More sanely handle the voice state when mixing
[openal-soft.git] / alc / hrtf.cpp
blobb23f9d6facd033015f61c7073e8f58a5c4dce15b
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2011 by Chris Robinson
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include "hrtf.h"
25 #include <algorithm>
26 #include <array>
27 #include <cassert>
28 #include <cctype>
29 #include <cstdint>
30 #include <cstdio>
31 #include <cstring>
32 #include <functional>
33 #include <fstream>
34 #include <iterator>
35 #include <memory>
36 #include <mutex>
37 #include <new>
38 #include <numeric>
39 #include <type_traits>
40 #include <utility>
42 #include "AL/al.h"
44 #include "alcmain.h"
45 #include "alconfig.h"
46 #include "alfstream.h"
47 #include "almalloc.h"
48 #include "alnumeric.h"
49 #include "aloptional.h"
50 #include "alspan.h"
51 #include "filters/splitter.h"
52 #include "logging.h"
53 #include "math_defs.h"
54 #include "opthelpers.h"
57 struct HrtfHandle {
58 std::unique_ptr<HrtfEntry> entry;
59 al::FlexArray<char> filename;
61 HrtfHandle(size_t fname_len) : filename{fname_len} { }
62 HrtfHandle(const HrtfHandle&) = delete;
63 HrtfHandle& operator=(const HrtfHandle&) = delete;
65 static std::unique_ptr<HrtfHandle> Create(size_t fname_len)
66 { return std::unique_ptr<HrtfHandle>{new (FamCount{fname_len}) HrtfHandle{fname_len}}; }
68 DEF_FAM_NEWDEL(HrtfHandle, filename)
71 namespace {
73 using namespace std::placeholders;
75 using HrtfHandlePtr = std::unique_ptr<HrtfHandle>;
77 /* Data set limits must be the same as or more flexible than those defined in
78 * the makemhr utility.
80 #define MIN_IR_SIZE (8)
81 #define MAX_IR_SIZE (512)
82 #define MOD_IR_SIZE (2)
84 #define MIN_FD_COUNT (1)
85 #define MAX_FD_COUNT (16)
87 #define MIN_FD_DISTANCE (0.05f)
88 #define MAX_FD_DISTANCE (2.5f)
90 #define MIN_EV_COUNT (5)
91 #define MAX_EV_COUNT (128)
93 #define MIN_AZ_COUNT (1)
94 #define MAX_AZ_COUNT (128)
96 #define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
98 constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'};
99 constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'};
100 constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'};
102 /* First value for pass-through coefficients (remaining are 0), used for omni-
103 * directional sounds. */
104 constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
106 std::mutex LoadedHrtfLock;
107 al::vector<HrtfHandlePtr> LoadedHrtfs;
110 class databuf final : public std::streambuf {
111 int_type underflow() override
112 { return traits_type::eof(); }
114 pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
116 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
117 return traits_type::eof();
119 char_type *cur;
120 switch(whence)
122 case std::ios_base::beg:
123 if(offset < 0 || offset > egptr()-eback())
124 return traits_type::eof();
125 cur = eback() + offset;
126 break;
128 case std::ios_base::cur:
129 if((offset >= 0 && offset > egptr()-gptr()) ||
130 (offset < 0 && -offset > gptr()-eback()))
131 return traits_type::eof();
132 cur = gptr() + offset;
133 break;
135 case std::ios_base::end:
136 if(offset > 0 || -offset > egptr()-eback())
137 return traits_type::eof();
138 cur = egptr() + offset;
139 break;
141 default:
142 return traits_type::eof();
145 setg(eback(), cur, egptr());
146 return cur - eback();
149 pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
151 // Simplified version of seekoff
152 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
153 return traits_type::eof();
155 if(pos < 0 || pos > egptr()-eback())
156 return traits_type::eof();
158 setg(eback(), eback() + static_cast<size_t>(pos), egptr());
159 return pos;
162 public:
163 databuf(const char_type *start_, const char_type *end_) noexcept
165 setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
166 const_cast<char_type*>(end_));
170 class idstream final : public std::istream {
171 databuf mStreamBuf;
173 public:
174 idstream(const char *start_, const char *end_)
175 : std::istream{nullptr}, mStreamBuf{start_, end_}
176 { init(&mStreamBuf); }
180 struct IdxBlend { ALsizei idx; ALfloat blend; };
181 /* Calculate the elevation index given the polar elevation in radians. This
182 * will return an index between 0 and (evcount - 1).
184 IdxBlend CalcEvIndex(ALsizei evcount, ALfloat ev)
186 ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
187 al::MathDefs<float>::Pi();
188 ALsizei idx{float2int(ev)};
190 return IdxBlend{mini(idx, evcount-1), ev-static_cast<float>(idx)};
193 /* Calculate the azimuth index given the polar azimuth in radians. This will
194 * return an index between 0 and (azcount - 1).
196 IdxBlend CalcAzIndex(ALsizei azcount, ALfloat az)
198 az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
199 al::MathDefs<float>::Tau();
200 ALsizei idx{float2int(az)};
202 return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
205 } // namespace
208 /* Calculates static HRIR coefficients and delays for the given polar elevation
209 * and azimuth in radians. The coefficients are normalized.
