
*mStream
{nullptr};
365 AVCodecCtxPtr mCodecCtx
;
367 DataQueue
<14*1024*1024> mQueue
;
369 /* The pts of the currently displayed frame, and the time (av_gettime) it
370 * was last updated - used to have running video pts
372 nanoseconds mDisplayPts
{0};
373 microseconds mDisplayPtsTime
{microseconds::min()};
374 std::mutex mDispPtsMutex
;
376 /* Swscale context for format conversion */
377 SwsContextPtr mSwscaleCtx
;
381 nanoseconds mPts
{nanoseconds::min()};
383 std::array
<Picture
,VIDEO_PICTURE_QUEUE_SIZE
> mPictQ
;
384 std::atomic
<size_t> mPictQRead
{0u}, mPictQWrite
{1u};
385 std::mutex mPictQMutex
;
386 std::condition_variable mPictQCond
;
388 SDL_Texture
*mImage
{nullptr};
389 int mWidth
{0}, mHeight
{0}; /* Full texture size */
390 bool mFirstUpdate
{true};
392 std::atomic
<bool> mEOS
{false};
393 std::atomic
<bool> mFinalUpdate
{false};
395 VideoState(MovieState
&movie
) : mMovie(movie
) { }
399 SDL_DestroyTexture(mImage
);
403 nanoseconds
getClock();
405 void display(SDL_Window
*screen
, SDL_Renderer
*renderer
, AVFrame
*frame
);
406 void updateVideo(SDL_Window
*screen
, SDL_Renderer
*renderer
, bool redraw
);
411 AVIOContextPtr mIOContext
;
412 AVFormatCtxPtr mFormatCtx
;
414 SyncMaster mAVSyncType
{SyncMaster::Default
};
416 microseconds mClockBase
{microseconds::min()};
418 std::atomic
<bool> mQuit
{false};
423 std::mutex mStartupMutex
;
424 std::condition_variable mStartupCond
;
425 bool mStartupDone
{false};
427 std::thread mParseThread
;
428 std::thread mAudioThread
;
429 std::thread mVideoThread
;
431 std::string mFilename
;
433 MovieState(std::string fname
)
434 : mAudio(*this), mVideo(*this), mFilename(std::move(fname
))
439 if(mParseThread
.joinable())
443 static int decode_interrupt_cb(void *ctx
);
445 void setTitle(SDL_Window
*window
);
448 nanoseconds
getClock();
450 nanoseconds
getMasterClock();
452 nanoseconds
getDuration();
454 int streamComponentOpen(unsigned int stream_index
);
459 nanoseconds
AudioState::getClockNoLock()
461 // The audio clock is the timestamp of the sample currently being heard.
462 if(alcGetInteger64vSOFT
)
464 // If device start time = min, we aren't playing yet.
465 if(mDeviceStartTime
== nanoseconds::min())
466 return nanoseconds::zero();
468 // Get the current device clock time and latency.
469 auto device
= alcGetContextsDevice(alcGetCurrentContext());
470 ALCint64SOFT devtimes
[2]{0,0};
471 alcGetInteger64vSOFT(device
, ALC_DEVICE_CLOCK_LATENCY_SOFT
, 2, devtimes
);
472 auto latency
= nanoseconds
{devtimes
[1]};
473 auto device_time
= nanoseconds
{devtimes
[0]};
475 // The clock is simply the current device time relative to the recorded
476 // start time. We can also subtract the latency to get more a accurate
477 // position of where the audio device actually is in the output stream.
478 return device_time
- mDeviceStartTime
- latency
;
481 if(mBufferDataSize
> 0)
483 if(mDeviceStartTime
== nanoseconds::min())
484 return nanoseconds::zero();
486 /* With a callback buffer and no device clock, mDeviceStartTime is
487 * actually the timestamp of the first sample frame played. The audio
488 * clock, then, is that plus the current source offset.
490 ALint64SOFT offset
[2];
491 if(alGetSourcei64vSOFT
)
492 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_LATENCY_SOFT
, offset
);
496 alGetSourcei(mSource
, AL_SAMPLE_OFFSET
, &ioffset
);
497 offset
[0] = ALint64SOFT
{ioffset
} << 32;
500 /* NOTE: The source state must be checked last, in case an underrun
501 * occurs and the source stops between getting the state and retrieving
502 * the offset+latency.
505 alGetSourcei(mSource
, AL_SOURCE_STATE
, &status
);
508 if(status
== AL_PLAYING
|| status
== AL_PAUSED
)
509 pts
= mDeviceStartTime
- nanoseconds
{offset
[1]} +
510 duration_cast
<nanoseconds
>(fixed32
{offset
[0] / mCodecCtx
->sample_rate
});
513 /* If the source is stopped, the pts of the next sample to be heard
514 * is the pts of the next sample to be buffered, minus the amount
515 * already in the buffer ready to play.
517 const size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
518 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
519 const size_t readable
{((woffset
>= roffset
) ? woffset
: (mBufferDataSize
+woffset
)) -
522 pts
= mCurrentPts
- nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
;
528 /* The source-based clock is based on 4 components:
529 * 1 - The timestamp of the next sample to buffer (mCurrentPts)
530 * 2 - The length of the source's buffer queue
531 * (AudioBufferTime*AL_BUFFERS_QUEUED)
532 * 3 - The offset OpenAL is currently at in the source (the first value
533 * from AL_SAMPLE_OFFSET_LATENCY_SOFT)
534 * 4 - The latency between OpenAL and the DAC (the second value from
535 * AL_SAMPLE_OFFSET_LATENCY_SOFT)
537 * Subtracting the length of the source queue from the next sample's
538 * timestamp gives the timestamp of the sample at the start of the source
539 * queue. Adding the source offset to that results in the timestamp for the
540 * sample at OpenAL's current position, and subtracting the source latency
541 * from that gives the timestamp of the sample currently at the DAC.
543 nanoseconds pts
{mCurrentPts
};
546 ALint64SOFT offset
[2];
547 if(alGetSourcei64vSOFT
)
548 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_LATENCY_SOFT
, offset
);
552 alGetSourcei(mSource
, AL_SAMPLE_OFFSET
, &ioffset
);
553 offset
[0] = ALint64SOFT
{ioffset
} << 32;
556 ALint queued
, status
;
557 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
558 alGetSourcei(mSource
, AL_SOURCE_STATE
, &status
);
560 /* If the source is AL_STOPPED, then there was an underrun and all
561 * buffers are processed, so ignore the source queue. The audio thread
562 * will put the source into an AL_INITIAL state and clear the queue
563 * when it starts recovery.
565 if(status
!= AL_STOPPED
)
567 pts
-= AudioBufferTime
*queued
;
568 pts
+= duration_cast
<nanoseconds
>(fixed32
{offset
[0] / mCodecCtx
->sample_rate
});
570 /* Don't offset by the latency if the source isn't playing. */
571 if(status
== AL_PLAYING
)
572 pts
-= nanoseconds
{offset
[1]};
575 return std::max(pts
, nanoseconds::zero());
578 bool AudioState::startPlayback()
580 const size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
581 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
582 const size_t readable
{((woffset
>= roffset
) ? woffset
: (mBufferDataSize
+woffset
)) -
585 if(mBufferDataSize
> 0)
589 if(!alcGetInteger64vSOFT
)
590 mDeviceStartTime
= mCurrentPts
-
591 nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
;
596 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
597 if(queued
== 0) return false;
600 alSourcePlay(mSource
);
601 if(alcGetInteger64vSOFT
)
603 /* Subtract the total buffer queue time from the current pts to get the
604 * pts of the start of the queue.
