Properly get the AppData path on Windows in alsoft-config
[openal-soft.git] / native-tools / bsincgen.c
blob7e7a1fa3c17e0bf621a2d2ac47d289d5ed81474f
1 /*
2 * Sinc interpolator coefficient and delta generator for the OpenAL Soft
3 * cross platform audio library.
5 * Copyright (C) 2015 by Christopher Fitzgerald.
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Library General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Library General Public License for more details.
17 * You should have received a copy of the GNU Library General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
20 * MA 02110-1301 USA
22 * Or visit: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
24 * --------------------------------------------------------------------------
26 * This is a modified version of the bandlimited windowed sinc interpolator
27 * algorithm presented here:
29 * Smith, J.O. "Windowed Sinc Interpolation", in
30 * Physical Audio Signal Processing,
31 * https://ccrma.stanford.edu/~jos/pasp/Windowed_Sinc_Interpolation.html,
32 * online book,
33 * accessed October 2012.
36 #define _UNICODE
37 #include <stdio.h>
38 #include <math.h>
39 #include <string.h>
40 #include <stdlib.h>
42 #include "../common/win_main_utf8.h"
45 #ifndef M_PI
46 #define M_PI 3.14159265358979323846
47 #endif
49 #if !(defined(_ISOC99_SOURCE) || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L))
50 #define log2(x) (log(x) / log(2.0))
51 #endif
53 // The number of distinct scale and phase intervals within the filter table.
54 // Must be the same as in alu.h!
55 #define BSINC_SCALE_COUNT 16
56 #define BSINC_PHASE_COUNT 32
58 /* 48 points includes the doubling for downsampling, so the maximum number of
59 * base sample points is 24, which is 23rd order.
61 #define BSINC_POINTS_MAX 48
63 static double MinDouble(double a, double b)
64 { return (a <= b) ? a : b; }
66 static double MaxDouble(double a, double b)
67 { return (a >= b) ? a : b; }
69 /* NOTE: This is the normalized (instead of just sin(x)/x) cardinal sine
70 * function.
71 * 2 f_t sinc(2 f_t x)
72 * f_t -- normalized transition frequency (0.5 is nyquist)
73 * x -- sample index (-N to N)
75 static double Sinc(const double x)
77 if(fabs(x) < 1e-15)
78 return 1.0;
79 return sin(M_PI * x) / (M_PI * x);
82 static double BesselI_0(const double x)
84 double term, sum, last_sum, x2, y;
85 int i;
87 term = 1.0;
88 sum = 1.0;
89 x2 = x / 2.0;
90 i = 1;
92 do {
93 y = x2 / i;
94 i++;
95 last_sum = sum;
96 term *= y * y;
97 sum += term;
98 } while(sum != last_sum);
100 return sum;
103 /* NOTE: k is assumed normalized (-1 to 1)
104 * beta is equivalent to 2 alpha
106 static double Kaiser(const double b, const double k)
108 if(!(k >= -1.0 && k <= 1.0))
109 return 0.0;
110 return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b);
113 /* Calculates the (normalized frequency) transition width of the Kaiser window.
114 * Rejection is in dB.
116 static double CalcKaiserWidth(const double rejection, const int order)
118 double w_t = 2.0 * M_PI;
120 if(rejection > 21.0)
121 return (rejection - 7.95) / (order * 2.285 * w_t);
122 /* This enforces a minimum rejection of just above 21.18dB */
123 return 5.79 / (order * w_t);
126 static double CalcKaiserBeta(const double rejection)
128 if(rejection > 50.0)
129 return 0.1102 * (rejection - 8.7);
130 else if(rejection >= 21.0)
131 return (0.5842 * pow(rejection - 21.0, 0.4)) +
132 (0.07886 * (rejection - 21.0));
133 return 0.0;
136 /* Generates the coefficient, delta, and index tables required by the bsinc resampler */
137 static void BsiGenerateTables(FILE *output, const char *tabname, const double rejection, const int order)
139 static double filter[BSINC_SCALE_COUNT][BSINC_PHASE_COUNT + 1][BSINC_POINTS_MAX];
140 static double phDeltas[BSINC_SCALE_COUNT][BSINC_PHASE_COUNT + 1][BSINC_POINTS_MAX];
141 static double scDeltas[BSINC_SCALE_COUNT][BSINC_PHASE_COUNT ][BSINC_POINTS_MAX];
142 static double spDeltas[BSINC_SCALE_COUNT][BSINC_PHASE_COUNT ][BSINC_POINTS_MAX];
143 static int mt[BSINC_SCALE_COUNT];
144 static double at[BSINC_SCALE_COUNT];
145 const int num_points_min = order + 1;
146 double width, beta, scaleBase, scaleRange;
147 int si, pi, i;
149 memset(filter, 0, sizeof(filter));
150 memset(phDeltas, 0, sizeof(phDeltas));
151 memset(scDeltas, 0, sizeof(scDeltas));
152 memset(spDeltas, 0, sizeof(spDeltas));
154 /* Calculate windowing parameters. The width describes the transition
155 band, but it may vary due to the linear interpolation between scales
156 of the filter.
