More sanely handle the voice state when mixing
[openal-soft.git] / alc / alu.cpp
blob5cd8c918e985e28d8d7d0c06a2b3c61a78fcd372
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include "alu.h"
25 #include <algorithm>
26 #include <array>
27 #include <atomic>
28 #include <chrono>
29 #include <climits>
30 #include <cmath>
31 #include <cstdarg>
32 #include <cstdio>
33 #include <cstdlib>
34 #include <functional>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <new>
39 #include <numeric>
40 #include <utility>
42 #include "AL/al.h"
43 #include "AL/alc.h"
44 #include "AL/efx.h"
46 #include "al/auxeffectslot.h"
47 #include "al/buffer.h"
48 #include "al/effect.h"
49 #include "al/event.h"
50 #include "al/listener.h"
51 #include "alcmain.h"
52 #include "alcontext.h"
53 #include "almalloc.h"
54 #include "alnumeric.h"
55 #include "alspan.h"
56 #include "alstring.h"
57 #include "ambidefs.h"
58 #include "atomic.h"
59 #include "bformatdec.h"
60 #include "bs2b.h"
61 #include "cpu_caps.h"
62 #include "devformat.h"
63 #include "effects/base.h"
64 #include "filters/biquad.h"
65 #include "filters/nfc.h"
66 #include "filters/splitter.h"
67 #include "fpu_modes.h"
68 #include "hrtf.h"
69 #include "inprogext.h"
70 #include "mastering.h"
71 #include "math_defs.h"
72 #include "mixer/defs.h"
73 #include "opthelpers.h"
74 #include "ringbuffer.h"
75 #include "strutils.h"
76 #include "threads.h"
77 #include "uhjfilter.h"
78 #include "vecmat.h"
79 #include "voice.h"
81 #include "bsinc_inc.h"
84 static_assert(!(MAX_RESAMPLER_PADDING&1) && MAX_RESAMPLER_PADDING >= bsinc24.m[0],
85 "MAX_RESAMPLER_PADDING is not a multiple of two, or is too small");
88 namespace {
90 using namespace std::placeholders;
92 ALfloat InitConeScale()
94 ALfloat ret{1.0f};
95 if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
97 if(al::strcasecmp(optval->c_str(), "true") == 0
98 || strtol(optval->c_str(), nullptr, 0) == 1)
99 ret *= 0.5f;
101 return ret;
104 ALfloat InitZScale()
106 ALfloat ret{1.0f};
107 if(auto optval = al::getenv("__ALSOFT_REVERSE_Z"))
109 if(al::strcasecmp(optval->c_str(), "true") == 0
110 || strtol(optval->c_str(), nullptr, 0) == 1)
111 ret *= -1.0f;
113 return ret;
116 } // namespace
118 /* Cone scalar */
119 const ALfloat ConeScale{InitConeScale()};
121 /* Localized Z scalar for mono sources */
122 const ALfloat ZScale{InitZScale()};
124 MixerFunc MixSamples{Mix_<CTag>};
125 RowMixerFunc MixRowSamples{MixRow_<CTag>};
127 namespace {
129 struct ChanMap {
130 Channel channel;
131 ALfloat angle;
132 ALfloat elevation;
135 HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>;
137 inline MixerFunc SelectMixer()
139 #ifdef HAVE_NEON
140 if((CPUCapFlags&CPU_CAP_NEON))
141 return Mix_<NEONTag>;
142 #endif
143 #ifdef HAVE_SSE
144 if((CPUCapFlags&CPU_CAP_SSE))
145 return Mix_<SSETag>;
146 #endif
147 return Mix_<CTag>;
150 inline RowMixerFunc SelectRowMixer()
152 #ifdef HAVE_NEON
153 if((CPUCapFlags&CPU_CAP_NEON))
154 return MixRow_<NEONTag>;
155 #endif
156 #ifdef HAVE_SSE
157 if((CPUCapFlags&CPU_CAP_SSE))
158 return MixRow_<SSETag>;
159 #endif
160 return MixRow_<CTag>;
163 inline HrtfDirectMixerFunc SelectHrtfMixer(void)
165 #ifdef HAVE_NEON
166 if((CPUCapFlags&CPU_CAP_NEON))
167 return MixDirectHrtf_<NEONTag>;
168 #endif
169 #ifdef HAVE_SSE
170 if((CPUCapFlags&CPU_CAP_SSE))
171 return MixDirectHrtf_<SSETag>;
172 #endif
174 return MixDirectHrtf_<CTag>;
178 inline void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
180 size_t si{BSINC_SCALE_COUNT - 1};
181 float sf{0.0f};
183 if(increment > FRACTIONONE)
185 sf = FRACTIONONE / static_cast<float>(increment);
186 sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
187 si = float2uint(sf);
188 /* The interpolation factor is fit to this diagonally-symmetric curve
189 * to reduce the transition ripple caused by interpolating different
190 * scales of the sinc function.