211 void GetHrtfCoeffs(const HrtfEntry *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat distance,
212 ALfloat spread, HrirArray &coeffs, ALsizei (&delays)[2])
214 const ALfloat dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
216 const auto *field = Hrtf->field;
217 const auto *field_end = field + Hrtf->fdCount-1;
218 ALsizei ebase{0};
219 while(distance < field->distance && field != field_end)
221 ebase += field->evCount;
222 ++field;
225 /* Claculate the elevation indinces. */
226 const auto elev0 = CalcEvIndex(field->evCount, elevation);
227 const ALsizei elev1_idx{mini(elev0.idx+1, field->evCount-1)};
228 const ALsizei ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
229 const ALsizei ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
231 /* Calculate azimuth indices. */
232 const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
233 const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
235 /* Calculate the HRIR indices to blend. */
236 ALsizei idx[4]{
237 ir0offset + az0.idx,
238 ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
239 ir1offset + az1.idx,
240 ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
243 /* Calculate bilinear blending weights, attenuated according to the
244 * directional panning factor.
246 const ALfloat blend[4]{
247 (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
248 (1.0f-elev0.blend) * ( az0.blend) * dirfact,
249 ( elev0.blend) * (1.0f-az1.blend) * dirfact,
250 ( elev0.blend) * ( az1.blend) * dirfact
253 /* Calculate the blended HRIR delays. */
254 delays[0] = fastf2i(
255 Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
256 Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]
258 delays[1] = fastf2i(
259 Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
260 Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]
263 const ALuint irSize{Hrtf->irSize};
264 ASSUME(irSize >= MIN_IR_SIZE);
266 /* Calculate the sample offsets for the HRIR indices. */
267 idx[0] *= irSize;
268 idx[1] *= irSize;
269 idx[2] *= irSize;
270 idx[3] *= irSize;
272 /* Calculate the blended HRIR coefficients. */
273 ALfloat *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
274 coeffout[0] = PassthruCoeff * (1.0f-dirfact);
275 coeffout[1] = PassthruCoeff * (1.0f-dirfact);
276 std::fill(coeffout+2, coeffout + irSize*2, 0.0f);
277 for(ALsizei c{0};c < 4;c++)
279 const ALfloat *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]])};
280 const ALfloat mult{blend[c]};
281 auto blend_coeffs = [mult](const ALfloat src, const ALfloat coeff) noexcept -> ALfloat
282 { return src*mult + coeff; };
283 std::transform(srccoeffs, srccoeffs + irSize*2, coeffout, coeffout, blend_coeffs);
288 std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
290 return std::unique_ptr<DirectHrtfState>{new (FamCount{num_chans}) DirectHrtfState{num_chans}};
293 void BuildBFormatHrtf(const HrtfEntry *Hrtf, DirectHrtfState *state,
294 const al::span<const AngularPoint> AmbiPoints, const ALfloat (*AmbiMatrix)[MAX_AMBI_CHANNELS],
295 const ALfloat *AmbiOrderHFGain)
297 using double2 = std::array<double,2>;
298 struct ImpulseResponse {
299 alignas(16) std::array<double2,HRIR_LENGTH> hrir;
300 ALuint ldelay, rdelay;
303 static constexpr int OrderFromChan[MAX_AMBI_CHANNELS]{
304 0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3,
306 /* Set this to true for dual-band HRTF processing. May require better
307 * calculation of the new IR length to deal with the head and tail
308 * generated by the HF scaling.
310 static constexpr bool DualBand{true};
312 ALuint min_delay{HRTF_HISTORY_LENGTH};
313 ALuint max_delay{0};
314 al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
315 auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
317 ImpulseResponse res;
319 auto &field = Hrtf->field[0];
321 /* Calculate the elevation indices. */
322 const auto elev0 = CalcEvIndex(field.evCount, pt.Elev);
323 const ALsizei elev1_idx{mini(elev0.idx+1, field.evCount-1)};
324 const ALsizei ir0offset{Hrtf->elev[elev0.idx].irOffset};
325 const ALsizei ir1offset{Hrtf->elev[elev1_idx].irOffset};
327 /* Calculate azimuth indices. */
328 const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim);
329 const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim);
331 /* Calculate the HRIR indices to blend. */
332 const ALuint idx[4]{
333 static_cast<ALuint>(ir0offset + az0.idx),
334 static_cast<ALuint>(ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount)),
335 static_cast<ALuint>(ir1offset + az1.idx),
336 static_cast<ALuint>(ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount))};
338 /* Calculate bilinear blending weights. */
339 const ALfloat blend[4]{
340 (1.0f-elev0.blend) * (1.0f-az0.blend),
341 (1.0f-elev0.blend) * ( az0.blend),
342 ( elev0.blend) * (1.0f-az1.blend),
343 ( elev0.blend) * ( az1.blend)};
345 /* Calculate the blended HRIR delays. */
346 res.ldelay = fastf2u(
347 Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
348 Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]);
349 res.rdelay = fastf2u(
350 Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
351 Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]);
353 const size_t irSize{Hrtf->irSize};
354 ASSUME(irSize >= MIN_IR_SIZE);
356 /* Calculate the blended HRIR coefficients. */
357 double *coeffout{al::assume_aligned<16>(&res.hrir[0][0])};
358 std::fill(coeffout, coeffout + irSize*2, 0.0);
359 for(ALsizei c{0};c < 4;c++)
361 const ALfloat *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]*irSize])};
362 const ALfloat mult{blend[c]};
363 auto blend_coeffs = [mult](const float src, const double coeff) noexcept -> double
364 { return src*mult + coeff; };
365 std::transform(srccoeffs, srccoeffs + irSize*2, coeffout, coeffout, blend_coeffs);
368 min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
369 max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
371 return res;
373 std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
375 /* For dual-band processing, add a 16-sample delay to compensate for the HF
376 * scale on the minimum-phase response.