158 width = CalcKaiserWidth(rejection, order);
159 beta = CalcKaiserBeta(rejection);
160 scaleBase = width / 2.0;
161 scaleRange = 1.0 - scaleBase;
163 // Determine filter scaling.
164 for(si = 0; si < BSINC_SCALE_COUNT; si++)
166 const double scale = scaleBase + (scaleRange * si / (BSINC_SCALE_COUNT - 1));
167 const double a = MinDouble(floor(num_points_min / (2.0 * scale)), num_points_min);
168 const int m = 2 * (int)a;
170 mt[si] = m;
171 at[si] = a;
174 /* Calculate the Kaiser-windowed Sinc filter coefficients for each scale
175 * and phase.
177 for(si = 0; si < BSINC_SCALE_COUNT; si++)
179 const int m = mt[si];
180 const int o = num_points_min - (m / 2);
181 const int l = (m / 2) - 1;
182 const double a = at[si];
183 const double scale = scaleBase + (scaleRange * si / (BSINC_SCALE_COUNT - 1));
184 const double cutoff = (0.5 * scale) - (scaleBase * MaxDouble(0.5, scale));
186 for(pi = 0; pi <= BSINC_PHASE_COUNT; pi++)
188 const double phase = l + ((double)pi / BSINC_PHASE_COUNT);
190 for(i = 0; i < m; i++)
192 const double x = i - phase;
193 filter[si][pi][o + i] = Kaiser(beta, x / a) * 2.0 * cutoff * Sinc(2.0 * cutoff * x);
198 /* Linear interpolation between phases is simplified by pre-calculating the
199 * delta (b - a) in: x = a + f (b - a)
201 for(si = 0; si < BSINC_SCALE_COUNT; si++)
203 const int m = mt[si];
204 const int o = num_points_min - (m / 2);
206 for(pi = 0; pi < BSINC_PHASE_COUNT; pi++)
208 for(i = 0; i < m; i++)
209 phDeltas[si][pi][o + i] = filter[si][pi + 1][o + i] - filter[si][pi][o + i];
213 /* Linear interpolation between scales is also simplified.
215 * Given a difference in points between scales, the destination points will
216 * be 0, thus: x = a + f (-a)
218 for(si = 0; si < (BSINC_SCALE_COUNT - 1); si++)
220 const int m = mt[si];
221 const int o = num_points_min - (m / 2);
223 for(pi = 0; pi < BSINC_PHASE_COUNT; pi++)
225 for(i = 0; i < m; i++)
226 scDeltas[si][pi][o + i] = filter[si + 1][pi][o + i] - filter[si][pi][o + i];
230 /* This last simplification is done to complete the bilinear equation for
231 * the combination of phase and scale.