606 int64_t srctimes
[2]{0,0};
607 alGetSourcei64vSOFT(mSource
, AL_SAMPLE_OFFSET_CLOCK_SOFT
, srctimes
);
608 auto device_time
= nanoseconds
{srctimes
[1]};
609 auto src_offset
= duration_cast
<nanoseconds
>(fixed32
{srctimes
[0]}) /
610 mCodecCtx
->sample_rate
;
612 /* The mixer may have ticked and incremented the device time and sample
613 * offset, so subtract the source offset from the device time to get
614 * the device time the source started at. Also subtract startpts to get
615 * the device time the stream would have started at to reach where it
618 if(mBufferDataSize
> 0)
620 nanoseconds startpts
{mCurrentPts
-
621 nanoseconds
{seconds
{readable
/mFrameSize
}}/mCodecCtx
->sample_rate
};
622 mDeviceStartTime
= device_time
- src_offset
- startpts
;
626 nanoseconds startpts
{mCurrentPts
- AudioBufferTotalTime
};
627 mDeviceStartTime
= device_time
- src_offset
- startpts
;
633 int AudioState::getSync()
635 if(mMovie
.mAVSyncType
== SyncMaster::Audio
)
638 auto ref_clock
= mMovie
.getMasterClock();
639 auto diff
= ref_clock
- getClockNoLock();
641 if(!(diff
< AVNoSyncThreshold
&& diff
> -AVNoSyncThreshold
))
643 /* Difference is TOO big; reset accumulated average */
644 mClockDiffAvg
= seconds_d64::zero();
648 /* Accumulate the diffs */
649 mClockDiffAvg
= mClockDiffAvg
*AudioAvgFilterCoeff
+ diff
;
650 auto avg_diff
= mClockDiffAvg
*(1.0 - AudioAvgFilterCoeff
);
651 if(avg_diff
< AudioSyncThreshold
/2.0 && avg_diff
> -AudioSyncThreshold
)
654 /* Constrain the per-update difference to avoid exceedingly large skips */
655 diff
= std::min
<nanoseconds
>(diff
, AudioSampleCorrectionMax
);
656 return static_cast<int>(duration_cast
<seconds
>(diff
*mCodecCtx
->sample_rate
).count());
659 int AudioState::decodeFrame()
662 while(int ret
{mQueue
.receiveFrame(mCodecCtx
.get(), mDecodedFrame
.get())})
664 if(ret
== AVErrorEOF
) return 0;
665 std::cerr
<< "Failed to receive frame: "<<ret
<<std::endl
;
667 } while(mDecodedFrame
->nb_samples
<= 0);
669 /* If provided, update w/ pts */
670 if(mDecodedFrame
->best_effort_timestamp
!= AVNoPtsValue
)
671 mCurrentPts
= duration_cast
<nanoseconds
>(seconds_d64
{av_q2d(mStream
->time_base
) *
672 static_cast<double>(mDecodedFrame
->best_effort_timestamp
)});
674 if(mDecodedFrame
->nb_samples
> mSamplesMax
)
677 av_samples_alloc(&mSamples
, nullptr, mCodecCtx
->channels
, mDecodedFrame
->nb_samples
,
679 mSamplesMax
= mDecodedFrame
->nb_samples
;
681 /* Return the amount of sample frames converted */
682 int data_size
{swr_convert(mSwresCtx
.get(), &mSamples
, mDecodedFrame
->nb_samples
,
683 const_cast<const uint8_t**>(mDecodedFrame
->data
), mDecodedFrame
->nb_samples
)};
685 av_frame_unref(mDecodedFrame
.get());
689 /* Duplicates the sample at in to out, count times. The frame size is a
690 * multiple of the template type size.
693 static void sample_dup(uint8_t *out
, const uint8_t *in
, size_t count
, size_t frame_size
)
695 auto *sample
= reinterpret_cast<const T
*>(in
);
696 auto *dst
= reinterpret_cast<T
*>(out
);
698 /* NOTE: frame_size is a multiple of sizeof(T). */
699 size_t type_mult
{frame_size
/ sizeof(T
)};
701 std::fill_n(dst
, count
, *sample
);
702 else for(size_t i
{0};i
< count
;++i
)
704 for(size_t j
{0};j
< type_mult
;++j
)
705 dst
[i
*type_mult
+ j
] = sample
[j
];
709 static void sample_dup(uint8_t *out
, const uint8_t *in
, size_t count
, size_t frame_size
)
711 if((frame_size
&7) == 0)
712 sample_dup
<uint64_t>(out
, in
, count
, frame_size
);
713 else if((frame_size
&3) == 0)
714 sample_dup
<uint32_t>(out
, in
, count
, frame_size
);
715 else if((frame_size
&1) == 0)
716 sample_dup
<uint16_t>(out
, in
, count
, frame_size
);
718 sample_dup
<uint8_t>(out
, in
, count
, frame_size
);
721 bool AudioState::readAudio(uint8_t *samples
, unsigned int length
, int &sample_skip
)
723 unsigned int audio_size
{0};
725 /* Read the next chunk of data, refill the buffer, and queue it
727 length
/= mFrameSize
;
728 while(mSamplesLen
> 0 && audio_size
< length
)
730 unsigned int rem
{length
- audio_size
};
733 const auto len
= static_cast<unsigned int>(mSamplesLen
- mSamplesPos
);
734 if(rem
> len
) rem
= len
;
735 std::copy_n(mSamples
+ static_cast<unsigned int>(mSamplesPos
)*mFrameSize
,
736 rem
*mFrameSize
, samples
);
740 rem
= std::min(rem
, static_cast<unsigned int>(-mSamplesPos
));
742 /* Add samples by copying the first sample */
743 sample_dup(samples
, mSamples
, rem
, mFrameSize
);
747 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
748 samples
+= rem
*mFrameSize
;
751 while(mSamplesPos
>= mSamplesLen
)
753 mSamplesLen
= decodeFrame();
754 mSamplesPos
= std::min(mSamplesLen
, sample_skip
);
755 if(mSamplesLen
<= 0) break;
757 sample_skip
-= mSamplesPos
;
759 // Adjust the device start time and current pts by the amount we're
760 // skipping/duplicating, so that the clock remains correct for the
761 // current stream position.
762 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
763 mDeviceStartTime
-= skip
;
770 if(audio_size
< length
)
772 const unsigned int rem
{length
- audio_size
};
773 std::fill_n(samples
, rem
*mFrameSize
,
774 (mDstSampleFmt
== AV_SAMPLE_FMT_U8
) ? 0x80 : 0x00);
775 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
780 bool AudioState::readAudio(int sample_skip
)
782 size_t woffset
{mWritePos
.load(std::memory_order_acquire
)};
783 const size_t roffset
{mReadPos
.load(std::memory_order_relaxed
)};
784 while(mSamplesLen
> 0)
786 const size_t nsamples
{((roffset
> woffset
) ? roffset
-woffset
-1
787 : (roffset
== 0) ? (mBufferDataSize
-woffset
-1)
788 : (mBufferDataSize
-woffset
)) / mFrameSize
};
793 const size_t rem
{std::min
<size_t>(nsamples
, static_cast<ALuint
>(-mSamplesPos
))};
795 sample_dup(&mBufferData
[woffset
], mSamples
, rem
, mFrameSize
);
796 woffset
+= rem
* mFrameSize
;
797 if(woffset
== mBufferDataSize
) woffset
= 0;
798 mWritePos
.store(woffset
, std::memory_order_release
);
800 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
801 mSamplesPos
+= static_cast<int>(rem
);
805 const size_t rem
{std::min
<size_t>(nsamples
, static_cast<ALuint
>(mSamplesLen
-mSamplesPos
))};
806 const size_t boffset
{static_cast<ALuint
>(mSamplesPos
) * size_t{mFrameSize
}};
807 const size_t nbytes
{rem
* mFrameSize
};
809 memcpy(&mBufferData
[woffset
], mSamples
+ boffset
, nbytes
);
811 if(woffset
== mBufferDataSize
) woffset
= 0;
812 mWritePos
.store(woffset
, std::memory_order_release
);
814 mCurrentPts
+= nanoseconds
{seconds
{rem
}} / mCodecCtx
->sample_rate
;
815 mSamplesPos
+= static_cast<int>(rem
);
817 while(mSamplesPos
>= mSamplesLen
)
819 mSamplesLen
= decodeFrame();
820 mSamplesPos
= std::min(mSamplesLen
, sample_skip
);
821 if(mSamplesLen
<= 0) return false;
823 sample_skip
-= mSamplesPos
;
825 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
826 mDeviceStartTime
-= skip
;
835 void AL_APIENTRY
AudioState::eventCallback(ALenum eventType
, ALuint object
, ALuint param
,
836 ALsizei length
, const ALchar
*message
)
838 if(eventType
== AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
)
840 /* Temporarily lock the source mutex to ensure it's not between
841 * checking the processed count and going to sleep.