378 static constexpr ALsizei base_delay{DualBand ? 16 : 0};
379 const ALdouble xover_norm{400.0 / Hrtf->sampleRate};
380 BandSplitterR<double> splitter{xover_norm};
382 auto tmpres = al::vector<std::array<double2,HRIR_LENGTH>>(state->Coeffs.size());
383 auto tmpflt = al::vector<std::array<double,HRIR_LENGTH*4>>(3);
384 for(size_t c{0u};c < AmbiPoints.size();++c)
386 const al::span<const double2,HRIR_LENGTH> hrir{impres[c].hrir};
387 const ALuint ldelay{impres[c].ldelay - min_delay + base_delay};
388 const ALuint rdelay{impres[c].rdelay - min_delay + base_delay};
390 if /*constexpr*/(!DualBand)
392 /* For single-band decoding, apply the HF scale to the response. */
393 for(size_t i{0u};i < state->Coeffs.size();++i)
395 const double mult{double{AmbiOrderHFGain[OrderFromChan[i]]} * AmbiMatrix[c][i]};
396 const ALuint numirs{minu(Hrtf->irSize, HRIR_LENGTH-maxu(ldelay, rdelay))};
397 ALuint lidx{ldelay}, ridx{rdelay};
398 for(ALuint j{0};j < numirs;++j)
400 tmpres[i][lidx++][0] += hrir[j][0] * mult;
401 tmpres[i][ridx++][1] += hrir[j][1] * mult;
404 continue;
407 /* For dual-band processing, the HRIR needs to be split into low and
408 * high frequency responses. The band-splitter alone creates frequency-
409 * dependent phase-shifts, which is not ideal. To counteract it,
410 * combine it with a backwards phase-shift.
413 /* Load the (left) HRIR backwards, into a temp buffer with padding. */
414 std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0);
415 std::transform(hrir.begin(), hrir.begin()+Hrtf->irSize, tmpflt[2].rbegin() + HRIR_LENGTH*3,
416 [](const double2 &ir) noexcept -> double { return ir[0]; });
418 /* Apply the all-pass on the reversed signal and reverse the resulting
419 * sample array. This produces the forward response with a backwards
420 * phase-shift (+n degrees becomes -n degrees).
422 splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size());
423 std::reverse(tmpflt[2].begin(), tmpflt[2].end());
425 /* Now apply the band-splitter. This applies the normal phase-shift,
426 * which cancels out with the backwards phase-shift to get the original
427 * phase on the split signal.
429 splitter.clear();
430 splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size());
432 /* Apply left ear response with delay and HF scale. */
433 for(size_t i{0u};i < state->Coeffs.size();++i)
435 const ALdouble mult{AmbiMatrix[c][i]};
436 const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]};
437 ALuint j{HRIR_LENGTH*3 - ldelay};
438 for(ALuint lidx{0};lidx < HRIR_LENGTH;++lidx,++j)
439 tmpres[i][lidx][0] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
442 /* Now run the same process on the right HRIR. */
443 std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0);
444 std::transform(hrir.begin(), hrir.begin()+Hrtf->irSize, tmpflt[2].rbegin() + HRIR_LENGTH*3,
445 [](const double2 &ir) noexcept -> double { return ir[1]; });
447 splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size());
448 std::reverse(tmpflt[2].begin(), tmpflt[2].end());
450 splitter.clear();
451 splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size());
453 for(size_t i{0u};i < state->Coeffs.size();++i)
455 const ALdouble mult{AmbiMatrix[c][i]};
456 const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]};
457 ALuint j{HRIR_LENGTH*3 - rdelay};
458 for(ALuint ridx{0};ridx < HRIR_LENGTH;++ridx,++j)
459 tmpres[i][ridx][1] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
462 tmpflt.clear();
463 impres.clear();
465 for(size_t i{0u};i < state->Coeffs.size();++i)
467 auto copy_arr = [](const double2 &in) noexcept -> float2
468 { return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
469 std::transform(tmpres[i].begin(), tmpres[i].end(), state->Coeffs[i].begin(),
470 copy_arr);
472 tmpres.clear();
474 ALuint max_length{HRIR_LENGTH};
475 /* Increase the IR size by double the base delay with dual-band processing
476 * to account for the head and tail from the HF response scale.