233 for(si = 0; si < (BSINC_SCALE_COUNT - 1); si++)
235 const int m = mt[si];
236 const int o = num_points_min - (m / 2);
238 for(pi = 0; pi < BSINC_PHASE_COUNT; pi++)
240 for(i = 0; i < m; i++)
241 spDeltas[si][pi][o + i] = phDeltas[si + 1][pi][o + i] - phDeltas[si][pi][o + i];
245 /* Make sure the number of points is a multiple of 4 (for SIMD). */
246 for(si = 0; si < BSINC_SCALE_COUNT; si++)
247 mt[si] = (mt[si]+3) & ~3;
249 /* Calculate the table size. */
250 i = 0;
251 for(si = 0; si < BSINC_SCALE_COUNT; si++)
252 i += 4 * BSINC_PHASE_COUNT * mt[si];
254 fprintf(output,
255 "/* This %d%s order filter has a rejection of -%.0fdB, yielding a transition width\n"
256 " * of ~%.3f (normalized frequency). Order increases when downsampling to a\n"
257 " * limit of one octave, after which the quality of the filter (transition\n"
258 " * width) suffers to reduce the CPU cost. The bandlimiting will cut all sound\n"
259 " * after downsampling by ~%.2f octaves.\n"
260 " */\n"
261 "alignas(16) constexpr float %s_tab[%d] = {\n",
262 order, (((order%100)/10) == 1) ? "th" :
263 ((order%10) == 1) ? "st" :
264 ((order%10) == 2) ? "nd" :
265 ((order%10) == 3) ? "rd" : "th",
266 rejection, width, log2(1.0/scaleBase), tabname, i);
267 for(si = 0; si < BSINC_SCALE_COUNT; si++)
269 const int m = mt[si];
270 const int o = num_points_min - (m / 2);
272 for(pi = 0; pi < BSINC_PHASE_COUNT; pi++)
274 fprintf(output, " /* %2d,%2d (%d) */", si, pi, m);
275 fprintf(output, "\n ");
276 for(i = 0; i < m; i++)
277 fprintf(output, " %+14.9ef,", filter[si][pi][o + i]);
278 fprintf(output, "\n ");
279 for(i = 0; i < m; i++)
280 fprintf(output, " %+14.9ef,", phDeltas[si][pi][o + i]);
281 fprintf(output, "\n ");
282 for(i = 0; i < m; i++)
283 fprintf(output, " %+14.9ef,", scDeltas[si][pi][o + i]);
284 fprintf(output, "\n ");
285 for(i = 0; i < m; i++)
286 fprintf(output, " %+14.9ef,", spDeltas[si][pi][o + i]);
287 fprintf(output, "\n");
290 fprintf(output, "};\nconstexpr BSincTable %s = {\n", tabname);
292 /* The scaleBase is calculated from the Kaiser window transition width.
293 It represents the absolute limit to the filter before it fully cuts
294 the signal. The limit in octaves can be calculated by taking the
295 base-2 logarithm of its inverse: log_2(1 / scaleBase)
297 fprintf(output, " /* scaleBase */ %.9ef, /* scaleRange */ %.9ef,\n", scaleBase, 1.0 / scaleRange);
299 fprintf(output, " /* m */ {");
300 fprintf(output, " %du", mt[0]);
301 for(si = 1; si < BSINC_SCALE_COUNT; si++)
302 fprintf(output, ", %du", mt[si]);
303 fprintf(output, " },\n");
305 fprintf(output, " /* filterOffset */ {");
306 fprintf(output, " %du", 0);
307 i = mt[0]*4*BSINC_PHASE_COUNT;
308 for(si = 1; si < BSINC_SCALE_COUNT; si++)
310 fprintf(output, ", %du", i);
311 i += mt[si]*4*BSINC_PHASE_COUNT;
314 fprintf(output, " },\n");
315 fprintf(output, " %s_tab\n", tabname);
316 fprintf(output, "};\n\n");
320 int main(int argc, char *argv[])
322 FILE *output;
324 GET_UNICODE_ARGS(&argc, &argv);
326 if(argc > 2)
328 fprintf(stderr, "Usage: %s [output file]\n", argv[0]);
329 return 1;
332 if(argc == 2)
334 output = fopen(argv[1], "wb");
335 if(!output)
337 fprintf(stderr, "Failed to open %s for writing\n", argv[1]);
338 return 1;
341 else
342 output = stdout;
344 fprintf(output, "/* Generated by bsincgen, do not edit! */\n"
345 "#pragma once\n\n"
346 "static_assert(BSINC_SCALE_COUNT == %d, \"Unexpected BSINC_SCALE_COUNT value!\");\n"
347 "static_assert(BSINC_PHASE_COUNT == %d, \"Unexpected BSINC_PHASE_COUNT value!\");\n\n"
348 "namespace {\n\n"
349 "struct BSincTable {\n"
350 " const float scaleBase, scaleRange;\n"
351 " const unsigned int m[BSINC_SCALE_COUNT];\n"
352 " const unsigned int filterOffset[BSINC_SCALE_COUNT];\n"
353 " const float *Tab;\n"
354 "};\n\n", BSINC_SCALE_COUNT, BSINC_PHASE_COUNT);
355 /* A 23rd order filter with a -60dB drop at nyquist. */
356 BsiGenerateTables(output, "bsinc24", 60.0, 23);
357 /* An 11th order filter with a -60dB drop at nyquist. */
358 BsiGenerateTables(output, "bsinc12", 60.0, 11);
360 fprintf(output, "} // namespace\n");
361 if(output != stdout)
362 fclose(output);
363 output = NULL;
365 return 0;