192 sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
195 state->sf = sf;
196 state->m = table->m[si];
197 state->l = (state->m/2) - 1;
198 state->filter = table->Tab + table->filterOffset[si];
201 inline ResamplerFunc SelectResampler(Resampler resampler, ALuint increment)
203 switch(resampler)
205 case Resampler::Point:
206 return Resample_<PointTag,CTag>;
207 case Resampler::Linear:
208 #ifdef HAVE_NEON
209 if((CPUCapFlags&CPU_CAP_NEON))
210 return Resample_<LerpTag,NEONTag>;
211 #endif
212 #ifdef HAVE_SSE4_1
213 if((CPUCapFlags&CPU_CAP_SSE4_1))
214 return Resample_<LerpTag,SSE4Tag>;
215 #endif
216 #ifdef HAVE_SSE2
217 if((CPUCapFlags&CPU_CAP_SSE2))
218 return Resample_<LerpTag,SSE2Tag>;
219 #endif
220 return Resample_<LerpTag,CTag>;
221 case Resampler::Cubic:
222 return Resample_<CubicTag,CTag>;
223 case Resampler::BSinc12:
224 case Resampler::BSinc24:
225 if(increment <= FRACTIONONE)
227 /* fall-through */
228 case Resampler::FastBSinc12:
229 case Resampler::FastBSinc24:
230 #ifdef HAVE_NEON
231 if((CPUCapFlags&CPU_CAP_NEON))
232 return Resample_<FastBSincTag,NEONTag>;
233 #endif
234 #ifdef HAVE_SSE
235 if((CPUCapFlags&CPU_CAP_SSE))
236 return Resample_<FastBSincTag,SSETag>;
237 #endif
238 return Resample_<FastBSincTag,CTag>;
240 #ifdef HAVE_NEON
241 if((CPUCapFlags&CPU_CAP_NEON))
242 return Resample_<BSincTag,NEONTag>;
243 #endif
244 #ifdef HAVE_SSE
245 if((CPUCapFlags&CPU_CAP_SSE))
246 return Resample_<BSincTag,SSETag>;
247 #endif
248 return Resample_<BSincTag,CTag>;
251 return Resample_<PointTag,CTag>;
254 } // namespace
256 void aluInit(void)
258 MixSamples = SelectMixer();
259 MixRowSamples = SelectRowMixer();
260 MixDirectHrtf = SelectHrtfMixer();
264 ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state)
266 switch(resampler)
268 case Resampler::Point:
269 case Resampler::Linear:
270 case Resampler::Cubic:
271 break;
272 case Resampler::FastBSinc12:
273 case Resampler::BSinc12:
274 BsincPrepare(increment, &state->bsinc, &bsinc12);
275 break;
276 case Resampler::FastBSinc24:
277 case Resampler::BSinc24:
278 BsincPrepare(increment, &state->bsinc, &bsinc24);
279 break;
281 return SelectResampler(resampler, increment);
285 void ALCdevice::ProcessHrtf(const size_t SamplesToDo)
287 /* HRTF is stereo output only. */
288 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
289 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
291 MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
292 mHrtfState.get(), SamplesToDo);
295 void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo)
297 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
300 void ALCdevice::ProcessUhj(const size_t SamplesToDo)
302 /* UHJ is stereo output only. */
303 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
304 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
306 /* Encode to stereo-compatible 2-channel UHJ output. */
307 Uhj_Encoder->encode(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer.data(),
308 SamplesToDo);
311 void ALCdevice::ProcessBs2b(const size_t SamplesToDo)
313 /* First, decode the ambisonic mix to the "real" output. */
314 AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
316 /* BS2B is stereo output only. */
317 const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
318 const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
320 /* Now apply the BS2B binaural/crossfeed filter. */
321 bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
322 SamplesToDo);
326 namespace {
328 /* This RNG method was created based on the math found in opusdec. It's quick,
329 * and starting with a seed value of 22222, is suitable for generating
330 * whitenoise.
332 inline ALuint dither_rng(ALuint *seed) noexcept
334 *seed = (*seed * 96314165) + 907633515;
335 return *seed;
339 inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2)
341 return alu::Vector{
342 in1[1]*in2[2] - in1[2]*in2[1],
343 in1[2]*in2[0] - in1[0]*in2[2],
344 in1[0]*in2[1] - in1[1]*in2[0],
345 0.0f
349 inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2)
351 return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
355 alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept
357 return alu::Vector{
358 vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
359 vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
360 vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
361 vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]
366 bool CalcContextParams(ALCcontext *Context)
368 ALcontextProps *props{Context->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
369 if(!props) return false;
371 ALlistener &Listener = Context->mListener;
372 Listener.Params.DopplerFactor = props->DopplerFactor;
373 Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
375 Listener.Params.SourceDistanceModel = props->SourceDistanceModel;
376 Listener.Params.mDistanceModel = props->mDistanceModel;
378 AtomicReplaceHead(Context->mFreeContextProps, props);
379 return true;
382 bool CalcListenerParams(ALCcontext *Context)
384 ALlistener &Listener = Context->mListener;
386 ALlistenerProps *props{Listener.Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
387 if(!props) return false;
389 /* AT then UP */
390 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
391 N.normalize();
392 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
393 V.normalize();
394 /* Build and normalize right-vector */
395 alu::Vector U{aluCrossproduct(N, V)};
396 U.normalize();
398 Listener.Params.Matrix = alu::Matrix{
399 U[0], V[0], -N[0], 0.0f,
400 U[1], V[1], -N[1], 0.0f,
401 U[2], V[2], -N[2], 0.0f,
402 0.0f, 0.0f, 0.0f, 1.0f
405 const alu::Vector P{Listener.Params.Matrix *
406 alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}};
407 Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f);
409 const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
410 Listener.Params.Velocity = Listener.Params.Matrix * vel;
412 Listener.Params.Gain = props->Gain * Context->mGainBoost;
413 Listener.Params.MetersPerUnit = props->MetersPerUnit;
415 AtomicReplaceHead(Context->mFreeListenerProps, props);
416 return true;
419 bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context)
421 ALeffectslotProps *props{slot->Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
422 if(!props) return false;
424 slot->Params.Gain = props->Gain;
425 slot->Params.AuxSendAuto = props->AuxSendAuto;
426 slot->Params.Target = props->Target;
427 slot->Params.EffectType = props->Type;
428 slot->Params.mEffectProps = props->Props;
429 if(IsReverbEffect(props->Type))
431 slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
432 slot->Params.DecayTime = props->Props.Reverb.DecayTime;
433 slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
434 slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
435 slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
436 slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
438 else
440 slot->Params.RoomRolloff = 0.0f;
441 slot->Params.DecayTime = 0.0f;
442 slot->Params.DecayLFRatio = 0.0f;
443 slot->Params.DecayHFRatio = 0.0f;
444 slot->Params.DecayHFLimit = AL_FALSE;
445 slot->Params.AirAbsorptionGainHF = 1.0f;
448 EffectState *state{props->State};
449 props->State = nullptr;
450 EffectState *oldstate{slot->Params.mEffectState};
451 slot->Params.mEffectState = state;
453 /* Only release the old state if it won't get deleted, since we can't be
454 * deleting/freeing anything in the mixer.
456 if(!oldstate->releaseIfNoDelete())
458 /* Otherwise, if it would be deleted send it off with a release event. */
459 RingBuffer *ring{context->mAsyncEvents.get()};
460 auto evt_vec = ring->getWriteVector();
461 if LIKELY(evt_vec.first.len > 0)
463 AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}};
464 evt->u.mEffectState = oldstate;
465 ring->writeAdvance(1);
466 context->mEventSem.post();
468 else
470 /* If writing the event failed, the queue was probably full. Store
471 * the old state in the property object where it can eventually be
472 * cleaned up sometime later (not ideal, but better than blocking
473 * or leaking).
475 props->State = oldstate;
479 AtomicReplaceHead(context->mFreeEffectslotProps, props);
481 EffectTarget output;
482 if(ALeffectslot *target{slot->Params.Target})
483 output = EffectTarget{&target->Wet, nullptr};
484 else
486 ALCdevice *device{context->mDevice.get()};
487 output = EffectTarget{&device->Dry, &device->RealOut};
489 state->update(context, slot, &slot->Params.mEffectProps, output);
490 return true;
494 /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
495 * front.