843 std::unique_lock
<std::mutex
>{mSrcMutex
}.unlock();
844 mSrcCond
.notify_one();
848 std::cout
<< "\n---- AL Event on AudioState "<<this<<" ----\nEvent: ";
851 case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
: std::cout
<< "Buffer completed"; break;
852 case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
: std::cout
<< "Source state changed"; break;
853 case AL_EVENT_TYPE_DISCONNECTED_SOFT
: std::cout
<< "Disconnected"; break;
855 std::cout
<< "0x"<<std::hex
<<std::setw(4)<<std::setfill('0')<<eventType
<<std::dec
<<
856 std::setw(0)<<std::setfill(' '); break;
859 "Object ID: "<<object
<<"\n"
860 "Parameter: "<<param
<<"\n"
861 "Message: "<<std::string
{message
, static_cast<ALuint
>(length
)}<<"\n----"<<
864 if(eventType
== AL_EVENT_TYPE_DISCONNECTED_SOFT
)
867 std::lock_guard
<std::mutex
> lock
{mSrcMutex
};
868 mConnected
.clear(std::memory_order_release
);
870 mSrcCond
.notify_one();
874 ALsizei
AudioState::bufferCallback(void *data
, ALsizei size
)
878 size_t roffset
{mReadPos
.load(std::memory_order_acquire
)};
881 const size_t woffset
{mWritePos
.load(std::memory_order_relaxed
)};
882 if(woffset
== roffset
) break;
884 size_t todo
{((woffset
< roffset
) ? mBufferDataSize
: woffset
) - roffset
};
885 todo
= std::min
<size_t>(todo
, static_cast<ALuint
>(size
-got
));
887 memcpy(data
, &mBufferData
[roffset
], todo
);
888 data
= static_cast<ALbyte
*>(data
) + todo
;
889 got
+= static_cast<ALsizei
>(todo
);
892 if(roffset
== mBufferDataSize
)
895 mReadPos
.store(roffset
, std::memory_order_release
);
900 int AudioState::handler()
902 std::unique_lock
<std::mutex
> srclock
{mSrcMutex
, std::defer_lock
};
903 milliseconds sleep_time
{AudioBufferTime
/ 3};
905 struct EventControlManager
{
906 const std::array
<ALenum
,3> evt_types
{{
907 AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT
, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
,
908 AL_EVENT_TYPE_DISCONNECTED_SOFT
}};
910 EventControlManager(milliseconds
&sleep_time
)
912 if(alEventControlSOFT
)
914 alEventControlSOFT(static_cast<ALsizei
>(evt_types
.size()), evt_types
.data(),
916 alEventCallbackSOFT(&AudioState::eventCallbackC
, this);
917 sleep_time
= AudioBufferTotalTime
;
920 ~EventControlManager()
922 if(alEventControlSOFT
)
924 alEventControlSOFT(static_cast<ALsizei
>(evt_types
.size()), evt_types
.data(),
926 alEventCallbackSOFT(nullptr, nullptr);
930 EventControlManager event_controller
{sleep_time
};
932 const bool has_bfmt_ex
{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE
};
933 ALenum ambi_layout
{AL_FUMA_SOFT
};
934 ALenum ambi_scale
{AL_FUMA_SOFT
};
936 std::unique_ptr
<uint8_t[]> samples
;
937 ALsizei buffer_len
{0};
939 /* Find a suitable format for OpenAL. */
942 if((mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_FLT
|| mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_FLTP
943 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_DBL
944 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_DBLP
945 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S32
946 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S32P
947 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S64
948 || mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_S64P
)
949 && alIsExtensionPresent("AL_EXT_FLOAT32"))
951 mDstSampleFmt
= AV_SAMPLE_FMT_FLT
;
953 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
955 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_7POINT1
)
957 mDstChanLayout
= mCodecCtx
->channel_layout
;
959 mFormat
= alGetEnumValue("AL_FORMAT_71CHN32");
961 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1
962 || mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1_BACK
)
964 mDstChanLayout
= mCodecCtx
->channel_layout
;
966 mFormat
= alGetEnumValue("AL_FORMAT_51CHN32");
968 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_QUAD
)
970 mDstChanLayout
= mCodecCtx
->channel_layout
;
972 mFormat
= alGetEnumValue("AL_FORMAT_QUAD32");
975 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_MONO
)
977 mDstChanLayout
= mCodecCtx
->channel_layout
;
979 mFormat
= AL_FORMAT_MONO_FLOAT32
;
981 /* Assume 3D B-Format (ambisonics) if the channel layout is blank and
982 * there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
983 * have no way to specify if the source is actually B-Format (let alone
986 if(mCodecCtx
->channel_layout
== 0 && mCodecCtx
->channels
>= 4
987 && alIsExtensionPresent("AL_EXT_BFORMAT"))
989 /* Calculate what should be the ambisonic order from the number of
990 * channels, and confirm that's the number of channels. Opus allows
991 * an optional non-diegetic stereo stream with the B-Format stream,
992 * which we can ignore, so check for that too.
994 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->channels
)) - 1;
995 int channels
{(order
+1) * (order
+1)};
996 if(channels
== mCodecCtx
->channels
|| channels
+2 == mCodecCtx
->channels
)
998 /* OpenAL only supports first-order with AL_EXT_BFORMAT, which
999 * is 4 channels for 3D buffers.