478 const ALuint irsize{minu(Hrtf->irSize + base_delay*2, max_length)};
479 max_length = minu(max_delay-min_delay + irsize, max_length);
481 /* Round up to the next IR size multiple. */
482 max_length += MOD_IR_SIZE-1;
483 max_length -= max_length%MOD_IR_SIZE;
485 TRACE("Skipped delay: %u, max delay: %u, new FIR length: %u\n", min_delay, max_delay-min_delay,
486 max_length);
487 state->IrSize = max_length;
491 namespace {
493 std::unique_ptr<HrtfEntry> CreateHrtfStore(ALuint rate, ALushort irSize, const ALuint fdCount,
494 const ALubyte *evCount, const ALfloat *distance, const ALushort *azCount,
495 const ALushort *irOffset, ALushort irCount, const ALfloat (*coeffs)[2],
496 const ALubyte (*delays)[2], const char *filename)
498 std::unique_ptr<HrtfEntry> Hrtf;
500 ALuint evTotal{std::accumulate(evCount, evCount+fdCount, 0u)};
501 size_t total{sizeof(HrtfEntry)};
502 total = RoundUp(total, alignof(HrtfEntry::Field)); /* Align for field infos */
503 total += sizeof(HrtfEntry::Field)*fdCount;
504 total = RoundUp(total, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */
505 total += sizeof(Hrtf->elev[0])*evTotal;
506 total = RoundUp(total, 16); /* Align for coefficients using SIMD */
507 total += sizeof(Hrtf->coeffs[0])*irSize*irCount;
508 total += sizeof(Hrtf->delays[0])*irCount;
510 Hrtf.reset(new (al_calloc(16, total)) HrtfEntry{});
511 if(!Hrtf)
512 ERR("Out of memory allocating storage for %s.\n", filename);
513 else
515 InitRef(Hrtf->mRef, 1u);
516 Hrtf->sampleRate = rate;
517 Hrtf->irSize = irSize;
518 Hrtf->fdCount = fdCount;
520 /* Set up pointers to storage following the main HRTF struct. */
521 char *base = reinterpret_cast<char*>(Hrtf.get());
522 uintptr_t offset = sizeof(HrtfEntry);
524 offset = RoundUp(offset, alignof(HrtfEntry::Field)); /* Align for field infos */
525 auto field_ = reinterpret_cast<HrtfEntry::Field*>(base + offset);
526 offset += sizeof(field_[0])*fdCount;
528 offset = RoundUp(offset, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */
529 auto elev_ = reinterpret_cast<HrtfEntry::Elevation*>(base + offset);
530 offset += sizeof(elev_[0])*evTotal;
532 offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
533 auto coeffs_ = reinterpret_cast<ALfloat(*)[2]>(base + offset);
534 offset += sizeof(coeffs_[0])*irSize*irCount;
536 auto delays_ = reinterpret_cast<ALubyte(*)[2]>(base + offset);
537 offset += sizeof(delays_[0])*irCount;
539 assert(offset == total);
541 /* Copy input data to storage. */
542 for(ALuint i{0};i < fdCount;i++)
544 field_[i].distance = distance[i];
545 field_[i].evCount = evCount[i];
547 for(ALuint i{0};i < evTotal;i++)
549 elev_[i].azCount = azCount[i];
550 elev_[i].irOffset = irOffset[i];
552 for(ALuint i{0};i < ALuint{irSize}*irCount;i++)
554 coeffs_[i][0] = coeffs[i][0];
555 coeffs_[i][1] = coeffs[i][1];
557 for(ALuint i{0};i < irCount;i++)
559 delays_[i][0] = delays[i][0];
560 delays_[i][1] = delays[i][1];
563 /* Finally, assign the storage pointers. */
564 Hrtf->field = field_;
565 Hrtf->elev = elev_;
566 Hrtf->coeffs = coeffs_;
567 Hrtf->delays = delays_;
570 return Hrtf;
573 ALubyte GetLE_ALubyte(std::istream &data)
575 return static_cast<ALubyte>(data.get());
578 ALshort GetLE_ALshort(std::istream &data)
580 int ret = data.get();
581 ret |= data.get() << 8;
582 return static_cast<ALshort>((ret^32768) - 32768);
585 ALushort GetLE_ALushort(std::istream &data)
587 int ret = data.get();
588 ret |= data.get() << 8;
589 return static_cast<ALushort>(ret);
592 ALint GetLE_ALint24(std::istream &data)
594 int ret = data.get();
595 ret |= data.get() << 8;
596 ret |= data.get() << 16;
597 return (ret^8388608) - 8388608;
600 ALuint GetLE_ALuint(std::istream &data)
602 int ret = data.get();
603 ret |= data.get() << 8;
604 ret |= data.get() << 16;
605 ret |= data.get() << 24;
606 return static_cast<ALuint>(ret);
609 std::unique_ptr<HrtfEntry> LoadHrtf00(std::istream &data, const char *filename)
611 ALuint rate{GetLE_ALuint(data)};
612 ALushort irCount{GetLE_ALushort(data)};
613 ALushort irSize{GetLE_ALushort(data)};
614 ALubyte evCount{GetLE_ALubyte(data)};
615 if(!data || data.eof())
617 ERR("Failed reading %s\n", filename);
618 return nullptr;
621 ALboolean failed{AL_FALSE};
622 if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
624 ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
625 irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
626 failed = AL_TRUE;
628 if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
630 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
631 evCount, MIN_EV_COUNT, MAX_EV_COUNT);
632 failed = AL_TRUE;
634 if(failed)
635 return nullptr;
637 auto evOffset = al::vector<ALushort>(evCount);
638 for(auto &val : evOffset)
639 val = GetLE_ALushort(data);
640 if(!data || data.eof())
642 ERR("Failed reading %s\n", filename);
643 return nullptr;
645 for(size_t i{1};i < evCount;i++)
647 if(evOffset[i] <= evOffset[i-1])
649 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]);
650 failed = AL_TRUE;
653 if(irCount <= evOffset.back())
655 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
656 evOffset.size()-1, evOffset.back(), irCount);
657 failed = AL_TRUE;
659 if(failed)
660 return nullptr;
662 auto azCount = al::vector<ALushort>(evCount);
663 for(size_t i{1};i < evCount;i++)
665 azCount[i-1] = static_cast<ALushort>(evOffset[i] - evOffset[i-1]);
666 if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