497 inline float ScaleAzimuthFront(float azimuth, float scale)
499 const ALfloat abs_azi{std::fabs(azimuth)};
500 if(!(abs_azi >= al::MathDefs<float>::Pi()*0.5f))
501 return std::copysign(minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f), azimuth);
502 return azimuth;
505 void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos,
506 const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain,
507 const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS],
508 const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS],
509 ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props,
510 const ALlistener &Listener, const ALCdevice *Device)
512 static constexpr ChanMap MonoMap[1]{
513 { FrontCenter, 0.0f, 0.0f }
514 }, RearMap[2]{
515 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
516 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
517 }, QuadMap[4]{
518 { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
519 { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
520 { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
521 { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
522 }, X51Map[6]{
523 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
524 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
525 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
526 { LFE, 0.0f, 0.0f },
527 { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
528 { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
529 }, X61Map[7]{
530 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
531 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
532 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
533 { LFE, 0.0f, 0.0f },
534 { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
535 { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
536 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
537 }, X71Map[8]{
538 { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
539 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
540 { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
541 { LFE, 0.0f, 0.0f },
542 { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
543 { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
544 { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
545 { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
548 ChanMap StereoMap[2]{
549 { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
550 { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
553 const auto Frequency = static_cast<ALfloat>(Device->Frequency);
554 const ALuint NumSends{Device->NumAuxSends};
556 bool DirectChannels{props->DirectChannels != AL_FALSE};
557 const ChanMap *chans{nullptr};
558 ALuint num_channels{0};
559 bool isbformat{false};
560 ALfloat downmix_gain{1.0f};
561 switch(voice->mFmtChannels)
563 case FmtMono:
564 chans = MonoMap;
565 num_channels = 1;
566 /* Mono buffers are never played direct. */
567 DirectChannels = false;
568 break;
570 case FmtStereo:
571 /* Convert counter-clockwise to clockwise. */
572 StereoMap[0].angle = -props->StereoPan[0];
573 StereoMap[1].angle = -props->StereoPan[1];
575 chans = StereoMap;
576 num_channels = 2;
577 downmix_gain = 1.0f / 2.0f;
578 break;
580 case FmtRear:
581 chans = RearMap;
582 num_channels = 2;
583 downmix_gain = 1.0f / 2.0f;
584 break;
586 case FmtQuad:
587 chans = QuadMap;
588 num_channels = 4;
589 downmix_gain = 1.0f / 4.0f;
590 break;
592 case FmtX51:
593 chans = X51Map;
594 num_channels = 6;
595 /* NOTE: Excludes LFE. */
596 downmix_gain = 1.0f / 5.0f;
597 break;
599 case FmtX61:
600 chans = X61Map;
601 num_channels = 7;
602 /* NOTE: Excludes LFE. */
603 downmix_gain = 1.0f / 6.0f;
604 break;
606 case FmtX71:
607 chans = X71Map;
608 num_channels = 8;
609 /* NOTE: Excludes LFE. */
610 downmix_gain = 1.0f / 7.0f;
611 break;
613 case FmtBFormat2D:
614 num_channels = 3;
615 isbformat = true;
616 DirectChannels = false;
617 break;
619 case FmtBFormat3D:
620 num_channels = 4;
621 isbformat = true;
622 DirectChannels = false;
623 break;
625 ASSUME(num_channels > 0);
627 std::for_each(voice->mChans.begin(), voice->mChans.begin()+num_channels,
628 [NumSends](ALvoice::ChannelData &chandata) -> void
630 chandata.mDryParams.Hrtf.Target = HrtfFilter{};
631 chandata.mDryParams.Gains.Target.fill(0.0f);
632 std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
633 [](SendParams &params) -> void { params.Gains.Target.fill(0.0f); });
636 voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
637 if(isbformat)
639 /* Special handling for B-Format sources. */
641 if(Distance > std::numeric_limits<float>::epsilon())
643 /* Panning a B-Format sound toward some direction is easy. Just pan
644 * the first (W) channel as a normal mono sound and silence the
645 * others.
648 if(Device->AvgSpeakerDist > 0.0f)
650 /* Clamp the distance for really close sources, to prevent
651 * excessive bass.
653 const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
654 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
656 /* Only need to adjust the first channel of a B-Format source. */
657 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
659 voice->mFlags |= VOICE_HAS_NFC;
662 ALfloat coeffs[MAX_AMBI_CHANNELS];
663 if(Device->mRenderMode != StereoPair)
664 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
665 else
667 /* Clamp Y, in case rounding errors caused it to end up outside
668 * of -1...+1.
670 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
671 /* Negate Z for right-handed coords with -Z in front. */
672 const ALfloat az{std::atan2(xpos, -zpos)};
674 /* A scalar of 1.5 for plain stereo results in +/-60 degrees
675 * being moved to +/-90 degrees for direct right and left
676 * speaker responses.
678 CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
681 /* NOTE: W needs to be scaled due to FuMa normalization. */
682 const ALfloat &scale0 = AmbiScale::FromFuMa[0];
683 ComputePanGains(&Device->Dry, coeffs, DryGain*scale0,
684 voice->mChans[0].mDryParams.Gains.Target);
685 for(ALuint i{0};i < NumSends;i++)
687 if(const ALeffectslot *Slot{SendSlots[i]})
688 ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0,
689 voice->mChans[0].mWetParams[i].Gains.Target);
692 else
694 if(Device->AvgSpeakerDist > 0.0f)
696 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
697 * is what we want for FOA input. The first channel may have
698 * been previously re-adjusted if panned, so reset it.
700 voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
702 voice->mFlags |= VOICE_HAS_NFC;
705 /* Local B-Format sources have their XYZ channels rotated according
706 * to the orientation.
708 /* AT then UP */
709 alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
710 N.normalize();
711 alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
712 V.normalize();
713 if(!props->HeadRelative)
715 N = Listener.Params.Matrix * N;
716 V = Listener.Params.Matrix * V;
718 /* Build and normalize right-vector */
719 alu::Vector U{aluCrossproduct(N, V)};
720 U.normalize();
722 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
723 * matrix is transposed, for the inputs to align on the rows and
724 * outputs on the columns.
726 const ALfloat &wscale = AmbiScale::FromFuMa[0];
727 const ALfloat &yscale = AmbiScale::FromFuMa[1];
728 const ALfloat &zscale = AmbiScale::FromFuMa[2];
729 const ALfloat &xscale = AmbiScale::FromFuMa[3];
730 const ALfloat matrix[4][MAX_AMBI_CHANNELS]{
731 // ACN0 ACN1 ACN2 ACN3
732 { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W
733 { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X
734 { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y
735 { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z
738 for(ALuint c{0};c < num_channels;c++)
740 ComputePanGains(&Device->Dry, matrix[c], DryGain,
741 voice->mChans[c].mDryParams.Gains.Target);
743 for(ALuint i{0};i < NumSends;i++)
745 if(const ALeffectslot *Slot{SendSlots[i]})
746 ComputePanGains(&Slot->Wet, matrix[c], WetGain[i],
747 voice->mChans[c].mWetParams[i].Gains.Target);
752 else if(DirectChannels)
754 /* Direct source channels always play local. Skip the virtual channels
755 * and write inputs to the matching real outputs.