1002 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32");
1005 if(!mFormat
|| mFormat
== -1)
1007 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1009 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN_FLOAT32_SOFT
: AL_FORMAT_STEREO_FLOAT32
;
1012 if(mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_U8
|| mCodecCtx
->sample_fmt
== AV_SAMPLE_FMT_U8P
)
1014 mDstSampleFmt
= AV_SAMPLE_FMT_U8
;
1016 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
1018 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_7POINT1
)
1020 mDstChanLayout
= mCodecCtx
->channel_layout
;
1022 mFormat
= alGetEnumValue("AL_FORMAT_71CHN8");
1024 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1
1025 || mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1_BACK
)
1027 mDstChanLayout
= mCodecCtx
->channel_layout
;
1029 mFormat
= alGetEnumValue("AL_FORMAT_51CHN8");
1031 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_QUAD
)
1033 mDstChanLayout
= mCodecCtx
->channel_layout
;
1035 mFormat
= alGetEnumValue("AL_FORMAT_QUAD8");
1038 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_MONO
)
1040 mDstChanLayout
= mCodecCtx
->channel_layout
;
1042 mFormat
= AL_FORMAT_MONO8
;
1044 if(mCodecCtx
->channel_layout
== 0 && mCodecCtx
->channels
>= 4
1045 && alIsExtensionPresent("AL_EXT_BFORMAT"))
1047 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->channels
)) - 1;
1048 int channels
{(order
+1) * (order
+1)};
1049 if(channels
== mCodecCtx
->channels
|| channels
+2 == mCodecCtx
->channels
)
1052 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_8");
1055 if(!mFormat
|| mFormat
== -1)
1057 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1059 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN8_SOFT
: AL_FORMAT_STEREO8
;
1062 if(!mFormat
|| mFormat
== -1)
1064 mDstSampleFmt
= AV_SAMPLE_FMT_S16
;
1066 if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
1068 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_7POINT1
)
1070 mDstChanLayout
= mCodecCtx
->channel_layout
;
1072 mFormat
= alGetEnumValue("AL_FORMAT_71CHN16");
1074 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1
1075 || mCodecCtx
->channel_layout
== AV_CH_LAYOUT_5POINT1_BACK
)
1077 mDstChanLayout
= mCodecCtx
->channel_layout
;
1079 mFormat
= alGetEnumValue("AL_FORMAT_51CHN16");
1081 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_QUAD
)
1083 mDstChanLayout
= mCodecCtx
->channel_layout
;
1085 mFormat
= alGetEnumValue("AL_FORMAT_QUAD16");
1088 if(mCodecCtx
->channel_layout
== AV_CH_LAYOUT_MONO
)
1090 mDstChanLayout
= mCodecCtx
->channel_layout
;
1092 mFormat
= AL_FORMAT_MONO16
;
1094 if(mCodecCtx
->channel_layout
== 0 && mCodecCtx
->channels
>= 4
1095 && alIsExtensionPresent("AL_EXT_BFORMAT"))
1097 auto order
= static_cast<int>(std::sqrt(mCodecCtx
->channels
)) - 1;
1098 int channels
{(order
+1) * (order
+1)};
1099 if(channels
== mCodecCtx
->channels
|| channels
+2 == mCodecCtx
->channels
)
1102 mFormat
= alGetEnumValue("AL_FORMAT_BFORMAT3D_16");
1105 if(!mFormat
|| mFormat
== -1)
1107 mDstChanLayout
= AV_CH_LAYOUT_STEREO
;
1109 mFormat
= EnableUhj
? AL_FORMAT_UHJ2CHN16_SOFT
: AL_FORMAT_STEREO16
;
1118 mDecodedFrame
.reset(av_frame_alloc());
1121 std::cerr
<< "Failed to allocate audio frame" <<std::endl
;
1127 /* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
1128 * we have to drop any extra channels.
1130 mSwresCtx
.reset(swr_alloc_set_opts(nullptr,
1131 (1_i64
<<4)-1, mDstSampleFmt
, mCodecCtx
->sample_rate
,
1132 (1_i64
<<mCodecCtx
->channels
)-1, mCodecCtx
->sample_fmt
, mCodecCtx
->sample_rate
,
1135 /* Note that ffmpeg/libavcodec has no method to check the ambisonic
1136 * channel order and normalization, so we can only assume AmbiX as the
1137 * defacto-standard. This is not true for .amb files, which use FuMa.
1139 std::vector
<double> mtx(64*64, 0.0);
1140 ambi_layout
= AL_ACN_SOFT
;
1141 ambi_scale
= AL_SN3D_SOFT
;
1144 /* An identity matrix that doesn't remix any channels. */
1145 std::cout
<< "Found AL_SOFT_bformat_ex" <<std::endl
;
1146 mtx
[0 + 0*64] = 1.0;
1147 mtx
[1 + 1*64] = 1.0;
1148 mtx
[2 + 2*64] = 1.0;
1149 mtx
[3 + 3*64] = 1.0;
1153 std::cout
<< "Found AL_EXT_BFORMAT" <<std::endl
;
1154 /* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
1155 * ordering and normalization, so a custom matrix is needed to
1156 * scale and reorder the source from AmbiX.
1158 mtx
[0 + 0*64] = std::sqrt(0.5);
1159 mtx
[3 + 1*64] = 1.0;
1160 mtx
[1 + 2*64] = 1.0;
1161 mtx
[2 + 3*64] = 1.0;
1163 swr_set_matrix(mSwresCtx
.get(), mtx
.data(), 64);
1166 mSwresCtx
.reset(swr_alloc_set_opts(nullptr,
1167 static_cast<int64_t>(mDstChanLayout
), mDstSampleFmt
, mCodecCtx
->sample_rate
,
1168 mCodecCtx
->channel_layout
? static_cast<int64_t>(mCodecCtx
->channel_layout
)
1169 : av_get_default_channel_layout(mCodecCtx
->channels
),
1170 mCodecCtx
->sample_fmt
, mCodecCtx
->sample_rate
,
1172 if(!mSwresCtx
|| swr_init(mSwresCtx
.get()) != 0)
1174 std::cerr
<< "Failed to initialize audio converter" <<std::endl
;
1178 alGenBuffers(static_cast<ALsizei
>(mBuffers
.size()), mBuffers
.data());
1179 alGenSources(1, &mSource
);
1182 alSourcei(mSource
, AL_DIRECT_CHANNELS_SOFT
, DirectOutMode
);
1183 if(EnableWideStereo
)
1185 const float angles
[2]{static_cast<float>(M_PI
/ 3.0), static_cast<float>(-M_PI
/ 3.0)};
1186 alSourcefv(mSource
, AL_STEREO_ANGLES
, angles
);
1190 for(ALuint bufid
: mBuffers
)
1192 alBufferi(bufid
, AL_AMBISONIC_LAYOUT_SOFT
, ambi_layout
);
1193 alBufferi(bufid
, AL_AMBISONIC_SCALING_SOFT
, ambi_scale
);
1197 if(EnableSuperStereo
)
1198 alSourcei(mSource
, AL_STEREO_MODE_SOFT
, AL_SUPER_STEREO_SOFT
);
1201 if(alGetError() != AL_NO_ERROR
)
1204 bool callback_ok
{false};
1205 if(alBufferCallbackSOFT
)
1207 alBufferCallbackSOFT(mBuffers
[0], mFormat
, mCodecCtx
->sample_rate
, bufferCallbackC
, this);
1208 alSourcei(mSource
, AL_BUFFER
, static_cast<ALint
>(mBuffers
[0]));
1209 if(alGetError() != AL_NO_ERROR
)
1211 fprintf(stderr
, "Failed to set buffer callback\n");
1212 alSourcei(mSource
, AL_BUFFER
, 0);
1216 mBufferDataSize
= static_cast<size_t>(duration_cast
<seconds
>(mCodecCtx
->sample_rate
*
1217 AudioBufferTotalTime
).count()) * mFrameSize
;
1218 mBufferData
= std::make_unique
<uint8_t[]>(mBufferDataSize
);
1219 std::fill_n(mBufferData
.get(), mBufferDataSize
, uint8_t{});
1221 mReadPos
.store(0, std::memory_order_relaxed
);
1222 mWritePos
.store(mBufferDataSize
/mFrameSize
/2*mFrameSize
, std::memory_order_relaxed
);
1225 alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH
, 1, &refresh
);
1226 sleep_time
= milliseconds
{seconds
{1}} / refresh
;
1231 buffer_len
= static_cast<int>(duration_cast
<seconds
>(mCodecCtx
->sample_rate
*
1232 AudioBufferTime
).count() * mFrameSize
);
1234 samples
= std::make_unique
<uint8_t[]>(static_cast<ALuint
>(buffer_len
));
1236 /* Prefill the codec buffer. */
1237 auto packet_sender
= [this]()
1241 const int ret
{mQueue
.sendPacket(mCodecCtx
.get())};
1242 if(ret
== AVErrorEOF
) break;
1245 auto sender
= std::async(std::launch::async
, packet_sender
);
1248 if(alcGetInteger64vSOFT
)
1251 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT
,
1253 mDeviceStartTime
= nanoseconds
{devtime
} - mCurrentPts
;
1256 mSamplesLen
= decodeFrame();
1259 mSamplesPos
= std::min(mSamplesLen
, getSync());
1261 auto skip
= nanoseconds
{seconds
{mSamplesPos
}} / mCodecCtx
->sample_rate
;
1262 mDeviceStartTime
-= skip
;
1263 mCurrentPts
+= skip
;
1268 if(mMovie
.mQuit
.load(std::memory_order_relaxed
))
1270 /* If mQuit is set, drain frames until we can't get more audio,
1271 * indicating we've reached the flush packet and the packet sender
1275 mSamplesLen
= decodeFrame();
1276 mSamplesPos
= mSamplesLen
;
1277 } while(mSamplesLen
> 0);
1282 if(mBufferDataSize
> 0)
1284 alGetSourcei(mSource
, AL_SOURCE_STATE
, &state
);
1286 /* If mQuit is not set, don't quit even if there's no more audio,
1287 * so what's buffered has a chance to play to the real end.