668 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
669 i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
670 failed = AL_TRUE;
673 azCount.back() = static_cast<ALushort>(irCount - evOffset.back());
674 if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT)
676 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
677 azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT);
678 failed = AL_TRUE;
680 if(failed)
681 return nullptr;
683 auto coeffs = al::vector<std::array<ALfloat,2>>(irSize*irCount);
684 auto delays = al::vector<std::array<ALubyte,2>>(irCount);
685 for(auto &val : coeffs)
686 val[0] = GetLE_ALshort(data) / 32768.0f;
687 for(auto &val : delays)
688 val[0] = GetLE_ALubyte(data);
689 if(!data || data.eof())
691 ERR("Failed reading %s\n", filename);
692 return nullptr;
694 for(size_t i{0};i < irCount;i++)
696 if(delays[i][0] > MAX_HRIR_DELAY)
698 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
699 failed = AL_TRUE;
702 if(failed)
703 return nullptr;
705 /* Mirror the left ear responses to the right ear. */
706 for(size_t i{0};i < evCount;i++)
708 const ALushort evoffset{evOffset[i]};
709 const ALushort azcount{azCount[i]};
710 for(size_t j{0};j < azcount;j++)
712 const size_t lidx{evoffset + j};
713 const size_t ridx{evoffset + ((azcount-j) % azcount)};
715 for(size_t k{0};k < irSize;k++)
716 coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
717 delays[ridx][1] = delays[lidx][0];
721 static constexpr ALfloat distance{0.0f};
722 return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
723 irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
724 &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
727 std::unique_ptr<HrtfEntry> LoadHrtf01(std::istream &data, const char *filename)
729 ALuint rate{GetLE_ALuint(data)};
730 ALushort irSize{GetLE_ALubyte(data)};
731 ALubyte evCount{GetLE_ALubyte(data)};
732 if(!data || data.eof())
734 ERR("Failed reading %s\n", filename);
735 return nullptr;
738 ALboolean failed{AL_FALSE};
739 if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
741 ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
742 irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
743 failed = AL_TRUE;
745 if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
747 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
748 evCount, MIN_EV_COUNT, MAX_EV_COUNT);
749 failed = AL_TRUE;
751 if(failed)
752 return nullptr;
754 auto azCount = al::vector<ALushort>(evCount);
755 std::generate(azCount.begin(), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data)));
756 if(!data || data.eof())
758 ERR("Failed reading %s\n", filename);
759 return nullptr;
761 for(size_t i{0};i < evCount;++i)
763 if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
765 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, azCount[i],
766 MIN_AZ_COUNT, MAX_AZ_COUNT);
767 failed = AL_TRUE;
770 if(failed)
771 return nullptr;
773 auto evOffset = al::vector<ALushort>(evCount);
774 evOffset[0] = 0;
775 ALushort irCount{azCount[0]};
776 for(size_t i{1};i < evCount;i++)
778 evOffset[i] = static_cast<ALushort>(evOffset[i-1] + azCount[i-1]);
779 irCount = static_cast<ALushort>(irCount + azCount[i]);
782 auto coeffs = al::vector<std::array<ALfloat,2>>(irSize*irCount);
783 auto delays = al::vector<std::array<ALubyte,2>>(irCount);
784 for(auto &val : coeffs)
785 val[0] = GetLE_ALshort(data) / 32768.0f;
786 for(auto &val : delays)
787 val[0] = GetLE_ALubyte(data);
788 if(!data || data.eof())
790 ERR("Failed reading %s\n", filename);
791 return nullptr;
793 for(size_t i{0};i < irCount;i++)
795 if(delays[i][0] > MAX_HRIR_DELAY)
797 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
798 failed = AL_TRUE;
801 if(failed)
802 return nullptr;
804 /* Mirror the left ear responses to the right ear. */
805 for(size_t i{0};i < evCount;i++)
807 const ALushort evoffset{evOffset[i]};
808 const ALushort azcount{azCount[i]};
809 for(size_t j{0};j < azcount;j++)
811 const size_t lidx{evoffset + j};
812 const size_t ridx{evoffset + ((azcount-j) % azcount)};
814 for(size_t k{0};k < irSize;k++)
815 coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
816 delays[ridx][1] = delays[lidx][0];
820 static constexpr ALfloat distance{0.0f};
821 return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
822 irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
823 &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
826 #define SAMPLETYPE_S16 0
827 #define SAMPLETYPE_S24 1
829 #define CHANTYPE_LEFTONLY 0
830 #define CHANTYPE_LEFTRIGHT 1
832 std::unique_ptr<HrtfEntry> LoadHrtf02(std::istream &data, const char *filename)
834 ALuint rate{GetLE_ALuint(data)};
835 ALubyte sampleType{GetLE_ALubyte(data)};
836 ALubyte channelType{GetLE_ALubyte(data)};
837 ALushort irSize{GetLE_ALubyte(data)};
838 ALubyte fdCount{GetLE_ALubyte(data)};
839 if(!data || data.eof())
841 ERR("Failed reading %s\n", filename);
842 return nullptr;
845 ALboolean failed{AL_FALSE};
846 if(sampleType > SAMPLETYPE_S24)
848 ERR("Unsupported sample type: %d\n", sampleType);
849 failed = AL_TRUE;
851 if(channelType > CHANTYPE_LEFTRIGHT)
853 ERR("Unsupported channel type: %d\n", channelType);
854 failed = AL_TRUE;
857 if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
859 ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
860 irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
861 failed = AL_TRUE;
863 if(fdCount < 1 || fdCount > MAX_FD_COUNT)