757 voice->mDirect.Buffer = Device->RealOut.Buffer;
759 for(ALuint c{0};c < num_channels;c++)
761 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
762 if(idx != INVALID_CHANNEL_INDEX)
763 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
766 /* Auxiliary sends still use normal channel panning since they mix to
767 * B-Format, which can't channel-match.
769 for(ALuint c{0};c < num_channels;c++)
771 ALfloat coeffs[MAX_AMBI_CHANNELS];
772 CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
774 for(ALuint i{0};i < NumSends;i++)
776 if(const ALeffectslot *Slot{SendSlots[i]})
777 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
778 voice->mChans[c].mWetParams[i].Gains.Target);
782 else if(Device->mRenderMode == HrtfRender)
784 /* Full HRTF rendering. Skip the virtual channels and render to the
785 * real outputs.
787 voice->mDirect.Buffer = Device->RealOut.Buffer;
789 if(Distance > std::numeric_limits<float>::epsilon())
791 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
792 const ALfloat az{std::atan2(xpos, -zpos)};
794 /* Get the HRIR coefficients and delays just once, for the given
795 * source direction.
797 GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread,
798 voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
799 voice->mChans[0].mDryParams.Hrtf.Target.Delay);
800 voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain * downmix_gain;
802 /* Remaining channels use the same results as the first. */
803 for(ALuint c{1};c < num_channels;c++)
805 /* Skip LFE */
806 if(chans[c].channel == LFE) continue;
807 voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target;
810 /* Calculate the directional coefficients once, which apply to all
811 * input channels of the source sends.
813 ALfloat coeffs[MAX_AMBI_CHANNELS];
814 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
816 for(ALuint c{0};c < num_channels;c++)
818 /* Skip LFE */
819 if(chans[c].channel == LFE)
820 continue;
821 for(ALuint i{0};i < NumSends;i++)
823 if(const ALeffectslot *Slot{SendSlots[i]})
824 ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
825 voice->mChans[c].mWetParams[i].Gains.Target);
829 else
831 /* Local sources on HRTF play with each channel panned to its
832 * relative location around the listener, providing "virtual
833 * speaker" responses.
835 for(ALuint c{0};c < num_channels;c++)
837 /* Skip LFE */
838 if(chans[c].channel == LFE)
839 continue;
841 /* Get the HRIR coefficients and delays for this channel
842 * position.
844 GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle,
845 std::numeric_limits<float>::infinity(), Spread,
846 voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
847 voice->mChans[c].mDryParams.Hrtf.Target.Delay);
848 voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain;
850 /* Normal panning for auxiliary sends. */
851 ALfloat coeffs[MAX_AMBI_CHANNELS];
852 CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
854 for(ALuint i{0};i < NumSends;i++)
856 if(const ALeffectslot *Slot{SendSlots[i]})
857 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
858 voice->mChans[c].mWetParams[i].Gains.Target);
863 voice->mFlags |= VOICE_HAS_HRTF;
865 else
867 /* Non-HRTF rendering. Use normal panning to the output. */
869 if(Distance > std::numeric_limits<float>::epsilon())
871 /* Calculate NFC filter coefficient if needed. */
872 if(Device->AvgSpeakerDist > 0.0f)
874 /* Clamp the distance for really close sources, to prevent
875 * excessive bass.
877 const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
878 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
880 /* Adjust NFC filters. */
881 for(ALuint c{0};c < num_channels;c++)
882 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
884 voice->mFlags |= VOICE_HAS_NFC;
887 /* Calculate the directional coefficients once, which apply to all
888 * input channels.
890 ALfloat coeffs[MAX_AMBI_CHANNELS];
891 if(Device->mRenderMode != StereoPair)
892 CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
893 else
895 const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
896 const ALfloat az{std::atan2(xpos, -zpos)};
897 CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
900 for(ALuint c{0};c < num_channels;c++)
902 /* Special-case LFE */
903 if(chans[c].channel == LFE)
905 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
907 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
908 if(idx != INVALID_CHANNEL_INDEX)
909 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
911 continue;
914 ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
915 voice->mChans[c].mDryParams.Gains.Target);
916 for(ALuint i{0};i < NumSends;i++)
918 if(const ALeffectslot *Slot{SendSlots[i]})
919 ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
920 voice->mChans[c].mWetParams[i].Gains.Target);
924 else
926 if(Device->AvgSpeakerDist > 0.0f)
928 /* If the source distance is 0, set w0 to w1 to act as a pass-
929 * through. We still want to pass the signal through the
930 * filters so they keep an appropriate history, in case the
931 * source moves away from the listener.