1289 readAudio(getSync());
1293 ALint processed
, queued
;
1295 /* First remove any processed buffers. */
1296 alGetSourcei(mSource
, AL_BUFFERS_PROCESSED
, &processed
);
1297 while(processed
> 0)
1300 alSourceUnqueueBuffers(mSource
, 1, &bid
);
1304 /* Refill the buffer queue. */
1305 int sync_skip
{getSync()};
1306 alGetSourcei(mSource
, AL_BUFFERS_QUEUED
, &queued
);
1307 while(static_cast<ALuint
>(queued
) < mBuffers
.size())
1309 /* Read the next chunk of data, filling the buffer, and queue
1312 if(!readAudio(samples
.get(), static_cast<ALuint
>(buffer_len
), sync_skip
))
1315 const ALuint bufid
{mBuffers
[mBufferIdx
]};
1316 mBufferIdx
= static_cast<ALuint
>((mBufferIdx
+1) % mBuffers
.size());
1318 alBufferData(bufid
, mFormat
, samples
.get(), buffer_len
, mCodecCtx
->sample_rate
);
1319 alSourceQueueBuffers(mSource
, 1, &bufid
);
1323 /* Check that the source is playing. */
1324 alGetSourcei(mSource
, AL_SOURCE_STATE
, &state
);
1325 if(state
== AL_STOPPED
)
1327 /* AL_STOPPED means there was an underrun. Clear the buffer
1328 * queue since this likely means we're late, and rewind the
1329 * source to get it back into an AL_INITIAL state.
1331 alSourceRewind(mSource
);
1332 alSourcei(mSource
, AL_BUFFER
, 0);
1333 if(alcGetInteger64vSOFT
)
1335 /* Also update the device start time with the current
1336 * device clock, so the decoder knows we're running behind.
1339 alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
1340 ALC_DEVICE_CLOCK_SOFT
, 1, &devtime
);
1341 mDeviceStartTime
= nanoseconds
{devtime
} - mCurrentPts
;
1347 /* (re)start the source if needed, and wait for a buffer to finish */
1348 if(state
!= AL_PLAYING
&& state
!= AL_PAUSED
)
1350 if(!startPlayback())
1353 if(ALenum err
{alGetError()})
1354 std::cerr
<< "Got AL error: 0x"<<std::hex
<<err
<<std::dec
1355 << " ("<<alGetString(err
)<<")" <<std::endl
;
1357 mSrcCond
.wait_for(srclock
, sleep_time
);
1361 alSourceRewind(mSource
);
1362 alSourcei(mSource
, AL_BUFFER
, 0);
1369 nanoseconds
VideoState::getClock()
1371 /* NOTE: This returns incorrect times while not playing. */
1372 std::lock_guard
<std::mutex
> _
{mDispPtsMutex
};
1373 if(mDisplayPtsTime
== microseconds::min())
1374 return nanoseconds::zero();
1375 auto delta
= get_avtime() - mDisplayPtsTime
;
1376 return mDisplayPts
+ delta
;
1379 /* Called by VideoState::updateVideo to display the next video frame. */
1380 void VideoState::display(SDL_Window
*screen
, SDL_Renderer
*renderer
, AVFrame
*frame
)
1385 double aspect_ratio
;
1389 int frame_width
{frame
->width
- static_cast<int>(frame
->crop_left
+ frame
->crop_right
)};
1390 int frame_height
{frame
->height
- static_cast<int>(frame
->crop_top
+ frame
->crop_bottom
)};
1391 if(frame
->sample_aspect_ratio
.num
== 0)
1395 aspect_ratio
= av_q2d(frame
->sample_aspect_ratio
) * frame_width
/
1398 if(aspect_ratio
<= 0.0)
1399 aspect_ratio
= static_cast<double>(frame_width
) / frame_height
;
1401 SDL_GetWindowSize(screen
, &win_w
, &win_h
);
1403 w
= (static_cast<int>(std::rint(h
* aspect_ratio
)) + 3) & ~3;
1407 h
= (static_cast<int>(std::rint(w
/ aspect_ratio
)) + 3) & ~3;
1409 x
= (win_w
- w
) / 2;
1410 y
= (win_h
- h
) / 2;
1412 SDL_Rect src_rect
{ static_cast<int>(frame
->crop_left
), static_cast<int>(frame
->crop_top
),
1413 frame_width
, frame_height
};
1414 SDL_Rect dst_rect
{ x
, y
, w
, h
};
1415 SDL_RenderCopy(renderer
, mImage
, &src_rect
, &dst_rect
);
1416 SDL_RenderPresent(renderer
);
1419 /* Called regularly on the main thread where the SDL_Renderer was created. It
1420 * handles updating the textures of decoded frames and displaying the latest
1423 void VideoState::updateVideo(SDL_Window
*screen
, SDL_Renderer
*renderer
, bool redraw
)
1425 size_t read_idx
{mPictQRead
.load(std::memory_order_relaxed
)};
1426 Picture
*vp
{&mPictQ
[read_idx
]};
1428 auto clocktime
= mMovie
.getMasterClock();
1429 bool updated
{false};
1432 size_t next_idx
{(read_idx
+1)%mPictQ
.size()};
1433 if(next_idx
== mPictQWrite
.load(std::memory_order_acquire
))
1435 Picture
*nextvp
{&mPictQ
[next_idx
]};
1436 if(clocktime
< nextvp
->mPts
&& !mMovie
.mQuit
.load(std::memory_order_relaxed
))
1438 /* For the first update, ensure the first frame gets shown. */
1439 if(!mFirstUpdate
|| updated
)
1445 read_idx
= next_idx
;
1447 if(mMovie
.mQuit
.load(std::memory_order_relaxed
))
1450 mFinalUpdate
= true;
1451 mPictQRead
.store(read_idx
, std::memory_order_release
);
1452 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1453 mPictQCond
.notify_one();
1457 AVFrame
*frame
{vp
->mFrame
.get()};
1460 mPictQRead
.store(read_idx
, std::memory_order_release
);
1461 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1462 mPictQCond
.notify_one();
1464 /* allocate or resize the buffer! */
1465 bool fmt_updated
{false};
1466 if(!mImage
|| mWidth
!= frame
->width
|| mHeight
!= frame
->height
)
1470 SDL_DestroyTexture(mImage
);
1471 mImage
= SDL_CreateTexture(renderer
, SDL_PIXELFORMAT_IYUV
, SDL_TEXTUREACCESS_STREAMING
,
1472 frame
->width
, frame
->height
);
1474 std::cerr
<< "Failed to create YV12 texture!" <<std::endl
;
1475 mWidth
= frame
->width
;