865 ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n",
866 fdCount, MIN_FD_COUNT, MAX_FD_COUNT);
867 failed = AL_TRUE;
869 if(failed)
870 return nullptr;
872 auto distance = al::vector<ALfloat>(fdCount);
873 auto evCount = al::vector<ALubyte>(fdCount);
874 auto azCount = al::vector<ALushort>{};
875 for(size_t f{0};f < fdCount;f++)
877 distance[f] = GetLE_ALushort(data) / 1000.0f;
878 evCount[f] = GetLE_ALubyte(data);
879 if(!data || data.eof())
881 ERR("Failed reading %s\n", filename);
882 return nullptr;
885 if(distance[f] < MIN_FD_DISTANCE || distance[f] > MAX_FD_DISTANCE)
887 ERR("Unsupported field distance[%zu]=%f (%f to %f meters)\n", f, distance[f],
888 MIN_FD_DISTANCE, MAX_FD_DISTANCE);
889 failed = AL_TRUE;
891 if(f > 0 && distance[f] <= distance[f-1])
893 ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, distance[f],
894 distance[f-1]);
895 failed = AL_TRUE;
897 if(evCount[f] < MIN_EV_COUNT || evCount[f] > MAX_EV_COUNT)
899 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount[f],
900 MIN_EV_COUNT, MAX_EV_COUNT);
901 failed = AL_TRUE;
903 if(failed)
904 return nullptr;
906 const size_t ebase{azCount.size()};
907 azCount.resize(ebase + evCount[f]);
908 std::generate(azCount.begin()+static_cast<ptrdiff_t>(ebase), azCount.end(),
909 std::bind(GetLE_ALubyte, std::ref(data)));
910 if(!data || data.eof())
912 ERR("Failed reading %s\n", filename);
913 return nullptr;
916 for(size_t e{0};e < evCount[f];e++)
918 if(azCount[ebase+e] < MIN_AZ_COUNT || azCount[ebase+e] > MAX_AZ_COUNT)
920 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
921 azCount[ebase+e], MIN_AZ_COUNT, MAX_AZ_COUNT);
922 failed = AL_TRUE;
925 if(failed)
926 return nullptr;
929 auto evOffset = al::vector<ALushort>(azCount.size());
930 evOffset[0] = 0;
931 std::partial_sum(azCount.cbegin(), azCount.cend()-1, evOffset.begin()+1);
932 const auto irTotal = static_cast<ALushort>(evOffset.back() + azCount.back());
934 auto coeffs = al::vector<std::array<ALfloat,2>>(irSize*irTotal);
935 auto delays = al::vector<std::array<ALubyte,2>>(irTotal);
936 if(channelType == CHANTYPE_LEFTONLY)
938 if(sampleType == SAMPLETYPE_S16)
940 for(auto &val : coeffs)
941 val[0] = GetLE_ALshort(data) / 32768.0f;
943 else if(sampleType == SAMPLETYPE_S24)
945 for(auto &val : coeffs)
946 val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
948 for(auto &val : delays)
949 val[0] = GetLE_ALubyte(data);
950 if(!data || data.eof())
952 ERR("Failed reading %s\n", filename);
953 return nullptr;
955 for(size_t i{0};i < irTotal;++i)
957 if(delays[i][0] > MAX_HRIR_DELAY)
959 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
960 failed = AL_TRUE;
964 else if(channelType == CHANTYPE_LEFTRIGHT)
966 if(sampleType == SAMPLETYPE_S16)
968 for(auto &val : coeffs)
970 val[0] = GetLE_ALshort(data) / 32768.0f;
971 val[1] = GetLE_ALshort(data) / 32768.0f;
974 else if(sampleType == SAMPLETYPE_S24)
976 for(auto &val : coeffs)
978 val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
979 val[1] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
982 for(auto &val : delays)
984 val[0] = GetLE_ALubyte(data);
985 val[1] = GetLE_ALubyte(data);
987 if(!data || data.eof())
989 ERR("Failed reading %s\n", filename);
990 return nullptr;
993 for(size_t i{0};i < irTotal;++i)
995 if(delays[i][0] > MAX_HRIR_DELAY)
997 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
998 failed = AL_TRUE;
1000 if(delays[i][1] > MAX_HRIR_DELAY)
1002 ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
1003 failed = AL_TRUE;
1007 if(failed)
1008 return nullptr;
1010 if(channelType == CHANTYPE_LEFTONLY)
1012 /* Mirror the left ear responses to the right ear. */
1013 size_t ebase{0};
1014 for(size_t f{0};f < fdCount;f++)
1016 for(size_t e{0};e < evCount[f];e++)
1018 const ALushort evoffset{evOffset[ebase+e]};
1019 const ALushort azcount{azCount[ebase+e]};
1020 for(size_t a{0};a < azcount;a++)
1022 const size_t lidx{evoffset + a};
1023 const size_t ridx{evoffset + ((azcount-a) % azcount)};
1025 for(size_t k{0};k < irSize;k++)
1026 coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
1027 delays[ridx][1] = delays[lidx][0];
1030 ebase += evCount[f];
1034 if(fdCount > 1)
1036 auto distance_ = al::vector<ALfloat>(distance.size());
1037 auto evCount_ = al::vector<ALubyte>(evCount.size());
1038 auto azCount_ = al::vector<ALushort>(azCount.size());
1039 auto evOffset_ = al::vector<ALushort>(evOffset.size());
1040 auto coeffs_ = al::vector<float2>(coeffs.size());
1041 auto delays_ = al::vector<std::array<ALubyte,2>>(delays.size());
1043 /* Simple reverse for the per-field elements. */
1044 std::reverse_copy(distance.cbegin(), distance.cend(), distance_.begin());
1045 std::reverse_copy(evCount.cbegin(), evCount.cend(), evCount_.begin());
1047 /* Each field has a group of elevations, which each have an azimuth
1048 * count. Reverse the order of the groups, keeping the relative order
1049 * of per-group azimuth counts.
1051 auto azcnt_end = azCount_.end();
1052 auto copy_azs = [&azCount,&azcnt_end](const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t
1054 auto azcnt_src = azCount.begin()+ebase;
1055 azcnt_end = std::copy_backward(azcnt_src, azcnt_src+num_evs, azcnt_end);
1056 return ebase + num_evs;
1058 std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_azs);
1059 assert(azCount_.begin() == azcnt_end);
1061 /* Reestablish the IR offset for each elevation index, given the new
1062 * ordering of elevations.