933 const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)};
935 for(ALuint c{0};c < num_channels;c++)
936 voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
938 voice->mFlags |= VOICE_HAS_NFC;
941 for(ALuint c{0};c < num_channels;c++)
943 /* Special-case LFE */
944 if(chans[c].channel == LFE)
946 if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
948 const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
949 if(idx != INVALID_CHANNEL_INDEX)
950 voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
952 continue;
955 ALfloat coeffs[MAX_AMBI_CHANNELS];
956 CalcAngleCoeffs(
957 (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
958 : chans[c].angle,
959 chans[c].elevation, Spread, coeffs
962 ComputePanGains(&Device->Dry, coeffs, DryGain,
963 voice->mChans[c].mDryParams.Gains.Target);
964 for(ALuint i{0};i < NumSends;i++)
966 if(const ALeffectslot *Slot{SendSlots[i]})
967 ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
968 voice->mChans[c].mWetParams[i].Gains.Target);
975 const ALfloat hfScale{props->Direct.HFReference / Frequency};
976 const ALfloat lfScale{props->Direct.LFReference / Frequency};
977 const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */
978 const ALfloat gainLF{maxf(DryGainLF, 0.001f)};
980 voice->mDirect.FilterType = AF_None;
981 if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
982 if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
983 auto &lowpass = voice->mChans[0].mDryParams.LowPass;
984 auto &highpass = voice->mChans[0].mDryParams.HighPass;
985 lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
986 lowpass.rcpQFromSlope(gainHF, 1.0f));
987 highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
988 highpass.rcpQFromSlope(gainLF, 1.0f));
989 for(ALuint c{1};c < num_channels;c++)
991 voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
992 voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
995 for(ALuint i{0};i < NumSends;i++)
997 const ALfloat hfScale{props->Send[i].HFReference / Frequency};
998 const ALfloat lfScale{props->Send[i].LFReference / Frequency};
999 const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)};
1000 const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)};
1002 voice->mSend[i].FilterType = AF_None;
1003 if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
1004 if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
1006 auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
1007 auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
1008 lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
1009 lowpass.rcpQFromSlope(gainHF, 1.0f));
1010 highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
1011 highpass.rcpQFromSlope(gainLF, 1.0f));
1012 for(ALuint c{1};c < num_channels;c++)
1014 voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
1015 voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
1020 void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
1022 const ALCdevice *Device{ALContext->mDevice.get()};
1023 ALeffectslot *SendSlots[MAX_SENDS];
1025 voice->mDirect.Buffer = Device->Dry.Buffer;
1026 for(ALuint i{0};i < Device->NumAuxSends;i++)
1028 SendSlots[i] = props->Send[i].Slot;
1029 if(!SendSlots[i] && i == 0)
1030 SendSlots[i] = ALContext->mDefaultSlot.get();
1031 if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
1033 SendSlots[i] = nullptr;
1034 voice->mSend[i].Buffer = {};
1036 else
1037 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1040 /* Calculate the stepping value */
1041 const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
1042 static_cast<ALfloat>(Device->Frequency) * props->Pitch;
1043 if(Pitch > float{MAX_PITCH})
1044 voice->mStep = MAX_PITCH<<FRACTIONBITS;
1045 else
1046 voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
1047 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1049 /* Calculate gains */
1050 const ALlistener &Listener = ALContext->mListener;
1051 ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)};
1052 DryGain *= props->Direct.Gain * Listener.Params.Gain;
1053 DryGain = minf(DryGain, GAIN_MIX_MAX);
1054 ALfloat DryGainHF{props->Direct.GainHF};
1055 ALfloat DryGainLF{props->Direct.GainLF};
1056 ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
1057 for(ALuint i{0};i < Device->NumAuxSends;i++)
1059 WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
1060 WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain;
1061 WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
1062 WetGainHF[i] = props->Send[i].GainHF;
1063 WetGainLF[i] = props->Send[i].GainLF;
1066 CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF,
1067 WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
1070 void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
1072 const ALCdevice *Device{ALContext->mDevice.get()};
1073 const ALuint NumSends{Device->NumAuxSends};
1074 const ALlistener &Listener = ALContext->mListener;
1076 /* Set mixing buffers and get send parameters. */
1077 voice->mDirect.Buffer = Device->Dry.Buffer;
1078 ALeffectslot *SendSlots[MAX_SENDS];
1079 ALfloat RoomRolloff[MAX_SENDS];
1080 ALfloat DecayDistance[MAX_SENDS];
1081 ALfloat DecayLFDistance[MAX_SENDS];
1082 ALfloat DecayHFDistance[MAX_SENDS];
1083 for(ALuint i{0};i < NumSends;i++)
1085 SendSlots[i] = props->Send[i].Slot;
1086 if(!SendSlots[i] && i == 0)
1087 SendSlots[i] = ALContext->mDefaultSlot.get();
1088 if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
1090 SendSlots[i] = nullptr;
1091 RoomRolloff[i] = 0.0f;
1092 DecayDistance[i] = 0.0f;
1093 DecayLFDistance[i] = 0.0f;
1094 DecayHFDistance[i] = 0.0f;
1096 else if(SendSlots[i]->Params.AuxSendAuto)
1098 RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
1099 /* Calculate the distances to where this effect's decay reaches
1100 * -60dB.
1102 DecayDistance[i] = SendSlots[i]->Params.DecayTime * SPEEDOFSOUNDMETRESPERSEC;
1103 DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
1104 DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
1105 if(SendSlots[i]->Params.DecayHFLimit)
1107 ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF};
1108 if(airAbsorption < 1.0f)
1110 /* Calculate the distance to where this effect's air
1111 * absorption reaches -60dB, and limit the effect's HF
1112 * decay distance (so it doesn't take any longer to decay
1113 * than the air would allow).
1115 ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)};
1116 DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
1120 else
1122 /* If the slot's auxiliary send auto is off, the data sent to the
1123 * effect slot is the same as the dry path, sans filter effects */
1124 RoomRolloff[i] = props->RolloffFactor;
1125 DecayDistance[i] = 0.0f;
1126 DecayLFDistance[i] = 0.0f;
1127 DecayHFDistance[i] = 0.0f;
1130 if(!SendSlots[i])
1131 voice->mSend[i].Buffer = {};
1132 else
1133 voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
1136 /* Transform source to listener space (convert to head relative) */
1137 alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
1138 alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
1139 alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
1140 if(props->HeadRelative == AL_FALSE)
1142 /* Transform source vectors */
1143 Position = Listener.Params.Matrix * Position;
1144 Velocity = Listener.Params.Matrix * Velocity;
1145 Direction = Listener.Params.Matrix * Direction;
1147 else
1149 /* Offset the source velocity to be relative of the listener velocity */
1150 Velocity += Listener.Params.Velocity;
1153 const bool directional{Direction.normalize() > 0.0f};
1154 alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
1155 const ALfloat Distance{ToSource.normalize()};
1157 /* Initial source gain */
1158 ALfloat DryGain{props->Gain};
1159 ALfloat DryGainHF{1.0f};
1160 ALfloat DryGainLF{1.0f};
1161 ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
1162 for(ALuint i{0};i < NumSends;i++)
1164 WetGain[i] = props->Gain;
1165 WetGainHF[i] = 1.0f;
1166 WetGainLF[i] = 1.0f;
1169 /* Calculate distance attenuation */
1170 ALfloat ClampedDist{Distance};
1172 switch(Listener.Params.SourceDistanceModel ?