1476 mHeight
= frame
->height
;
1479 int frame_width
{frame
->width
- static_cast<int>(frame
->crop_left
+ frame
->crop_right
)};
1480 int frame_height
{frame
->height
- static_cast<int>(frame
->crop_top
+ frame
->crop_bottom
)};
1481 if(mFirstUpdate
&& frame_width
> 0 && frame_height
> 0)
1483 /* For the first update, set the window size to the video size. */
1484 mFirstUpdate
= false;
1486 if(frame
->sample_aspect_ratio
.den
!= 0)
1488 double aspect_ratio
= av_q2d(frame
->sample_aspect_ratio
);
1489 if(aspect_ratio
>= 1.0)
1490 frame_width
= static_cast<int>(frame_width
*aspect_ratio
+ 0.5);
1491 else if(aspect_ratio
> 0.0)
1492 frame_height
= static_cast<int>(frame_height
/aspect_ratio
+ 0.5);
1494 SDL_SetWindowSize(screen
, frame_width
, frame_height
);
1499 void *pixels
{nullptr};
1502 if(mCodecCtx
->pix_fmt
== AV_PIX_FMT_YUV420P
)
1503 SDL_UpdateYUVTexture(mImage
, nullptr,
1504 frame
->data
[0], frame
->linesize
[0],
1505 frame
->data
[1], frame
->linesize
[1],
1506 frame
->data
[2], frame
->linesize
[2]
1508 else if(SDL_LockTexture(mImage
, nullptr, &pixels
, &pitch
) != 0)
1509 std::cerr
<< "Failed to lock texture" <<std::endl
;
1512 // Convert the image into YUV format that SDL uses
1513 int w
{frame
->width
};
1514 int h
{frame
->height
};
1515 if(!mSwscaleCtx
|| fmt_updated
)
1517 mSwscaleCtx
.reset(sws_getContext(
1518 w
, h
, mCodecCtx
->pix_fmt
,
1519 w
, h
, AV_PIX_FMT_YUV420P
, 0,
1520 nullptr, nullptr, nullptr
1524 /* point pict at the queue */
1525 uint8_t *pict_data
[3];
1526 pict_data
[0] = static_cast<uint8_t*>(pixels
);
1527 pict_data
[1] = pict_data
[0] + w
*h
;
1528 pict_data
[2] = pict_data
[1] + w
*h
/4;
1530 int pict_linesize
[3];
1531 pict_linesize
[0] = pitch
;
1532 pict_linesize
[1] = pitch
/ 2;
1533 pict_linesize
[2] = pitch
/ 2;
1535 sws_scale(mSwscaleCtx
.get(), reinterpret_cast<uint8_t**>(frame
->data
), frame
->linesize
,
1536 0, h
, pict_data
, pict_linesize
);
1537 SDL_UnlockTexture(mImage
);
1546 /* Show the picture! */
1547 display(screen
, renderer
, frame
);
1552 auto disp_time
= get_avtime();
1554 std::lock_guard
<std::mutex
> _
{mDispPtsMutex
};
1555 mDisplayPts
= vp
->mPts
;
1556 mDisplayPtsTime
= disp_time
;
1558 if(mEOS
.load(std::memory_order_acquire
))
1560 if((read_idx
+1)%mPictQ
.size() == mPictQWrite
.load(std::memory_order_acquire
))
1562 mFinalUpdate
= true;
1563 std::unique_lock
<std::mutex
>{mPictQMutex
}.unlock();
1564 mPictQCond
.notify_one();
1569 int VideoState::handler()
1571 std::for_each(mPictQ
.begin(), mPictQ
.end(),
1572 [](Picture
&pict
) -> void
1573 { pict
.mFrame
= AVFramePtr
{av_frame_alloc()}; });
1575 /* Prefill the codec buffer. */
1576 auto packet_sender
= [this]()
1580 const int ret
{mQueue
.sendPacket(mCodecCtx
.get())};
1581 if(ret
== AVErrorEOF
) break;
1584 auto sender
= std::async(std::launch::async
, packet_sender
);
1587 std::lock_guard
<std::mutex
> _
{mDispPtsMutex
};
1588 mDisplayPtsTime
= get_avtime();
1591 auto current_pts
= nanoseconds::zero();
1594 size_t write_idx
{mPictQWrite
.load(std::memory_order_relaxed
)};
1595 Picture
*vp
{&mPictQ
[write_idx
]};
1597 /* Retrieve video frame. */
1598 AVFrame
*decoded_frame
{vp
->mFrame
.get()};
1599 while(int ret
{mQueue
.receiveFrame(mCodecCtx
.get(), decoded_frame
)})
1601 if(ret
== AVErrorEOF
) goto finish
;
1602 std::cerr
<< "Failed to receive frame: "<<ret
<<std::endl
;
1605 /* Get the PTS for this frame. */
1606 if(decoded_frame
->best_effort_timestamp
!= AVNoPtsValue
)
1607 current_pts
= duration_cast
<nanoseconds
>(seconds_d64
{av_q2d(mStream
->time_base
) *
1608 static_cast<double>(decoded_frame
->best_effort_timestamp
)});
1609 vp
->mPts
= current_pts
;
1611 /* Update the video clock to the next expected PTS. */
1612 auto frame_delay
= av_q2d(mCodecCtx
->time_base
);
1613 frame_delay
+= decoded_frame
->repeat_pict
* (frame_delay
* 0.5);
1614 current_pts
+= duration_cast
<nanoseconds
>(seconds_d64
{frame_delay
});
1616 /* Put the frame in the queue to be loaded into a texture and displayed
1617 * by the rendering thread.
1619 write_idx
= (write_idx
+1)%mPictQ
.size();
1620 mPictQWrite
.store(write_idx
, std::memory_order_release
);
1622 if(write_idx
== mPictQRead
.load(std::memory_order_acquire
))
1624 /* Wait until we have space for a new pic */
1625 std::unique_lock
<std::mutex
> lock
{mPictQMutex
};
1626 while(write_idx
== mPictQRead
.load(std::memory_order_acquire
))
1627 mPictQCond
.wait(lock
);
1633 std::unique_lock
<std::mutex
> lock
{mPictQMutex
};
1634 while(!mFinalUpdate
) mPictQCond
.wait(lock
);
1640 int MovieState::decode_interrupt_cb(void *ctx
)
1642 return static_cast<MovieState
*>(ctx
)->mQuit
.load(std::memory_order_relaxed
);
1645 bool MovieState::prepare()
1647 AVIOContext
*avioctx
{nullptr};
1648 AVIOInterruptCB intcb
{decode_interrupt_cb
, this};
1649 if(avio_open2(&avioctx
, mFilename
.c_str(), AVIO_FLAG_READ
, &intcb
, nullptr))
1651 std::cerr
<< "Failed to open "<<mFilename
<<std::endl
;
1654 mIOContext
.reset(avioctx
);
1656 /* Open movie file. If avformat_open_input fails it will automatically free
1657 * this context, so don't set it onto a smart pointer yet.