1064 evOffset_[0] = 0;
1065 std::partial_sum(azCount_.cbegin(), azCount_.cend()-1, evOffset_.begin()+1);
1067 /* Reverse the order of each field's group of IRs. */
1068 auto coeffs_end = coeffs_.end();
1069 auto delays_end = delays_.end();
1070 auto copy_irs = [irSize,&azCount,&coeffs,&delays,&coeffs_end,&delays_end](const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t
1072 const ALsizei abase{std::accumulate(azCount.cbegin(), azCount.cbegin()+ebase, 0)};
1073 const ALsizei num_azs{std::accumulate(azCount.cbegin()+ebase,
1074 azCount.cbegin() + (ebase+num_evs), 0)};
1076 coeffs_end = std::copy_backward(coeffs.cbegin() + abase*irSize,
1077 coeffs.cbegin() + (abase+num_azs)*irSize, coeffs_end);
1078 delays_end = std::copy_backward(delays.cbegin() + abase,
1079 delays.cbegin() + (abase+num_azs), delays_end);
1081 return ebase + num_evs;
1083 std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_irs);
1084 assert(coeffs_.begin() == coeffs_end);
1085 assert(delays_.begin() == delays_end);
1087 distance = std::move(distance_);
1088 evCount = std::move(evCount_);
1089 azCount = std::move(azCount_);
1090 evOffset = std::move(evOffset_);
1091 coeffs = std::move(coeffs_);
1092 delays = std::move(delays_);
1095 return CreateHrtfStore(rate, irSize, fdCount, evCount.data(), distance.data(), azCount.data(),
1096 evOffset.data(), irTotal, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
1097 &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
1101 bool checkName(al::vector<EnumeratedHrtf> &list, const std::string &name)
1103 return std::find_if(list.cbegin(), list.cend(),
1104 [&name](const EnumeratedHrtf &entry)
1105 { return name == entry.name; }
1106 ) != list.cend();
1109 void AddFileEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename)
1111 /* Check if this file has already been loaded globally. */
1112 auto loaded_entry = LoadedHrtfs.begin();
1113 for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
1115 if(filename != (*loaded_entry)->filename.data())
1116 continue;
1118 /* Check if this entry has already been added to the list. */
1119 auto iter = std::find_if(list.cbegin(), list.cend(),
1120 [loaded_entry](const EnumeratedHrtf &entry) -> bool
1121 { return loaded_entry->get() == entry.hrtf; }
1123 if(iter != list.cend())
1125 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1126 return;
1129 break;
1132 if(loaded_entry == LoadedHrtfs.end())
1134 TRACE("Got new file \"%s\"\n", filename.c_str());
1136 LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+1));
1137 loaded_entry = LoadedHrtfs.end()-1;
1138 std::copy(filename.begin(), filename.end(), (*loaded_entry)->filename.begin());
1139 (*loaded_entry)->filename.back() = '\0';
1142 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1143 * format update). */
1144 size_t namepos = filename.find_last_of('/')+1;
1145 if(!namepos) namepos = filename.find_last_of('\\')+1;
1147 size_t extpos{filename.find_last_of('.')};
1148 if(extpos <= namepos) extpos = std::string::npos;
1150 const std::string basename{(extpos == std::string::npos) ?
1151 filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
1152 std::string newname{basename};
1153 int count{1};
1154 while(checkName(list, newname))
1156 newname = basename;
1157 newname += " #";
1158 newname += std::to_string(++count);
1160 list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
1161 const EnumeratedHrtf &entry = list.back();
1163 TRACE("Adding file entry \"%s\"\n", entry.name.c_str());
1166 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1167 * for input instead of opening the given filename.
1169 void AddBuiltInEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename, ALuint residx)
1171 auto loaded_entry = LoadedHrtfs.begin();
1172 for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
1174 if(filename != (*loaded_entry)->filename.data())
1175 continue;
1177 /* Check if this entry has already been added to the list. */
1178 auto iter = std::find_if(list.cbegin(), list.cend(),
1179 [loaded_entry](const EnumeratedHrtf &entry) -> bool
1180 { return loaded_entry->get() == entry.hrtf; }
1182 if(iter != list.cend())
1184 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1185 return;
1188 break;
1191 if(loaded_entry == LoadedHrtfs.end())
1193 TRACE("Got new file \"%s\"\n", filename.c_str());
1195 LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+32));
1196 loaded_entry = LoadedHrtfs.end()-1;
1197 snprintf((*loaded_entry)->filename.data(), (*loaded_entry)->filename.size(), "!%u_%s",
1198 residx, filename.c_str());
1201 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1202 * format update). */
1204 std::string newname{filename};
1205 int count{1};
1206 while(checkName(list, newname))
1208 newname = filename;
1209 newname += " #";
1210 newname += std::to_string(++count);
1212 list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
1213 const EnumeratedHrtf &entry = list.back();
1215 TRACE("Adding built-in entry \"%s\"\n", entry.name.c_str());
1219 #define IDR_DEFAULT_44100_MHR 1
1220 #define IDR_DEFAULT_48000_MHR 2
1222 using ResData = al::span<const char>;