1173 props->mDistanceModel : Listener.Params.mDistanceModel)
1175 case DistanceModel::InverseClamped:
1176 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1177 if(props->MaxDistance < props->RefDistance) break;
1178 /*fall-through*/
1179 case DistanceModel::Inverse:
1180 if(!(props->RefDistance > 0.0f))
1181 ClampedDist = props->RefDistance;
1182 else
1184 ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
1185 if(dist > 0.0f) DryGain *= props->RefDistance / dist;
1186 for(ALuint i{0};i < NumSends;i++)
1188 dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
1189 if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
1192 break;
1194 case DistanceModel::LinearClamped:
1195 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1196 if(props->MaxDistance < props->RefDistance) break;
1197 /*fall-through*/
1198 case DistanceModel::Linear:
1199 if(!(props->MaxDistance != props->RefDistance))
1200 ClampedDist = props->RefDistance;
1201 else
1203 ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
1204 (props->MaxDistance-props->RefDistance);
1205 DryGain *= maxf(1.0f - attn, 0.0f);
1206 for(ALuint i{0};i < NumSends;i++)
1208 attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
1209 (props->MaxDistance-props->RefDistance);
1210 WetGain[i] *= maxf(1.0f - attn, 0.0f);
1213 break;
1215 case DistanceModel::ExponentClamped:
1216 ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
1217 if(props->MaxDistance < props->RefDistance) break;
1218 /*fall-through*/
1219 case DistanceModel::Exponent:
1220 if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
1221 ClampedDist = props->RefDistance;
1222 else
1224 DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor);
1225 for(ALuint i{0};i < NumSends;i++)
1226 WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]);
1228 break;
1230 case DistanceModel::Disable:
1231 ClampedDist = props->RefDistance;
1232 break;
1235 /* Calculate directional soundcones */
1236 if(directional && props->InnerAngle < 360.0f)
1238 const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) *
1239 ConeScale * 2.0f)};
1241 ALfloat ConeVolume, ConeHF;
1242 if(!(Angle > props->InnerAngle))
1244 ConeVolume = 1.0f;
1245 ConeHF = 1.0f;
1247 else if(Angle < props->OuterAngle)
1249 ALfloat scale = ( Angle-props->InnerAngle) /
1250 (props->OuterAngle-props->InnerAngle);
1251 ConeVolume = lerp(1.0f, props->OuterGain, scale);
1252 ConeHF = lerp(1.0f, props->OuterGainHF, scale);
1254 else
1256 ConeVolume = props->OuterGain;
1257 ConeHF = props->OuterGainHF;
1260 DryGain *= ConeVolume;
1261 if(props->DryGainHFAuto)
1262 DryGainHF *= ConeHF;
1263 if(props->WetGainAuto)
1264 std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain),
1265 [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; }
1267 if(props->WetGainHFAuto)
1268 std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
1269 std::begin(WetGainHF),
1270 [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; }
1274 /* Apply gain and frequency filters */
1275 DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
1276 DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX);
1277 DryGainHF *= props->Direct.GainHF;
1278 DryGainLF *= props->Direct.GainLF;
1279 for(ALuint i{0};i < NumSends;i++)
1281 WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
1282 WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX);
1283 WetGainHF[i] *= props->Send[i].GainHF;
1284 WetGainLF[i] *= props->Send[i].GainLF;
1287 /* Distance-based air absorption and initial send decay. */
1288 if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
1290 ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor *
1291 Listener.Params.MetersPerUnit};
1292 if(props->AirAbsorptionFactor > 0.0f)
1294 ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)};
1295 DryGainHF *= hfattn;
1296 std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
1297 std::begin(WetGainHF),
1298 [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; }
1302 if(props->WetGainAuto)
1304 /* Apply a decay-time transformation to the wet path, based on the
1305 * source distance in meters. The initial decay of the reverb
1306 * effect is calculated and applied to the wet path.
1308 for(ALuint i{0};i < NumSends;i++)
1310 if(!(DecayDistance[i] > 0.0f))
1311 continue;
1313 const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])};
1314 WetGain[i] *= gain;
1315 /* Yes, the wet path's air absorption is applied with
1316 * WetGainAuto on, rather than WetGainHFAuto.
1318 if(gain > 0.0f)
1320 ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])};
1321 WetGainHF[i] *= minf(gainhf / gain, 1.0f);
1322 ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])};
1323 WetGainLF[i] *= minf(gainlf / gain, 1.0f);
1330 /* Initial source pitch */
1331 ALfloat Pitch{props->Pitch};
1333 /* Calculate velocity-based doppler effect */
1334 ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor};
1335 if(DopplerFactor > 0.0f)
1337 const alu::Vector &lvelocity = Listener.Params.Velocity;
1338 ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor};
1339 ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor};
1341 const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound};
1342 if(!(vls < SpeedOfSound))
1344 /* Listener moving away from the source at the speed of sound.
1345 * Sound waves can't catch it.
1347 Pitch = 0.0f;
1349 else if(!(vss < SpeedOfSound))
1351 /* Source moving toward the listener at the speed of sound. Sound
1352 * waves bunch up to extreme frequencies.
1354 Pitch = std::numeric_limits<float>::infinity();
1356 else
1358 /* Source and listener movement is nominal. Calculate the proper
1359 * doppler shift.
1361 Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
1365 /* Adjust pitch based on the buffer and output frequencies, and calculate
1366 * fixed-point stepping value.
1368 Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
1369 if(Pitch > float{MAX_PITCH})
1370 voice->mStep = MAX_PITCH<<FRACTIONBITS;
1371 else
1372 voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
1373 voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
1375 ALfloat spread{0.0f};
1376 if(props->Radius > Distance)
1377 spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi();
1378 else if(Distance > 0.0f)
1379 spread = std::asin(props->Radius/Distance) * 2.0f;
1381 CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale,
1382 Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain,
1383 WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
1386 void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
1388 ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
1389 if(!props && !force) return;
1391 if(props)
1393 voice->mProps = *props;
1395 AtomicReplaceHead(context->mFreeVoiceProps, props);
1398 if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) ||
1399 voice->mProps.mSpatializeMode == SpatializeOn)
1400 CalcAttnSourceParams(voice, &voice->mProps, context);
1401 else
1402 CalcNonAttnSourceParams(voice, &voice->mProps, context);
1406 void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray &slots,
1407 const al::span<ALvoice> voices)
1409 IncrementRef(ctx->mUpdateCount);
1410 if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire))
1412 bool force{CalcContextParams(ctx)};
1413 force |= CalcListenerParams(ctx);
1414 force = std::accumulate(slots.begin(), slots.end(), force,
1415 [ctx](const bool f, ALeffectslot *slot) -> bool
1416 { return CalcEffectSlotParams(slot, ctx) | f; }
1419 auto calc_params = [ctx,force](ALvoice &voice) -> void
1421 if(voice.mSourceID.load(std::memory_order_acquire) != 0)
1422 CalcSourceParams(&voice, ctx, force);
1424 std::for_each(voices.begin(), voices.end(), calc_params);
1426 IncrementRef(ctx->mUpdateCount);
1429 void ProcessContext(ALCcontext *ctx, const ALuint SamplesToDo)
1431 ASSUME(SamplesToDo > 0);
1433 const ALeffectslotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
1434 const al::span<ALvoice> voices{ctx->mVoices.data(), ctx->mVoices.size()};
1436 /* Process pending propery updates for objects on the context. */
1437 ProcessParamUpdates(ctx, auxslots, voices);
1439 /* Clear auxiliary effect slot mixing buffers. */
1440 std::for_each(auxslots.begin(), auxslots.end(),
1441 [SamplesToDo](ALeffectslot *slot) -> void
1443 for(auto &buffer : slot->MixBuffer)
1444 std::fill_n(buffer.begin(), SamplesToDo, 0.0f);
1448 /* Process voices that have a playing source. */
1449 std::for_each(voices.begin(), voices.end(),
1450 [SamplesToDo,ctx](ALvoice &voice) -> void
1452 const ALvoice::State vstate{voice.mPlayState.load(std::memory_order_acquire)};
1453 if(vstate != ALvoice::Stopped) voice.mix(vstate, ctx, SamplesToDo);
1457 /* Process effects. */
1458 if(auxslots.empty()) return;
1459 auto slots = auxslots.data();
1460 auto slots_end = slots + auxslots.size();
1462 /* First sort the slots into scratch storage, so that effects come before
1463 * their effect target (or their targets' target).