1659 AVFormatContext
*fmtctx
{avformat_alloc_context()};
1660 fmtctx
->pb
= mIOContext
.get();
1661 fmtctx
->interrupt_callback
= intcb
;
1662 if(avformat_open_input(&fmtctx
, mFilename
.c_str(), nullptr, nullptr) != 0)
1664 std::cerr
<< "Failed to open "<<mFilename
<<std::endl
;
1667 mFormatCtx
.reset(fmtctx
);
1669 /* Retrieve stream information */
1670 if(avformat_find_stream_info(mFormatCtx
.get(), nullptr) < 0)
1672 std::cerr
<< mFilename
<<": failed to find stream info" <<std::endl
;
1676 /* Dump information about file onto standard error */
1677 av_dump_format(mFormatCtx
.get(), 0, mFilename
.c_str(), 0);
1679 mParseThread
= std::thread
{std::mem_fn(&MovieState::parse_handler
), this};
1681 std::unique_lock
<std::mutex
> slock
{mStartupMutex
};
1682 while(!mStartupDone
) mStartupCond
.wait(slock
);
1686 void MovieState::setTitle(SDL_Window
*window
)
1688 auto pos1
= mFilename
.rfind('/');
1689 auto pos2
= mFilename
.rfind('\\');
1690 auto fpos
= ((pos1
== std::string::npos
) ? pos2
:
1691 (pos2
== std::string::npos
) ? pos1
:
1692 std::max(pos1
, pos2
)) + 1;
1693 SDL_SetWindowTitle(window
, (mFilename
.substr(fpos
)+" - "+AppName
).c_str());
1696 nanoseconds
MovieState::getClock()
1698 if(mClockBase
== microseconds::min())
1699 return nanoseconds::zero();
1700 return get_avtime() - mClockBase
;
1703 nanoseconds
MovieState::getMasterClock()
1705 if(mAVSyncType
== SyncMaster::Video
&& mVideo
.mStream
)
1706 return mVideo
.getClock();
1707 if(mAVSyncType
== SyncMaster::Audio
&& mAudio
.mStream
)
1708 return mAudio
.getClock();
1712 nanoseconds
MovieState::getDuration()
1713 { return std::chrono::duration
<int64_t,std::ratio
<1,AV_TIME_BASE
>>(mFormatCtx
->duration
); }
1715 int MovieState::streamComponentOpen(unsigned int stream_index
)
1717 if(stream_index
>= mFormatCtx
->nb_streams
)
1720 /* Get a pointer to the codec context for the stream, and open the
1723 AVCodecCtxPtr avctx
{avcodec_alloc_context3(nullptr)};
1724 if(!avctx
) return -1;
1726 if(avcodec_parameters_to_context(avctx
.get(), mFormatCtx
->streams
[stream_index
]->codecpar
))
1729 const AVCodec
*codec
{avcodec_find_decoder(avctx
->codec_id
)};
1730 if(!codec
|| avcodec_open2(avctx
.get(), codec
, nullptr) < 0)
1732 std::cerr
<< "Unsupported codec: "<<avcodec_get_name(avctx
->codec_id
)
1733 << " (0x"<<std::hex
<<avctx
->codec_id
<<std::dec
<<")" <<std::endl
;
1737 /* Initialize and start the media type handler */
1738 switch(avctx
->codec_type
)
1740 case AVMEDIA_TYPE_AUDIO
:
1741 mAudio
.mStream
= mFormatCtx
->streams
[stream_index
];
1742 mAudio
.mCodecCtx
= std::move(avctx
);
1745 case AVMEDIA_TYPE_VIDEO
:
1746 mVideo
.mStream
= mFormatCtx
->streams
[stream_index
];
1747 mVideo
.mCodecCtx
= std::move(avctx
);
1754 return static_cast<int>(stream_index
);
1757 int MovieState::parse_handler()
1759 auto &audio_queue
= mAudio
.mQueue
;
1760 auto &video_queue
= mVideo
.mQueue
;
1762 int video_index
{-1};
1763 int audio_index
{-1};
1765 /* Find the first video and audio streams */
1766 for(unsigned int i
{0u};i
< mFormatCtx
->nb_streams
;i
++)
1768 auto codecpar
= mFormatCtx
->streams
[i
]->codecpar
;
1769 if(codecpar
->codec_type
== AVMEDIA_TYPE_VIDEO
&& !DisableVideo
&& video_index
< 0)
1770 video_index
= streamComponentOpen(i
);
1771 else if(codecpar
->codec_type
== AVMEDIA_TYPE_AUDIO
&& audio_index
< 0)
1772 audio_index
= streamComponentOpen(i
);
1776 std::unique_lock
<std::mutex
> slock
{mStartupMutex
};
1777 mStartupDone
= true;
1779 mStartupCond
.notify_all();
1781 if(video_index
< 0 && audio_index
< 0)
1783 std::cerr
<< mFilename
<<": could not open codecs" <<std::endl
;
1787 /* Set the base time 750ms ahead of the current av time. */
1788 mClockBase
= get_avtime() + milliseconds
{750};
1790 if(audio_index
>= 0)
1791 mAudioThread
= std::thread
{std::mem_fn(&AudioState::handler
), &mAudio
};
1792 if(video_index
>= 0)
1793 mVideoThread
= std::thread
{std::mem_fn(&VideoState::handler
), &mVideo
};
1795 /* Main packet reading/dispatching loop */
1796 AVPacketPtr packet
{av_packet_alloc()};
1797 while(!mQuit
.load(std::memory_order_relaxed
))
1799 if(av_read_frame(mFormatCtx
.get(), packet
.get()) < 0)
1802 /* Copy the packet into the queue it's meant for. */
1803 if(packet
->stream_index
== video_index
)
1805 while(!mQuit
.load(std::memory_order_acquire
) && !video_queue
.put(packet
.get()))
1806 std::this_thread::sleep_for(milliseconds
{100});
1808 else if(packet
->stream_index
== audio_index
)
1810 while(!mQuit
.load(std::memory_order_acquire
) && !audio_queue
.put(packet
.get()))
1811 std::this_thread::sleep_for(milliseconds
{100});
1814 av_packet_unref(packet
.get());
1816 /* Finish the queues so the receivers know nothing more is coming. */
1817 video_queue
.setFinished();
1818 audio_queue
.setFinished();
1820 /* all done - wait for it */
1821 if(mVideoThread
.joinable())
1822 mVideoThread
.join();
1823 if(mAudioThread
.joinable())
1824 mAudioThread
.join();
1827 std::unique_lock
<std::mutex
> lock
{mVideo
.mPictQMutex
};
1828 while(!mVideo
.mFinalUpdate
)
1829 mVideo
.mPictQCond
.wait(lock
);
1833 evt
.user
.type
= FF_MOVIE_DONE_EVENT
;
1834 SDL_PushEvent(&evt
);
1839 void MovieState::stop()
1842 mAudio
.mQueue
.flush();
1843 mVideo
.mQueue
.flush();
1847 // Helper class+method to print the time with human-readable formatting.