1223 #ifndef ALSOFT_EMBED_HRTF_DATA
1225 ResData GetResource(int /*name*/)
1226 { return ResData{}; }
1228 #else
1230 #include "default-44100.mhr.h"
1231 #include "default-48000.mhr.h"
1233 ResData GetResource(int name)
1235 if(name == IDR_DEFAULT_44100_MHR)
1236 return {reinterpret_cast<const char*>(hrtf_default_44100), sizeof(hrtf_default_44100)};
1237 if(name == IDR_DEFAULT_48000_MHR)
1238 return {reinterpret_cast<const char*>(hrtf_default_48000), sizeof(hrtf_default_48000)};
1239 return ResData{};
1241 #endif
1243 } // namespace
1246 al::vector<EnumeratedHrtf> EnumerateHrtf(const char *devname)
1248 al::vector<EnumeratedHrtf> list;
1250 bool usedefaults{true};
1251 if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths"))
1253 const char *pathlist{pathopt->c_str()};
1254 while(pathlist && *pathlist)
1256 const char *next, *end;
1258 while(isspace(*pathlist) || *pathlist == ',')
1259 pathlist++;
1260 if(*pathlist == '\0')
1261 continue;
1263 next = strchr(pathlist, ',');
1264 if(next)
1265 end = next++;
1266 else
1268 end = pathlist + strlen(pathlist);
1269 usedefaults = false;
1272 while(end != pathlist && isspace(*(end-1)))
1273 --end;
1274 if(end != pathlist)
1276 const std::string pname{pathlist, end};
1277 for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
1278 AddFileEntry(list, fname);
1281 pathlist = next;
1284 else if(ConfigValueExists(devname, nullptr, "hrtf_tables"))
1285 ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
1287 if(usedefaults)
1289 for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
1290 AddFileEntry(list, fname);
1292 if(!GetResource(IDR_DEFAULT_44100_MHR).empty())
1293 AddBuiltInEntry(list, "Built-In 44100hz", IDR_DEFAULT_44100_MHR);
1295 if(!GetResource(IDR_DEFAULT_48000_MHR).empty())
1296 AddBuiltInEntry(list, "Built-In 48000hz", IDR_DEFAULT_48000_MHR);
1299 if(!list.empty())
1301 if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf"))
1303 auto iter = std::find_if(list.begin(), list.end(),
1304 [&defhrtfopt](const EnumeratedHrtf &entry) -> bool
1305 { return entry.name == *defhrtfopt; }
1307 if(iter == list.end())
1308 WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str());
1309 else if(iter != list.begin())
1311 EnumeratedHrtf entry{std::move(*iter)};
1312 list.erase(iter);
1313 list.insert(list.begin(), std::move(entry));
1318 return list;
1321 HrtfEntry *GetLoadedHrtf(HrtfHandle *handle)
1323 std::lock_guard<std::mutex> _{LoadedHrtfLock};
1325 if(handle->entry)
1327 HrtfEntry *hrtf{handle->entry.get()};
1328 hrtf->IncRef();
1329 return hrtf;
1332 std::unique_ptr<std::istream> stream;
1333 const char *name{""};
1334 ALint residx{};
1335 char ch{};
1336 if(sscanf(handle->filename.data(), "!%d%c", &residx, &ch) == 2 && ch == '_')
1338 name = strchr(handle->filename.data(), ch)+1;
1340 TRACE("Loading %s...\n", name);
1341 ResData res{GetResource(residx)};
1342 if(res.empty())
1344 ERR("Could not get resource %u, %s\n", residx, name);
1345 return nullptr;
1347 stream = al::make_unique<idstream>(res.begin(), res.end());
1349 else
1351 name = handle->filename.data();
1353 TRACE("Loading %s...\n", handle->filename.data());
1354 auto fstr = al::make_unique<al::ifstream>(handle->filename.data(), std::ios::binary);
1355 if(!fstr->is_open())
1357 ERR("Could not open %s\n", handle->filename.data());
1358 return nullptr;
1360 stream = std::move(fstr);
1363 std::unique_ptr<HrtfEntry> hrtf;
1364 char magic[sizeof(magicMarker02)];
1365 stream->read(magic, sizeof(magic));
1366 if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker02)))
1367 ERR("%s data is too short (%zu bytes)\n", name, stream->gcount());
1368 else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
1370 TRACE("Detected data set format v2\n");
1371 hrtf = LoadHrtf02(*stream, name);
1373 else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
1375 TRACE("Detected data set format v1\n");
1376 hrtf = LoadHrtf01(*stream, name);
1378 else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
1380 TRACE("Detected data set format v0\n");
1381 hrtf = LoadHrtf00(*stream, name);
1383 else
1384 ERR("Invalid header in %s: \"%.8s\"\n", name, magic);
1385 stream.reset();
1387 if(!hrtf)
1389 ERR("Failed to load %s\n", name);
1390 return nullptr;
1393 TRACE("Loaded HRTF support for sample rate: %uhz\n", hrtf->sampleRate);
1394 handle->entry = std::move(hrtf);
1396 return handle->entry.get();
1400 void HrtfEntry::IncRef()
1402 auto ref = IncrementRef(mRef);
1403 TRACE("HrtfEntry %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1406 void HrtfEntry::DecRef()
1408 auto ref = DecrementRef(mRef);
1409 TRACE("HrtfEntry %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1410 if(ref == 0)
1412 std::lock_guard<std::mutex> _{LoadedHrtfLock};
1414 /* Go through and clear all unused HRTFs. */
1415 auto delete_unused = [](HrtfHandlePtr &handle) -> void
1417 HrtfEntry *entry{handle->entry.get()};
1418 if(entry && ReadRef(entry->mRef) == 0)
1420 TRACE("Unloading unused HRTF %s\n", handle->filename.data());
1421 handle->entry = nullptr;
1424 std::for_each(LoadedHrtfs.begin(), LoadedHrtfs.end(), delete_unused);