1465 auto sorted_slots = const_cast<ALeffectslot**>(slots_end);
1466 auto sorted_slots_end = sorted_slots;
1467 auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool
1469 while((slot1=slot1->Params.Target) != nullptr) {
1470 if(slot1 == slot2) return true;
1472 return false;
1475 *sorted_slots_end = *slots;
1476 ++sorted_slots_end;
1477 while(++slots != slots_end)
1479 /* If this effect slot targets an effect slot already in the list (i.e.
1480 * slots outputs to something in sorted_slots), directly or indirectly,
1481 * insert it prior to that element.
1483 auto checker = sorted_slots;
1484 do {
1485 if(in_chain(*slots, *checker)) break;
1486 } while(++checker != sorted_slots_end);
1488 checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1);
1489 *--checker = *slots;
1490 ++sorted_slots_end;
1493 std::for_each(sorted_slots, sorted_slots_end,
1494 [SamplesToDo](const ALeffectslot *slot) -> void
1496 EffectState *state{slot->Params.mEffectState};
1497 state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
1503 void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> Buffer,
1504 const ALuint lidx, const ALuint ridx, const ALuint cidx, const ALuint SamplesToDo)
1506 ASSUME(SamplesToDo > 0);
1508 /* Apply a delay to all channels, except the front-left and front-right, so
1509 * they maintain correct timing.
1511 const size_t NumChannels{Buffer.size()};
1512 for(size_t i{0u};i < NumChannels;i++)
1514 if(i == lidx || i == ridx)
1515 continue;
1517 auto &DelayBuf = Stablizer->DelayBuf[i];
1518 auto buffer_end = Buffer[i].begin() + SamplesToDo;
1519 if LIKELY(SamplesToDo >= ALuint{FrontStablizer::DelayLength})
1521 auto delay_end = std::rotate(Buffer[i].begin(),
1522 buffer_end - FrontStablizer::DelayLength, buffer_end);
1523 std::swap_ranges(Buffer[i].begin(), delay_end, std::begin(DelayBuf));
1525 else
1527 auto delay_start = std::swap_ranges(Buffer[i].begin(), buffer_end,
1528 std::begin(DelayBuf));
1529 std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf));
1533 ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
1534 ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
1535 auto &tmpbuf = Stablizer->TempBuf;
1537 /* This applies the band-splitter, preserving phase at the cost of some
1538 * delay. The shorter the delay, the more error seeps into the result.
1540 auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &InBuf,
1541 ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
1542 ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
1544 /* Combine the delayed samples and the input samples into the temp
1545 * buffer, in reverse. Then copy the final samples back into the delay
1546 * buffer for next time. Note that the delay buffer's samples are
1547 * stored backwards here.
1549 auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
1550 std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
1551 std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, std::begin(tmpbuf));
1552 std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
1554 /* Apply an all-pass on the reversed signal, then reverse the samples
1555 * to get the forward signal with a reversed phase shift.
1557 Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
1558 std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
1560 /* Now apply the band-splitter, combining its phase shift with the
1561 * reversed phase shift, restoring the original phase on the split
1562 * signal.
1564 Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
1566 apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
1567 apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
1569 for(ALuint i{0};i < SamplesToDo;i++)
1571 ALfloat lfsum{lsplit[0][i] + rsplit[0][i]};
1572 ALfloat hfsum{lsplit[1][i] + rsplit[1][i]};
1573 ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]};
1575 /* This pans the separate low- and high-frequency sums between being on
1576 * the center channel and the left/right channels. The low-frequency
1577 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1578 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1579 * values can be tweaked.
1581 ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
1582 hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
1583 ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
1584 hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
1586 /* The generated center channel signal adds to the existing signal,
1587 * while the modified left and right channels replace.
1589 Buffer[lidx][i] = (m + s) * 0.5f;
1590 Buffer[ridx][i] = (m - s) * 0.5f;
1591 Buffer[cidx][i] += c * 0.5f;
1595 void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const ALuint SamplesToDo,
1596 const DistanceComp::DistData *distcomp)
1598 ASSUME(SamplesToDo > 0);
1600 for(auto &chanbuffer : Samples)
1602 const ALfloat gain{distcomp->Gain};
1603 const ALuint base{distcomp->Length};
1604 ALfloat *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
1605 ++distcomp;
1607 if(base < 1)
1608 continue;
1610 ALfloat *inout{al::assume_aligned<16>(chanbuffer.data())};
1611 auto inout_end = inout + SamplesToDo;
1612 if LIKELY(SamplesToDo >= base)
1614 auto delay_end = std::rotate(inout, inout_end - base, inout_end);
1615 std::swap_ranges(inout, delay_end, distbuf);
1617 else
1619 auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
1620 std::rotate(distbuf, delay_start, distbuf + base);
1622 std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
1626 void ApplyDither(const al::span<FloatBufferLine> Samples, ALuint *dither_seed,
1627 const ALfloat quant_scale, const ALuint SamplesToDo)
1629 /* Dithering. Generate whitenoise (uniform distribution of random values
1630 * between -1 and +1) and add it to the sample values, after scaling up to
1631 * the desired quantization depth amd before rounding.
1633 const ALfloat invscale{1.0f / quant_scale};
1634 ALuint seed{*dither_seed};
1635 auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](FloatBufferLine &input) -> void
1637 ASSUME(SamplesToDo > 0);
1638 auto dither_sample = [&seed,invscale,quant_scale](const ALfloat sample) noexcept -> ALfloat
1640 ALfloat val{sample * quant_scale};
1641 ALuint rng0{dither_rng(&seed)};
1642 ALuint rng1{dither_rng(&seed)};
1643 val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
1644 return fast_roundf(val) * invscale;
1646 std::transform(input.begin(), input.begin()+SamplesToDo, input.begin(), dither_sample);
1648 std::for_each(Samples.begin(), Samples.end(), dither_channel);
1649 *dither_seed = seed;
1653 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1654 * chokes on that given the inline specializations.