1851 std::ostream
&operator<<(std::ostream
&os
, const PrettyTime
&rhs
)
1853 using hours
= std::chrono::hours
;
1854 using minutes
= std::chrono::minutes
;
1856 seconds t
{rhs
.mTime
};
1863 // Only handle up to hour formatting
1865 os
<< duration_cast
<hours
>(t
).count() << 'h' << std::setfill('0') << std::setw(2)
1866 << (duration_cast
<minutes
>(t
).count() % 60) << 'm';
1868 os
<< duration_cast
<minutes
>(t
).count() << 'm' << std::setfill('0');
1869 os
<< std::setw(2) << (duration_cast
<seconds
>(t
).count() % 60) << 's' << std::setw(0)
1870 << std::setfill(' ');
1877 int main(int argc
, char *argv
[])
1879 std::unique_ptr
<MovieState
> movState
;
1883 std::cerr
<< "Usage: "<<argv
[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl
;
1886 /* Register all formats and codecs */
1887 #if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
1890 /* Initialize networking protocols */
1891 avformat_network_init();
1893 if(SDL_Init(SDL_INIT_VIDEO
| SDL_INIT_EVENTS
))
1895 std::cerr
<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl
;
1899 /* Make a window to put our video */
1900 SDL_Window
*screen
{SDL_CreateWindow(AppName
.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE
)};
1903 std::cerr
<< "SDL: could not set video mode - exiting" <<std::endl
;
1906 /* Make a renderer to handle the texture image surface and rendering. */
1907 Uint32 render_flags
{SDL_RENDERER_ACCELERATED
| SDL_RENDERER_PRESENTVSYNC
};
1908 SDL_Renderer
*renderer
{SDL_CreateRenderer(screen
, -1, render_flags
)};
1911 SDL_RendererInfo rinf
{};
1914 /* Make sure the renderer supports IYUV textures. If not, fallback to a
1915 * software renderer. */
1916 if(SDL_GetRendererInfo(renderer
, &rinf
) == 0)
1918 for(Uint32 i
{0u};!ok
&& i
< rinf
.num_texture_formats
;i
++)
1919 ok
= (rinf
.texture_formats
[i
] == SDL_PIXELFORMAT_IYUV
);
1923 std::cerr
<< "IYUV pixelformat textures not supported on renderer "<<rinf
.name
<<std::endl
;
1924 SDL_DestroyRenderer(renderer
);
1930 render_flags
= SDL_RENDERER_SOFTWARE
| SDL_RENDERER_PRESENTVSYNC
;
1931 renderer
= SDL_CreateRenderer(screen
, -1, render_flags
);
1935 std::cerr
<< "SDL: could not create renderer - exiting" <<std::endl
;
1938 SDL_SetRenderDrawColor(renderer
, 0, 0, 0, 255);
1939 SDL_RenderFillRect(renderer
, nullptr);
1940 SDL_RenderPresent(renderer
);
1942 /* Open an audio device */
1944 if(InitAL(&argv
, &argc
))
1946 std::cerr
<< "Failed to set up audio device" <<std::endl
;
1951 auto device
= alcGetContextsDevice(alcGetCurrentContext());
1952 if(alcIsExtensionPresent(device
, "ALC_SOFT_device_clock"))
1954 std::cout
<< "Found ALC_SOFT_device_clock" <<std::endl
;
1955 alcGetInteger64vSOFT
= reinterpret_cast<LPALCGETINTEGER64VSOFT
>(
1956 alcGetProcAddress(device
, "alcGetInteger64vSOFT")
1961 if(alIsExtensionPresent("AL_SOFT_source_latency"))
1963 std::cout
<< "Found AL_SOFT_source_latency" <<std::endl
;
1964 alGetSourcei64vSOFT
= reinterpret_cast<LPALGETSOURCEI64VSOFT
>(
1965 alGetProcAddress("alGetSourcei64vSOFT")
1968 if(alIsExtensionPresent("AL_SOFT_events"))
1970 std::cout
<< "Found AL_SOFT_events" <<std::endl
;
1971 alEventControlSOFT
= reinterpret_cast<LPALEVENTCONTROLSOFT
>(
1972 alGetProcAddress("alEventControlSOFT"));
1973 alEventCallbackSOFT
= reinterpret_cast<LPALEVENTCALLBACKSOFT
>(
1974 alGetProcAddress("alEventCallbackSOFT"));
1976 if(alIsExtensionPresent("AL_SOFT_callback_buffer"))
1978 std::cout
<< "Found AL_SOFT_callback_buffer" <<std::endl
;
1979 alBufferCallbackSOFT
= reinterpret_cast<LPALBUFFERCALLBACKSOFT
>(
1980 alGetProcAddress("alBufferCallbackSOFT"));
1984 for(;fileidx
< argc
;++fileidx
)
1986 if(strcmp(argv
[fileidx
], "-direct") == 0)
1988 if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
1990 std::cout
<< "Found AL_SOFT_direct_channels_remix" <<std::endl
;
1991 DirectOutMode
= AL_REMIX_UNMATCHED_SOFT
;
1993 else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
1995 std::cout
<< "Found AL_SOFT_direct_channels" <<std::endl
;
1996 DirectOutMode
= AL_DROP_UNMATCHED_SOFT
;
1999 std::cerr
<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl
;
2001 else if(strcmp(argv
[fileidx
], "-wide") == 0)
2003 if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
2004 std::cerr
<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl
;
2007 std::cout
<< "Found AL_EXT_STEREO_ANGLES" <<std::endl
;
2008 EnableWideStereo
= true;
2011 else if(strcmp(argv
[fileidx
], "-uhj") == 0)
2013 if(!alIsExtensionPresent("AL_SOFT_UHJ"))
2014 std::cerr
<< "AL_SOFT_UHJ not supported for UHJ decoding" <<std::endl
;
2017 std::cout
<< "Found AL_SOFT_UHJ" <<std::endl
;
2021 else if(strcmp(argv
[fileidx
], "-superstereo") == 0)
2023 if(!alIsExtensionPresent("AL_SOFT_UHJ"))
2024 std::cerr
<< "AL_SOFT_UHJ not supported for Super Stereo decoding" <<std::endl
;
2027 std::cout
<< "Found AL_SOFT_UHJ (Super Stereo)" <<std::endl
;
2028 EnableSuperStereo
= true;
2031 else if(strcmp(argv
[fileidx
], "-novideo") == 0)
2032 DisableVideo
= true;
2037 while(fileidx
< argc
&& !movState
)
2039 movState
= std::unique_ptr
<MovieState
>{new MovieState
{argv
[fileidx
++]}};
2040 if(!movState
->prepare()) movState
= nullptr;
2044 std::cerr
<< "Could not start a video" <<std::endl
;
2047 movState
->setTitle(screen
);
2049 /* Default to going to the next movie at the end of one. */
2050 enum class EomAction
{
2052 } eom_action
{EomAction::Next
};
2053 seconds last_time
{seconds::min()};
2056 /* SDL_WaitEventTimeout is broken, just force a 10ms sleep. */
2057 std::this_thread::sleep_for(milliseconds
{10});
2059 auto cur_time
= std::chrono::duration_cast
<seconds
>(movState
->getMasterClock());
2060 if(cur_time
!= last_time
)
2062 auto end_time
= std::chrono::duration_cast
<seconds
>(movState
->getDuration());
2063 std::cout
<< " \r "<<PrettyTime
{cur_time
}<<" / "<<PrettyTime
{end_time
} <<std::flush
;
2064 last_time
= cur_time
;
2067 bool force_redraw
{false};
2069 while(SDL_PollEvent(&event
) != 0)
2074 switch(event
.key
.keysym
.sym
)
2078 eom_action
= EomAction::Quit
;
2083 eom_action
= EomAction::Next
;
2091 case SDL_WINDOWEVENT
:
2092 switch(event
.window
.event
)
2094 case SDL_WINDOWEVENT_RESIZED
:
2095 SDL_SetRenderDrawColor(renderer
, 0, 0, 0, 255);
2096 SDL_RenderFillRect(renderer
, nullptr);
2097 force_redraw
= true;
2100 case SDL_WINDOWEVENT_EXPOSED
:
2101 force_redraw
= true;
2111 eom_action
= EomAction::Quit
;
2114 case FF_MOVIE_DONE_EVENT
:
2116 last_time
= seconds::min();
2117 if(eom_action
!= EomAction::Quit
)
2120 while(fileidx
< argc
&& !movState
)
2122 movState
= std::unique_ptr
<MovieState
>{new MovieState
{argv
[fileidx
++]}};
2123 if(!movState
->prepare()) movState
= nullptr;
2127 movState
->setTitle(screen
);
2132 /* Nothing more to play. Shut everything down and quit. */
2137 SDL_DestroyRenderer(renderer
);
2139 SDL_DestroyWindow(screen
);
2150 movState
->mVideo
.updateVideo(screen
, renderer
, force_redraw
);
2153 std::cerr
<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl
;