1656 template<typename T>
1657 inline T SampleConv(float) noexcept;
1659 template<> inline float SampleConv(float val) noexcept
1660 { return val; }
1661 template<> inline int32_t SampleConv(float val) noexcept
1663 /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
1664 * This means a normalized float has at most 25 bits of signed precision.
1665 * When scaling and clamping for a signed 32-bit integer, these following
1666 * values are the best a float can give.
1668 return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
1670 template<> inline int16_t SampleConv(float val) noexcept
1671 { return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
1672 template<> inline int8_t SampleConv(float val) noexcept
1673 { return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
1675 /* Define unsigned output variations. */
1676 template<> inline uint32_t SampleConv(float val) noexcept
1677 { return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
1678 template<> inline uint16_t SampleConv(float val) noexcept
1679 { return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
1680 template<> inline uint8_t SampleConv(float val) noexcept
1681 { return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
1683 template<DevFmtType T>
1684 void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
1685 const ALuint SamplesToDo)
1687 using SampleType = typename DevFmtTypeTraits<T>::Type;
1689 const size_t numchans{InBuffer.size()};
1690 ASSUME(numchans > 0);
1692 SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans;
1693 auto conv_channel = [&outbase,SamplesToDo,numchans](const FloatBufferLine &inbuf) -> void
1695 ASSUME(SamplesToDo > 0);
1696 SampleType *out{outbase++};
1697 auto conv_sample = [numchans,&out](const float s) noexcept -> void
1699 *out = SampleConv<SampleType>(s);
1700 out += numchans;
1702 std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
1704 std::for_each(InBuffer.cbegin(), InBuffer.cend(), conv_channel);
1707 } // namespace
1709 void aluMixData(ALCdevice *device, ALvoid *OutBuffer, const ALuint NumSamples)
1711 FPUCtl mixer_mode{};
1712 for(ALuint SamplesDone{0u};SamplesDone < NumSamples;)
1714 const ALuint SamplesToDo{minu(NumSamples-SamplesDone, BUFFERSIZE)};
1716 /* Clear main mixing buffers. */
1717 std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(),
1718 [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void
1719 { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); }
1722 /* Increment the mix count at the start (lsb should now be 1). */
1723 IncrementRef(device->MixCount);
1725 /* For each context on this device, process and mix its sources and
1726 * effects.
1728 for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire))
1729 ProcessContext(ctx, SamplesToDo);
1731 /* Increment the clock time. Every second's worth of samples is
1732 * converted and added to clock base so that large sample counts don't
1733 * overflow during conversion. This also guarantees a stable
1734 * conversion.
1736 device->SamplesDone += SamplesToDo;
1737 device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency};
1738 device->SamplesDone %= device->Frequency;
1740 /* Increment the mix count at the end (lsb should now be 0). */
1741 IncrementRef(device->MixCount);
1743 /* Apply any needed post-process for finalizing the Dry mix to the
1744 * RealOut (Ambisonic decode, UHJ encode, etc).
1746 device->postProcess(SamplesToDo);
1748 const al::span<FloatBufferLine> RealOut{device->RealOut.Buffer};
1750 /* Apply front image stablization for surround sound, if applicable. */
1751 if(device->Stablizer)
1753 const ALuint lidx{GetChannelIdxByName(device->RealOut, FrontLeft)};
1754 const ALuint ridx{GetChannelIdxByName(device->RealOut, FrontRight)};
1755 const ALuint cidx{GetChannelIdxByName(device->RealOut, FrontCenter)};
1757 ApplyStablizer(device->Stablizer.get(), RealOut, lidx, ridx, cidx, SamplesToDo);
1760 /* Apply compression, limiting sample amplitude if needed or desired. */
1761 if(Compressor *comp{device->Limiter.get()})
1762 comp->process(SamplesToDo, RealOut.data());
1764 /* Apply delays and attenuation for mismatched speaker distances. */
1765 ApplyDistanceComp(RealOut, SamplesToDo, device->ChannelDelay.as_span().cbegin());
1767 /* Apply dithering. The compressor should have left enough headroom for
1768 * the dither noise to not saturate.
1770 if(device->DitherDepth > 0.0f)
1771 ApplyDither(RealOut, &device->DitherSeed, device->DitherDepth, SamplesToDo);
1773 if LIKELY(OutBuffer)
1775 /* Finally, interleave and convert samples, writing to the device's
1776 * output buffer.
1778 switch(device->FmtType)
1780 #define HANDLE_WRITE(T) case T: \
1781 Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break;
1782 HANDLE_WRITE(DevFmtByte)
1783 HANDLE_WRITE(DevFmtUByte)
1784 HANDLE_WRITE(DevFmtShort)
1785 HANDLE_WRITE(DevFmtUShort)
1786 HANDLE_WRITE(DevFmtInt)
1787 HANDLE_WRITE(DevFmtUInt)
1788 HANDLE_WRITE(DevFmtFloat)
1789 #undef HANDLE_WRITE
1793 SamplesDone += SamplesToDo;
1798 void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
1800 if(!device->Connected.exchange(false, std::memory_order_acq_rel))
1801 return;
1803 AsyncEvent evt{EventType_Disconnected};
1804 evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
1805 evt.u.user.id = 0;
1806 evt.u.user.param = 0;
1808 va_list args;
1809 va_start(args, msg);
1810 int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)};
1811 va_end(args);
1813 if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg))
1814 evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
1816 IncrementRef(device->MixCount);
1817 for(ALCcontext *ctx : *device->mContexts.load())
1819 const ALbitfieldSOFT enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
1820 if((enabledevt&EventType_Disconnected))
1822 RingBuffer *ring{ctx->mAsyncEvents.get()};
1823 auto evt_data = ring->getWriteVector().first;
1824 if(evt_data.len > 0)
1826 ::new (evt_data.buf) AsyncEvent{evt};
1827 ring->writeAdvance(1);
1828 ctx->mEventSem.post();
1832 auto stop_voice = [](ALvoice &voice) -> void
1834 voice.mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
1835 voice.mLoopBuffer.store(nullptr, std::memory_order_relaxed);
1836 voice.mSourceID.store(0u, std::memory_order_relaxed);
1837 voice.mPlayState.store(ALvoice::Stopped, std::memory_order_release);
1839 std::for_each(ctx->mVoices.begin(), ctx->mVoices.end(), stop_voice);
1841 IncrementRef(device->MixCount);